The Border Problem

Name: _____

Learning Goals

- Describe border growth in different ways.
- Write about the border's growth.
- Use variables to create different, but equal, algebraic expressions.

Phet Link: <u>https://phet.colorado.edu/sims/html/area-builder/latest/area-builder_en.html</u>

- 1. Open Explore: Take some time to play around with it. What are 3 things that you notice?
 - a. ______ b. ______ c. _____
- 2. Using the smaller colored squares, create three larger squares

Side Length	Area	Border (not perimeter!)	Picture

- 3. Where do you see the area in your shapes?
- 4. Where do you see the border in your shapes?
- 5. <u>Without using the sim</u>, write a <u>description</u> for calculating the border of a square that is 10 x 10?

1.	2.

Quick Write!

- 1. What is a variable?
- 2. What is an expression?
- 3. How can we rewrite any border strategy above using variables?

Rewrite the two strategies above using variables:

1.	2.

With some algebraic manipulation, each strategy is equivalent to: ______

Using the expression above, calculate the border of a 75 x 75 square:

Challenge:

Using words, numbers and variables, describe the pattern for the blue squares shown in the squares:

