Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 1 - Scalar field and its Gradient |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 2 - Line and Surface Integrals |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 3 - Divergence and Curl of Vector Fields |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 4 - Conservative Field, Stoke's Theorem |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 5 - Laplacian |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 6 - Electric Field Potential |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 7 - Gauss's Law, Potential |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 8 - Electric Field and Potential |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 9 - Potential and Potential Energy - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 10 - Potential and Potential Energy - II |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 11 - Potential and Potential Energy - III |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 12 - Coefficients of Potential and Capacitance |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 13 - Poission and Laplace Equation |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 14 - Solutions of Laplace Equation - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 15 - Solutions of Laplace Equation - II |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 16 - Solutions of Laplace Equation - III |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 17 - Special Techniques - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 18 - Special Techniques - II |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 19 - Special Techniques - III |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 20 - Dielectrics - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 21 - Dielectrics - II |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 22 - Dielectrics - III |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 23 - Equation of Continuity |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 24 - a) Force between current loops b) Magnetic Vector Potential |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 25 - Magnetic Vector Potential |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 26 - Boundary Conditions |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 27 - Magnetized Material |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 28 - Magentostatics (Continued...), Time Varying Field (Introduction) |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 29 - Faraday's Law and Inductance |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 30 - Maxwell's Equations |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 31 - Maxwell's Equations and Conservation Laws |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 32 - Conservation Laws |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 33 - a) Angular Momentum Conservation b) Electromagnetic Waves |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 34 - Electromagnetic Waves |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 35 - Propagation of Electromagnetic Waves in a metal |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 36 - Waveguides - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 37 - Waveguides - II |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 38 - Resonating Cavity |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 39 - Radiation - I |
Link |
Electromagnetic Theory (Prof. D.K. Ghosh) |
Lecture 40 - Radiation - II |
Link |
Special Theory of Relativity |
Lecture 1 - Problem with Classical Physics |
Link |
Special Theory of Relativity |
Lecture 2 - Michelson-Morley Experiment |
Link |
Special Theory of Relativity |
Lecture 3 - Postulates of Special Theory of Relativity and Galilean Transformation |
Link |
Special Theory of Relativity |
Lecture 4 - Look out for a New Transformation |
Link |
Special Theory of Relativity |
Lecture 5 - Lorentz Transformation |
Link |
Special Theory of Relativity |
Lecture 6 - Length Contraction and Time Dilation |
Link |
Special Theory of Relativity |
Lecture 7 - Examples of Length Contraction and Time Dilation |
Link |
Special Theory of Relativity |
Lecture 8 - Velocity Transformation and Examples |
Link |
Special Theory of Relativity |
Lecture 9 - A Three Event Problem |
Link |
Special Theory of Relativity |
Lecture 10 - A Problem involving Light and Concept of Casuality |
Link |
Special Theory of Relativity |
Lecture 11 - Problems involving Casuality and Need to Redefine Momentum |
Link |
Special Theory of Relativity |
Lecture 12 - Minikowski Space and Four Vectors |
Link |
Special Theory of Relativity |
Lecture 13 - Proper Time a Four Scalar |
Link |
Special Theory of Relativity |
Lecture 14 - Velocity Four Vector |
Link |
Special Theory of Relativity |
Lecture 15 - Momentum Energy Four Vector |
Link |
Special Theory of Relativity |
Lecture 16 - Relook at Collision Problems |
Link |
Special Theory of Relativity |
Lecture 17 - Zero Rest Mass Particle and Photon |
Link |
Special Theory of Relativity |
Lecture 18 - Doppler Effect in Light |
Link |
Special Theory of Relativity |
Lecture 19 - Example in C-Frame |
Link |
Special Theory of Relativity |
Lecture 20 - Force in Relativity |
Link |
Special Theory of Relativity |
Lecture 21 - Force Four-Vector |
Link |
Special Theory of Relativity |
Lecture 22 - Electric & Magnetic Field Transformation |
Link |
Special Theory of Relativity |
Lecture 23 - Example of EM Field Transformation |
Link |
Special Theory of Relativity |
Lecture 24 - Current Density Four Vector and Maxwell Equation |
Link |
NOC:Quantum Information and Computing |
Lecture 1 - Why Quantum Computing? |
Link |
NOC:Quantum Information and Computing |
Lecture 2 - Postulates of Quantum Mechanics - I |
Link |
NOC:Quantum Information and Computing |
Lecture 3 - Postulates of Quantum Mechanics - II |
Link |
NOC:Quantum Information and Computing |
Lecture 4 - Qubit - The smallest unit |
Link |
NOC:Quantum Information and Computing |
Lecture 5 - Qubit - Bloch sphere representation |
Link |
NOC:Quantum Information and Computing |
Lecture 6 - Multiple Qubit States and Quantum Gates |
Link |
NOC:Quantum Information and Computing |
Lecture 7 - Quantum Gates |
Link |
NOC:Quantum Information and Computing |
Lecture 8 - Quantum Circuts |
Link |
NOC:Quantum Information and Computing |
Lecture 9 - No-Cloning Theorem and Quantum Teleportation |
Link |
NOC:Quantum Information and Computing |
Lecture 10 - Super Dense Coding |
Link |
NOC:Quantum Information and Computing |
Lecture 11 - Density Matrix - I |
Link |
NOC:Quantum Information and Computing |
Lecture 12 - Density Matrix - II |
Link |
NOC:Quantum Information and Computing |
Lecture 13 - Bloch Sphere and Density Matrix |
Link |
NOC:Quantum Information and Computing |
Lecture 14 - Measurement Postulates - I |
Link |
NOC:Quantum Information and Computing |
Lecture 15 - Measurement Postulates - II |
Link |
NOC:Quantum Information and Computing |
Lecture 16 - Simple Algorithms-Deutsch Algorithm |
Link |
NOC:Quantum Information and Computing |
Lecture 17 - Deutsch-Josza and Bernstein - Vazirani Algorithms |
Link |
NOC:Quantum Information and Computing |
Lecture 18 - Simon Problem |
Link |
NOC:Quantum Information and Computing |
Lecture 19 - Grover's Search Algorithm - I |
Link |
NOC:Quantum Information and Computing |
Lecture 20 - Grover's Search Algorithm - II |
Link |
NOC:Quantum Information and Computing |
Lecture 21 - Grover's Search Algorithm - III |
Link |
NOC:Quantum Information and Computing |
Lecture 22 - Grover's Search Algorithm - IV |
Link |
NOC:Quantum Information and Computing |
Lecture 23 - Quantum Fourier Transform |
Link |
NOC:Quantum Information and Computing |
Lecture 24 - Period Finding and QFT |
Link |
NOC:Quantum Information and Computing |
Lecture 25 - Implementing QFT |
Link |
NOC:Quantum Information and Computing |
Lecture 26 - Implementing QFT-3 qubits (and more) |
Link |
NOC:Quantum Information and Computing |
Lecture 27 - Shor's Factorization Algorithm |
Link |
NOC:Quantum Information and Computing |
Lecture 28 - Shor's Factorization Algorithm-Implementation |
Link |
NOC:Quantum Information and Computing |
Lecture 29 - Shor's Algorithm-Continued Fraction |
Link |
NOC:Quantum Information and Computing |
Lecture 30 - Quantum Error Correction - I |
Link |
NOC:Quantum Information and Computing |
Lecture 31 - Quantum Error Correction - II Three Qubit Code |
Link |
NOC:Quantum Information and Computing |
Lecture 32 - Quantum Error Correction - III Shor's 9 Qubit Code - I |
Link |
NOC:Quantum Information and Computing |
Lecture 33 - Quantum Error Correction - IV Shor's 9 Qubit Code - II |
Link |
NOC:Quantum Information and Computing |
Lecture 34 - Classical Information Theory |
Link |
NOC:Quantum Information and Computing |
Lecture 35 - Shannon Entropy |
Link |
NOC:Quantum Information and Computing |
Lecture 36 - Shannon's Noiseless Coding Theorem |
Link |
NOC:Quantum Information and Computing |
Lecture 37 - Ven Neumann Entropy |
Link |
NOC:Quantum Information and Computing |
Lecture 38 - EPR and Bell's Inequalities - I |
Link |
NOC:Quantum Information and Computing |
Lecture 39 - EPR and Bell's Inequalities - II |
Link |
NOC:Quantum Information and Computing |
Lecture 40 - EPR and Bell's Inequalities - III |
Link |
NOC:Quantum Information and Computing |
Lecture 41 - Cryptography-RSA Algorithm - I |
Link |
NOC:Quantum Information and Computing |
Lecture 42 - Cryptography-RSA Algorithm - II |
Link |
NOC:Quantum Information and Computing |
Lecture 43 - Quantum Cryptography - I |
Link |
NOC:Quantum Information and Computing |
Lecture 44 - Quantum Cryptography - II |
Link |
NOC:Quantum Information and Computing |
Lecture 45 - Experimental Aspects of Quantum Computing - I |
Link |
NOC:Quantum Information and Computing |
Lecture 46 - Experimental Aspects of Quantum Computing - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 1 - Introduction |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 2 - Algebraic Preliminaries |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 3 - Basic Group Concepts and Low Order Groups - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 4 - Basic Group Concepts and Low Order Groups - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 5 - Lagrange's Theorem and Cayley's Theorem - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 6 - Lagrange's Theorem and Cayley's Theorem - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 7 - Factor Group Conjugacy Classes - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 8 - Factor Group Conjugacy Classes - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 9 - Cycle Structures and Molecular Notation - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 10 - Cycle Structures and Molecular Notation - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 11 - Cycle Structures and Classification - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 12 - Cycle Structures and Classification - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 13 - Point Group Notation and Factor Group - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 14 - Point Group Notation and Factor Group - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 15 - Representation Theory - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 16 - Representation Theory - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 17 - Representation Theory - III |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 18 - Representation Theory - IV |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 19 - Schur's Lemma and Orthogonality Theorem - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 20 - Schur's Lemma and Orthogonality Theorem - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 21 - Orthogonality For Characters - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 22 - Orthogonality For Characters - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 23 - Character Tables and Molecular Applications - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 24 - Character Tables and Molecular Applications - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 25 - Preliminaries About The Continuum - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 26 - Preliminaries About The Continuum - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 27 - Classical Groups - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 28 - Classical Groups - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 29 - Classical Groups-Topology - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 30 - Classical Groups-Topology - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 31 - SO(3) And Matrix Exponent - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 32 - SO(3) And Matrix Exponent - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 33 - Generators, Discussion Of Lie's Theorems - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 34 - Generators, Discussion Of Lie's Theorems - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 35 - Group Algebras; SO(3)-SU(2) Correspondence - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 36 - Group Algebras; SO(3)-SU(2) Correspondence - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 37 - SO(3), SU(2) Representations - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 38 - SO(3), SU(2) Representations - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 39 - Representation On Function Spaces - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 40 - Representation On Function Spaces - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 41 - Lorentz Boosts, SO(3,1) Algebra - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 42 - Lorentz Boosts, SO(3,1) Algebra - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 43 - Representation Of Lorentz Group And Clifford Algebra - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 44 - Representation Of Lorentz Group And Clifford Algebra - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 45 - SU(3) And Lie's Classification - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 46 - SU(3) And Lie's Classification - II |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 47 - Fundamental Symmetries Of Physics - I |
Link |
NOC:Theory of Groups for Physics Applications |
Lecture 48 - Fundamental Symmetries Of Physics - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 1 - Introduction to Quantum Mechanics - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 2 - Introduction to Quantum Mechanics - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 3 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 4 - Review of Particle in Box, Potential Well, Barrier, Harmonic Oscillator - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 5 - Tutorial 1 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 6 - Tutorial 1 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 7 - Bound States - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 8 - Bound States - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 9 - Conditions and Solutions for one Dimensional Bound States - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 10 - Conditions and Solutions for one Dimensional Bound States - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 11 - Tutorial 2 |
Link |
NOC:Quantum Mechanics-I |
Lecture 12 - Linear Vector Space (LVS) - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 13 - Linear Vector Space (LVS) - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 14 - Linear Vector Space (LVS) - III |
Link |
NOC:Quantum Mechanics-I |
Lecture 15 - Basis for Operators and States in LVS - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 16 - Basis for Operators and States in LVS - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 17 - Tutorial 3 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 18 - Tutorial 3 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 19 - Function Spaces - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 20 - Function Spaces - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 21 - Postulates of Quantum Mechanics - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 22 - Postulates of Quantum Mechanics - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 23 - Tutorial 4 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 24 - Tutorial 4 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 25 - Classical vs Quantum Mechanics - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 26 - Classical vs Quantum Mechanics - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 27 - Compatible vs Incompatible Observable - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 28 - Compatible vs Incompatible Observable - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 29 - Tutorial 5 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 30 - Tutorial 5 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 31 - Tutorial 5 - Part III |
Link |
NOC:Quantum Mechanics-I |
Lecture 32 - Schrodinger and Heisenberg Pictures - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 33 - Schrodinger and Heisenberg Pictures - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 34 - Solutions to other Coupled Potential Energies - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 35 - Solutions to other Coupled Potential Energies - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 36 - Tutorial 6 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 37 - Tutorial 6 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 38 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 39 - Hydrogen Atom and Wave Functions, Angular Momentum Operators, Identical Particles - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 40 - Identical Particles and Quantum Computer - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 41 - Identical Particles and Quantum Computer - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 42 - Tutorial 7 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 43 - Tutorial 7 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 44 - Harmonic Oscillator - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 45 - Harmonic Oscillator - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 46 - Ladder Operators - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 47 - Ladder Operators - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 48 - Tutorial 8 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 49 - Tutorial 8 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 50 - Stern-Gerlach Experiment - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 51 - Stern-Gerlach Experiment - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 52 - Oscillator Algebra |
Link |
NOC:Quantum Mechanics-I |
Lecture 53 - Tutorial 9 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 54 - Tutorial 9 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 55 - Angular Momentum - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 56 - Angular Momentum - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 57 - Rotations Groups - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 58 - Rotations Groups - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 59 - Tutorial 10 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 60 - Tutorial 10 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 61 - Addition of Angular Momentum - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 62 - Addition of Angular Momentum - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 63 - Clebsch-Gordan Coe cients - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 64 - Clebsch-Gordan Coe cients - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 65 - Tutorial 11 - Part I |
Link |
NOC:Quantum Mechanics-I |
Lecture 66 - Tutorial 11 - Part II |
Link |
NOC:Quantum Mechanics-I |
Lecture 67 - Clebsch-Gordan Coe cients - III |
Link |
NOC:Quantum Mechanics-I |
Lecture 68 - Tensor Operators and Wigner-Eckart Theorem - I |
Link |
NOC:Quantum Mechanics-I |
Lecture 69 - Tensor Operators and Wigner-Eckart Theorem - II |
Link |
NOC:Quantum Mechanics-I |
Lecture 70 - Tensor Operators and Wigner-Eckart Theorem - III |
Link |
NOC:Quantum Mechanics-I |
Lecture 71 - Tutorial 12 |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 1 - Quantum Theory Fundamental Quantisation - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 2 - Quantum Theory Fundamental Quantisation - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 3 - Path Integral Formulation - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 4 - Path Integral Formulation - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 5 - Path Integral Formulation - III |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 6 - Path Integral Formulation - IV |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 7 - Correlation Functions - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 8 - Correlation Functions - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 9 - Generating Functional, Forced Harmonic Oscillator - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 10 - Generating Functional, Forced Harmonic Oscillator - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 11 - Generating Function in Field Theory - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 12 - Generating Function in Field Theory - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 13 - Effective Potential - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 14 - Effective Potential - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 15 - Effective Potential - III |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 16 - Effective Potential - IV |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 17 - Asymptotic Theory - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 18 - Asymptotic Theory - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 19 - Asymptotic Condition Kallen-Lehmann representation - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 20 - Asymptotic Condition Kallen-Lehmann representation - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 21 - Gauge Invariance - Minimal Coupling |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 22 - Gauge Invariance - Geometric Picture |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 23 - Gauge Invariance - Abelian Case |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 24 - Gauge Invariance - Non-abelian case |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 25 - Yang Mills Theory - Coupling to Matter |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 26 - Yang Mills Theory - Physical Content |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 27 - Yang Mills Theory Constraint Dynamics - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 28 - Yang Mills Theory Constraint Dynamics - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 29 - Gauge Fixing and Faddeev Popov Ghosts - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 30 - Gauge Fixing and Faddeev Popov Ghosts - II |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 31 - Topological Vacuum of Yang Mills Theories - I |
Link |
NOC:Path Integral and Functional Methods in Quantum Field Theory |
Lecture 32 - Topological Vacuum of Yang Mills Theories - II |
Link |
NOC:Physics of Biological Systems |
Lecture 1 - Introduction |
Link |
NOC:Physics of Biological Systems |
Lecture 2 - DNA packing and structure |
Link |
NOC:Physics of Biological Systems |
Lecture 3 - Shape and function |
Link |
NOC:Physics of Biological Systems |
Lecture 4 - Numbers and sizes |
Link |
NOC:Physics of Biological Systems |
Lecture 5 - Spatial scales and System variation |
Link |
NOC:Physics of Biological Systems |
Lecture 6 - Timescales in Biology |
Link |
NOC:Physics of Biological Systems |
Lecture 7 - Random walks and Passive diffusion |
Link |
NOC:Physics of Biological Systems |
Lecture 8 - Random walks to model Biology |
Link |
NOC:Physics of Biological Systems |
Lecture 9 - Derivation of FRAP equations |
Link |
NOC:Physics of Biological Systems |
Lecture 10 - Drift-diffusion equations |
Link |
NOC:Physics of Biological Systems |
Lecture 11 - Solutions of the drift-diffusion equations |
Link |
NOC:Physics of Biological Systems |
Lecture 12 - The cell signaling problem |
Link |
NOC:Physics of Biological Systems |
Lecture 13 - Cell Signalling and Capture Probability of absorbing sphere |
Link |
NOC:Physics of Biological Systems |
Lecture 14 - Capture probability of reflecting sphere |
Link |
NOC:Physics of Biological Systems |
Lecture 15 - Mean capture time |
Link |
NOC:Physics of Biological Systems |
Lecture 16 - Introduction to fluids, viscosity and reynolds number |
Link |
NOC:Physics of Biological Systems |
Lecture 17 - Introduction to the navier stokes equation |
Link |
NOC:Physics of Biological Systems |
Lecture 18 - Understanding reynolds number |
Link |
NOC:Physics of Biological Systems |
Lecture 19 - Life at low reynolds number |
Link |
NOC:Physics of Biological Systems |
Lecture 20 - Various phenomena at low reynolds number |
Link |
NOC:Physics of Biological Systems |
Lecture 21 - Bacterial flagellar motion |
Link |
NOC:Physics of Biological Systems |
Lecture 22 - Rotating flagellum |
Link |
NOC:Physics of Biological Systems |
Lecture 23 - Energy and equilibrium |
Link |
NOC:Physics of Biological Systems |
Lecture 24 - Binding problems |
Link |
NOC:Physics of Biological Systems |
Lecture 25 - Transcription and translation |
Link |
NOC:Physics of Biological Systems |
Lecture 26 - Internal states of macromolecules |
Link |
NOC:Physics of Biological Systems |
Lecture 27 - Protein modification problem |
Link |
NOC:Physics of Biological Systems |
Lecture 28 - Haemoglobin-Oxygen binding problem |
Link |
NOC:Physics of Biological Systems |
Lecture 29 - Freely jointed polymer model |
Link |
NOC:Physics of Biological Systems |
Lecture 30 - Entropic springs and persistence length |
Link |
NOC:Physics of Biological Systems |
Lecture 31 - Freely rotating chain model and radius of gyration |
Link |
NOC:Physics of Biological Systems |
Lecture 32 - The hierarchical chromatin packing model |
Link |
NOC:Physics of Biological Systems |
Lecture 33 - FISH and DNA looping |
Link |
NOC:Physics of Biological Systems |
Lecture 34 - Nucleosomes as barriers, Hi-C, and contact probabilities |
Link |
NOC:Physics of Biological Systems |
Lecture 35 - Deriving the full force extension curve |
Link |
NOC:Physics of Biological Systems |
Lecture 36 - Random walk models for proteins |
Link |
NOC:Physics of Biological Systems |
Lecture 37 - Hydrophobic polar protein model |
Link |
NOC:Physics of Biological Systems |
Lecture 38 - Diffusion in crowded environments |
Link |
NOC:Physics of Biological Systems |
Lecture 39 - Depletion interactions |
Link |
NOC:Physics of Biological Systems |
Lecture 40 - Examples and implications of depletion interactions |
Link |
NOC:Physics of Biological Systems |
Lecture 41 - Introduction to Biological dynamics |
Link |
NOC:Physics of Biological Systems |
Lecture 42 - Introduction to rate equations |
Link |
NOC:Physics of Biological Systems |
Lecture 43 - Separation of timescales in enzyme kinetics |
Link |
NOC:Physics of Biological Systems |
Lecture 44 - Structure and treadmilling of actins and microtubules |
Link |
NOC:Physics of Biological Systems |
Lecture 45 - Average length of polymers in equilibrium |
Link |
NOC:Physics of Biological Systems |
Lecture 46 - Growth rate of polymers |
Link |
NOC:Physics of Biological Systems |
Lecture 47 - Dynamic treadmilling in microtubules |
Link |
NOC:Physics of Biological Systems |
Lecture 48 - Introduction to molecular motors |
Link |
NOC:Physics of Biological Systems |
Lecture 49 - Force generation by molecular motors |
Link |
NOC:Physics of Biological Systems |
Lecture 50 - Models of motor motion |
Link |
NOC:Physics of Biological Systems |
Lecture 51 - molecular motors |
Link |
NOC:Physics of Biological Systems |
Lecture 52 - Free energies of motor for stepping |
Link |
NOC:Physics of Biological Systems |
Lecture 53 - Two state models |
Link |
NOC:Physics of Biological Systems |
Lecture 54 - cooperative transport of cargo |
Link |
NOC:Physics of Biological Systems |
Lecture 55 - Cytoskeleton as a motor |
Link |
NOC:Physics of Biological Systems |
Lecture 56 - translocation ratchet |
Link |
NOC:Physics of Biological Systems |
Lecture 57 - Spatial pattern in biology |
Link |
NOC:Physics of Biological Systems |
Lecture 58 - Some common spatial patterns in biology |
Link |
NOC:Physics of Biological Systems |
Lecture 59 - reaction diffusion and spatial pattern |
Link |
NOC:Physics of Biological Systems |
Lecture 60 - Pattern formation in reaction diffusion system with stability |
Link |
NOC:Physics of Biological Systems |
Lecture 61 - Condition for destablization in pattern formation |
Link |
NOC:Physics of Biological Systems |
Lecture 62 - Schnakenberg kinetics |
Link |
NOC:Group Theory Methods in Physics |
Lecture 1 - Introduction - I |
Link |
NOC:Group Theory Methods in Physics |
Lecture 2 - Introduction - II |
Link |
NOC:Group Theory Methods in Physics |
Lecture 3 - Normal subgroup, Coset, Conjugate group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 4 - Factor group, Homomorphism, Isomorphism |
Link |
NOC:Group Theory Methods in Physics |
Lecture 5 - Factor group, Homomorphism, Isomorphism |
Link |
NOC:Group Theory Methods in Physics |
Lecture 6 - Conjugacy Classes |
Link |
NOC:Group Theory Methods in Physics |
Lecture 7 - Permutation Groups |
Link |
NOC:Group Theory Methods in Physics |
Lecture 8 - Cycle Structure |
Link |
NOC:Group Theory Methods in Physics |
Lecture 9 - Cycle Structure (Continued...) |
Link |
NOC:Group Theory Methods in Physics |
Lecture 10 - Young Diagram and Molecular Symmetry |
Link |
NOC:Group Theory Methods in Physics |
Lecture 11 - Point Groups |
Link |
NOC:Group Theory Methods in Physics |
Lecture 12 - Symmetries of Molecules, Schoenflies Notation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 13 - Symmetries of Molecules, Stereographic Projection |
Link |
NOC:Group Theory Methods in Physics |
Lecture 14 - Examples of Molecular Symmetries and Proof of Cayley Theorem |
Link |
NOC:Group Theory Methods in Physics |
Lecture 15 - Matrix Representation of Groups - I |
Link |
NOC:Group Theory Methods in Physics |
Lecture 16 - Matrix Representation of Groups - II |
Link |
NOC:Group Theory Methods in Physics |
Lecture 17 - Reducible and Irreducible Representation - I |
Link |
NOC:Group Theory Methods in Physics |
Lecture 18 - Reducible and Irreducible Representation - II |
Link |
NOC:Group Theory Methods in Physics |
Lecture 19 - Great Orthogonality Theorem and Character Table - I |
Link |
NOC:Group Theory Methods in Physics |
Lecture 20 - Great Orthogonality Theorem and Character Table - II |
Link |
NOC:Group Theory Methods in Physics |
Lecture 21 - Mulliken Notation, Character Table and Basis |
Link |
NOC:Group Theory Methods in Physics |
Lecture 22 - Tensor Product of Representation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 23 - Tensor Product and Projection Operator - I |
Link |
NOC:Group Theory Methods in Physics |
Lecture 24 - Tensor Product and Projection Operator - II |
Link |
NOC:Group Theory Methods in Physics |
Lecture 25 - Tensor Product and Projection Operator with an example |
Link |
NOC:Group Theory Methods in Physics |
Lecture 26 - Binary Basis and Observables |
Link |
NOC:Group Theory Methods in Physics |
Lecture 27 - Selection Rules |
Link |
NOC:Group Theory Methods in Physics |
Lecture 28 - Selection Rules and Molecular Vibrations |
Link |
NOC:Group Theory Methods in Physics |
Lecture 29 - Molecular vibration normal modes: Classical Mechanics approach |
Link |
NOC:Group Theory Methods in Physics |
Lecture 30 - Molecular vibration normal modes: Group Theory approach |
Link |
NOC:Group Theory Methods in Physics |
Lecture 31 - Molecular vibration modes using projection operator |
Link |
NOC:Group Theory Methods in Physics |
Lecture 32 - Vibrational representation of character |
Link |
NOC:Group Theory Methods in Physics |
Lecture 33 - Infrared Spectra and Raman Spectra |
Link |
NOC:Group Theory Methods in Physics |
Lecture 34 - Introduction to continuous group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 35 - Generators of translational and rotational transformation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 36 - Generators of Lorentz transformation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 37 - Introduction to O(3) and SO(3) group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 38 - SO(n) and Lorentz group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 39 - Generalised orthogonal group and Lie algebra |
Link |
NOC:Group Theory Methods in Physics |
Lecture 40 - Subalgebra of Lie algebra |
Link |
NOC:Group Theory Methods in Physics |
Lecture 41 - gl(2,C) and sl(2,C) group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 42 - U(n) and SU(n) group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 43 - Symplectic group |
Link |
NOC:Group Theory Methods in Physics |
Lecture 44 - SU(2) and SU(3) groups |
Link |
NOC:Group Theory Methods in Physics |
Lecture 45 - Rank, weight and weight vector |
Link |
NOC:Group Theory Methods in Physics |
Lecture 46 - Weight vector, root vector, comparison between SU(2) and SU(3) algebra |
Link |
NOC:Group Theory Methods in Physics |
Lecture 47 - Root diagram, simple roots, adjoint representation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 48 - SU(2) sub-algebra, Dynkin diagrams |
Link |
NOC:Group Theory Methods in Physics |
Lecture 49 - Fundamental weights, Young diagrams, dimension of irreducible representation |
Link |
NOC:Group Theory Methods in Physics |
Lecture 50 - Young diagrams and tensor products |
Link |
NOC:Group Theory Methods in Physics |
Lecture 51 - Tensor product, Wigner - Eckart theorem |
Link |
NOC:Group Theory Methods in Physics |
Lecture 52 - Tensor product of irreducible representation 1: Composite objects from fundamental particles |
Link |
NOC:Group Theory Methods in Physics |
Lecture 53 - Tensor product of irreducible representation 2: Decimet and octet diagrams in the Quark Model |
Link |
NOC:Group Theory Methods in Physics |
Lecture 54 - Clebsch - Gordan coefficients |
Link |
NOC:Group Theory Methods in Physics |
Lecture 55 - 1) Quadrupole moment tensor (Wigner-Eckart theorem) 2) Decimet Baryon wavefunction |
Link |
NOC:Group Theory Methods in Physics |
Lecture 56 - Higher dimensional multiplets in the quark model |
Link |
NOC:Group Theory Methods in Physics |
Lecture 57 - Symmetry breaking in continuous groups |
Link |
NOC:Group Theory Methods in Physics |
Lecture 58 - Dynamical symmetry in hydrogen atom: SO(4) algebra |
Link |
NOC:Group Theory Methods in Physics |
Lecture 59 - Hydrogen atom energy spectrum and degeneracy using Runge-Lenz vector |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 1 - Neutrons as Probe of Condensed Matter |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 2 - Sources for thermal neutrons used in neutron scattering |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 3 |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 4 - Calculating Neutron Scattering cross-section |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 5 |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 6 - Scattering theory and introducing dynamics in the formalism |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 7 - Scattering theory and introducing dynamics in the formalism |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 8 - Scattering theory and introducing dynamics in the formalism |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 9 - Scattering law's correlation with double-Fourier transform of real space correlation function |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 10 - Scattering law's correlation with double-Fourier transform of real space correlation function |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 11 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 12 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 13 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 14 - Correlation function to resolution and accessible(Q,ω). Introducing experimental facilities |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 15 - Introducing resolution and components of neutron scattering facilities. |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 16 - Introducing resolution and components of neutron scattering facilities. |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 17 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 18 - Continue with neutron scattering set up and its components like collimators, filters, detectors etc |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 19 - Describe the operation of various kinds of neutron detectors |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 20 - Describe the operation of various kinds of neutron detectors |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 21 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 22 - Introducing neutron choppers, velocity selectors and polarizers, some important components of beam tailoring devices |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 23 - Neutron polarizers and spin-flippers |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 24 - Neutron polarizers and spin-flippers |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 25 - Diffraction at various length scales at a reactor and at a spallation neutron source |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 26 - Diffraction at various length scales at a reactor and at a spallation neutron source |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 27 - Application of neutron crystallography |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 28 - Application of neutron crystallography |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 29 - Magnetism in solids |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 30 - Magnetism in solids |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 31 - Magnetic interaction in solids and magnetic neutron diffarction |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 32 - Magnetic interaction in solids and magnetic neutron diffarction |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 33 - Magnetic interaction in solids and magnetic neutron diffarction |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 34 - Magnetic neutron diffraction |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 35 - Magnetic neutron diffraction |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 36 - Neutron diffraction from liquid and amorphous systems |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 37 - Neutron diffraction from liquid and amorphous systems |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 38 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 39 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 40 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 41 - Small Angle Neutron Scattering (SANS) for mesoscopic structure |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 42 - SANS for soft condensed matter |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 43 - SANS for soft condensed matter |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 44 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 45 - SANS for polymers, biological systems, nanoparticle aggregates, rocks, Superconducting vortex lattice |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 46 - Neutron reflectometry for thin films |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 47 - Neutron reflectometry for thin films |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 48 - Neutron reflectometry for thin films |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 49 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 50 - Details formalism to evaluate specular neutron reflectivity and comparison with x-ray reflectometry |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 51 - Neutron reflectometry data analysis and reflectometers at various sources |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 52 - Neutron reflectometry data analysis and reflectometers at various sources |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 53 - Neutron reflectometry data analysis and reflectometers at various sources |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 54 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 55 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 56 - Examples of PNR with and without spin analysis and introduction to off-specular reflectometry |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 57 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 58 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 59 - Off-specular neutron reflectometry and introduction to inelastic neutron scattering |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 60 - Phonon measurements with neutrons |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 61 - Phonon measurements with neutrons |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 62 - Phonon measurements; single crystals |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 63 |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 64 - Phonon: Density of States measurements |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 65 - Stochastic dynamics with neutrons |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 66 - Stochastic motion and various types of diffusion |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 67 - Stochastic motion and various types of diffusion |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 68 - Spin echo spectrometer, Summary of the course |
Link |
NOC:Neutron Scattering for Condensed Matter Studies |
Lecture 69 - Spin echo spectrometer, Summary of the course |
Link |
NOC:Accelerator Physics |
Lecture 1 - Why accelerators |
Link |
NOC:Accelerator Physics |
Lecture 2 - Accelerator as a microscope |
Link |
NOC:Accelerator Physics |
Lecture 3 - Charging and Discharging of capacitors |
Link |
NOC:Accelerator Physics |
Lecture 4 - Charging and Discharging of capacitors (Continued...) |
Link |
NOC:Accelerator Physics |
Lecture 5 - Introduction to DC accelerators |
Link |
NOC:Accelerator Physics |
Lecture 6 - Cockcroft Walton Accelerator (1929) |
Link |
NOC:Accelerator Physics |
Lecture 7 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators |
Link |
NOC:Accelerator Physics |
Lecture 8 - Van-de-Graaff accelerator and Tandem and Pelletron accelerators |
Link |
NOC:Accelerator Physics |
Lecture 9 - Voltage measurement and stabilisation |
Link |
NOC:Accelerator Physics |
Lecture 10 - Voltage measurement and stabilisation |
Link |
NOC:Accelerator Physics |
Lecture 11 - Beam energy calibration/measurement |
Link |
NOC:Accelerator Physics |
Lecture 12 - Beam energy calibration/measurement |
Link |
NOC:Accelerator Physics |
Lecture 13 - Beam focussing using electrostatic and magnetic lenses and beam optics |
Link |
NOC:Accelerator Physics |
Lecture 14 - Beam focussing using electrostatic and magnetic lenses and beam optics |
Link |
NOC:Accelerator Physics |
Lecture 15 - Beam focussing using electrostatic and magnetic lenses and beam optics |
Link |
NOC:Accelerator Physics |
Lecture 16 - Ion Sources |
Link |
NOC:Accelerator Physics |
Lecture 17 - Ion Sources |
Link |
NOC:Accelerator Physics |
Lecture 18 - Introduction and Basic concepts of linear accelerators |
Link |
NOC:Accelerator Physics |
Lecture 19 - Introduction and Basic concepts of linear accelerators |
Link |
NOC:Accelerator Physics |
Lecture 20 - RF Acceleration - 1 |
Link |
NOC:Accelerator Physics |
Lecture 21 - RF Acceleration - 1 |
Link |
NOC:Accelerator Physics |
Lecture 22 - RF Acceleration - 2 |
Link |
NOC:Accelerator Physics |
Lecture 23 - RF Acceleration - 2 |
Link |
NOC:Accelerator Physics |
Lecture 24 - RF Acceleration - 3 - Waveguides and cavities |
Link |
NOC:Accelerator Physics |
Lecture 25 - RF Acceleration - 3 - Waveguides and cavities |
Link |
NOC:Accelerator Physics |
Lecture 26 - Accelerating structures - Pillbox cavity and DTL |
Link |
NOC:Accelerator Physics |
Lecture 27 - Accelerating structures - Pillbox cavity and DTL |
Link |
NOC:Accelerator Physics |
Lecture 28 - Accelerating structures - Travelling wave linacs and periodic accelerating structures |
Link |
NOC:Accelerator Physics |
Lecture 29 - Accelerating structures - Travelling wave linacs and periodic accelerating structures |
Link |
NOC:Accelerator Physics |
Lecture 30 - Superconducting cavities |
Link |
NOC:Accelerator Physics |
Lecture 31 - Superconducting cavities |
Link |
NOC:Accelerator Physics |
Lecture 32 - Transverse Dynamics - 1 |
Link |
NOC:Accelerator Physics |
Lecture 33 - Transverse Dynamics - 1 |
Link |
NOC:Accelerator Physics |
Lecture 34 - Transverse Dynamics - 2 |
Link |
NOC:Accelerator Physics |
Lecture 35 - Transverse Dynamics - 2 |
Link |
NOC:Accelerator Physics |
Lecture 36 - Transverse Dynamics - 3 |
Link |
NOC:Accelerator Physics |
Lecture 37 - Transverse Dynamics - 3 |
Link |
NOC:Accelerator Physics |
Lecture 38 - Longitudinal Dynamics - 1 |
Link |
NOC:Accelerator Physics |
Lecture 39 - Longitudinal Dynamics - 1 |
Link |
NOC:Accelerator Physics |
Lecture 40 - Longitudinal Dynamics - 2 |
Link |
NOC:Accelerator Physics |
Lecture 41 - Longitudinal Dynamics - 2 |
Link |
NOC:Accelerator Physics |
Lecture 42 - Radio Frequency Quadrupole |
Link |
NOC:Accelerator Physics |
Lecture 43 - Radio Frequency Quadrupole |
Link |
NOC:Accelerator Physics |
Lecture 44 - Cyclic accelerators: Some basic principles |
Link |
NOC:Accelerator Physics |
Lecture 45 - Cyclic accelerators: Some basic principles |
Link |
NOC:Accelerator Physics |
Lecture 46 - About the cyclotron |
Link |
NOC:Accelerator Physics |
Lecture 47 - About the cyclotron |
Link |
NOC:Accelerator Physics |
Lecture 48 - Microtron |
Link |
NOC:Accelerator Physics |
Lecture 49 - Equation of motion, Focusing |
Link |
NOC:Accelerator Physics |
Lecture 50 - Equation of motion, Focusing |
Link |
NOC:Accelerator Physics |
Lecture 51 - Strong focusing, Edge focusing, AG principle |
Link |
NOC:Accelerator Physics |
Lecture 52 - Strong focusing, Edge focusing, AG principle |
Link |
NOC:Accelerator Physics |
Lecture 53 - Matrix methods |
Link |
NOC:Accelerator Physics |
Lecture 54 - Matrix methods |
Link |
NOC:Accelerator Physics |
Lecture 55 - Hill's equation and parameterization - 1 |
Link |
NOC:Accelerator Physics |
Lecture 56 - Hill's equation and parameterization - 1 |
Link |
NOC:Accelerator Physics |
Lecture 57 - Hill's equation and parameterization - 2 |
Link |
NOC:Accelerator Physics |
Lecture 58 - Hill's equation and parameterization - 2 |
Link |
NOC:Accelerator Physics |
Lecture 59 - Hill's equation and parameterization - 3 |
Link |
NOC:Accelerator Physics |
Lecture 60 - Hill's equation and parameterization - 3 |
Link |
NOC:Accelerator Physics |
Lecture 61 |
Link |
NOC:Accelerator Physics |
Lecture 62 |
Link |
NOC:Accelerator Physics |
Lecture 63 |
Link |
NOC:Accelerator Physics |
Lecture 64 |
Link |
NOC:Accelerator Physics |
Lecture 65 |
Link |
NOC:Accelerator Physics |
Lecture 66 |
Link |
NOC:Accelerator Physics |
Lecture 67 - Proton synchrotron for spallation source |
Link |
NOC:Accelerator Physics |
Lecture 68 - Proton synchrotron for spallation source |
Link |
NOC:Accelerator Physics |
Lecture 69 - Colliders |
Link |
NOC:Accelerator Physics |
Lecture 70 - Colliders |
Link |
NOC:Accelerator Physics |
Lecture 71 - Laser Plasma accelerators and Accelerator Driven Systems (ADS) |
Link |
NOC:Accelerator Physics |
Lecture 72 - Laser Plasma accelerators and Accelerator Driven Systems (ADS) |
Link |
Electronics |
Lecture 1 - p-n diode |
Link |
Electronics |
Lecture 2 - p-n Junction/Diode (Continued...) |
Link |
Electronics |
Lecture 3 - p-n diode (Continued...) |
Link |
Electronics |
Lecture 4 - Diode Application |
Link |
Electronics |
Lecture 5 - Transistors |
Link |
Electronics |
Lecture 6 - Reverse - bias (Continued...) |
Link |
Electronics |
Lecture 7 - Transistors (Continued...) |
Link |
Electronics |
Lecture 8 - Transistors (Continued...) |
Link |
Electronics |
Lecture 9 - Biasing a transistor unit 2 (Continued...) |
Link |
Electronics |
Lecture 10 - Biasing of transistor |
Link |
Electronics |
Lecture 11 - H and R Parameters and their use in small amplifiers |
Link |
Electronics |
Lecture 12 - Small signal amplifiers analysis using H - Parameters |
Link |
Electronics |
Lecture 13 - Small signal amplifiers analysis using R - Parameters |
Link |
Electronics |
Lecture 14 - R - analysis (Continued...) |
Link |
Electronics |
Lecture 15 - Common Collector(CC) amplifier (Continued...) |
Link |
Electronics |
Lecture 16 - Feedback in amplifiers, Feedback Configurations and multi stage amplifiers |
Link |
Electronics |
Lecture 17 - Reduction in non-linear distortion |
Link |
Electronics |
Lecture 18 - Input/Output impedances in negative feedback amplifiers (Continued...) |
Link |
Electronics |
Lecture 19 - RC Coupled Amplifiers |
Link |
Electronics |
Lecture 20 - RC Coupled Amplifiers (Continued...) |
Link |
Electronics |
Lecture 21 - RC Coupled Amplifiers (Continued...) |
Link |
Electronics |
Lecture 22 - FETs ans MOSFET |
Link |
Electronics |
Lecture 23 - FETs ans MOSFET (Continued...) |
Link |
Electronics |
Lecture 24 - Depletion - MOSFET |
Link |
Electronics |
Lecture 25 - Drain and transfer characteristic of E - MOSFET |
Link |
Electronics |
Lecture 26 - Self Bias (Continued...) Design Procedure |
Link |
Electronics |
Lecture 27 - FET/MOSFET Amplifiers and their Analysis |
Link |
Electronics |
Lecture 28 - CMOS Inverter |
Link |
Electronics |
Lecture 29 - CMOS Inverter (Continued...) |
Link |
Electronics |
Lecture 30 - Power Amplifier |
Link |
Electronics |
Lecture 31 - Power Amplifier (Continued...) |
Link |
Electronics |
Lecture 32 - Power Amplifier (Continued...) |
Link |
Electronics |
Lecture 33 - Power Amplifier (Continued...) |
Link |
Electronics |
Lecture 34 - Differential and Operational Amplifier |
Link |
Electronics |
Lecture 35 - Differential and Operational Amplifier (Continued...) dc and ac analysis |
Link |
Electronics |
Lecture 36 - Differential and Operational Amplifier dc and ac analysis (Continued...) |
Link |
Electronics |
Lecture 37 - Operational Amplifiers |
Link |
Electronics |
Lecture 38 - Operational amplifiers in open loop (Continued...) |
Link |
Electronics |
Lecture 39 - Summing Amplifiers |
Link |
Electronics |
Lecture 40 - Frequency response of an intigration |
Link |
Electronics |
Lecture 41 - Filters |
Link |
Electronics |
Lecture 42 - Specification of OP Amplifiers |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 1 - Introduction to Plasmas |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 2 - Plasma Response to fields: Fluid Equations |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 3 - DC Conductivity and Negative Differential Conductivity |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 4 - RF Conductivity of Plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 5 - RF Conductivity of Plasma (Continued...) |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 6 - Hall Effect, Cowling Effect and Cyclotron Resonance Heating |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 7 - Electromagnetic Wave Propagation in Plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 8 - Electromagnetic Wave Propagation in Plasma (Continued...) |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 9 - Electromagnetic Wave Propagation Inhomogeneous Plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 10 - Electrostatic Waves in Plasmas |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 11 - Energy Flow with an Electrostatic Wave |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 12 - Two Stream Instability |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 13 - Relativistic electron Beam- Plasma Interaction |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 14 - Cerenkov Free Electron Laser |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 15 - Free Electron Laser |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 16 - Free Electron Laser: Energy gain |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 17 - Free Electron Laser: Wiggler Tapering and Compton Regime Operation |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 18 - Weibel Instability |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 19 - Rayleigh Taylor Instability |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 20 - Single Particle Motion in Static Magnetic and Electric Fields |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 21 - Plasma Physics Grad B and Curvature Drifts |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 22 - Adiabatic Invariance of Magnetic Moment and Mirror confinement |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 23 - Mirror machine |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 24 - Thermonuclear fusion |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 25 - Tokamak |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 26 - Tokamak operation |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 27 - Auxiliary heating and current drive in tokamak |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 28 - Electromagnetic waves propagation in magnetise plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 29 - Longitudinal electromagnetic wave propagation cutoffs, resonances and faraday rotation |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 30 - Electromagnetic propagation at oblique angles to magnetic field in a plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 31 - Low frequency EM waves magnetized plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 32 - Electrostatic waves in magnetized plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 33 - Ion acoustic, ion cyclotron and magneto sonic waves in magnetized plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 34 - VIasov theory of plasma waves |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 35 - Landau damping and growth of waves |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 36 - Landau damping and growth of waves (Continued...) |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 37 - Anomalous resistivity in a plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 38 - Diffusion in plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 39 - Diffusion in magnetized plasma |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 40 - Surface plasma wave |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 41 - Laser interaction with plasmas embedded with clusters |
Link |
Plasma Physics: Fundamentals and Applications |
Lecture 42 - Current trends and epilogue |
Link |
Quantum Electronics |
Lecture 1 - Introduction |
Link |
Quantum Electronics |
Lecture 2 - Anisotropic Media |
Link |
Quantum Electronics |
Lecture 3 - Anisotropic Media (Continued...) |
Link |
Quantum Electronics |
Lecture 4 - Anisotropic Media (Continued...) |
Link |
Quantum Electronics |
Lecture 5 - Nonlinear optical effects and nonlinear polarization |
Link |
Quantum Electronics |
Lecture 6 - Non - Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 7 - Non - Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 8 - Non - Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 9 - Non - Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 10 - Non - Linear Optics - Quasi Phase Matching |
Link |
Quantum Electronics |
Lecture 11 - Non - Linear Optics |
Link |
Quantum Electronics |
Lecture 12 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 13 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 14 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 15 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 16 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 17 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 18 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 19 - Non Linear Optics (Continued...) |
Link |
Quantum Electronics |
Lecture 20 - Third Order Non - Linear Effects |
Link |
Quantum Electronics |
Lecture 21 - Third Order Non - Linear Effects (Continued...) |
Link |
Quantum Electronics |
Lecture 22 - Third Order Non - Linear Effects (Continued...) |
Link |
Quantum Electronics |
Lecture 23 - Third Order Non - Linear Effects (Continued...) |
Link |
Quantum Electronics |
Lecture 24 - Review of Quantum Mechanics |
Link |
Quantum Electronics |
Lecture 25 - Review of Quantum Mechanics (Continued...) |
Link |
Quantum Electronics |
Lecture 26 - Review of Quantum Mechanics (Continued...) |
Link |
Quantum Electronics |
Lecture 27 - Quantization of EM Field |
Link |
Quantum Electronics |
Lecture 28 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 29 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 30 - Quantum States of EM Field |
Link |
Quantum Electronics |
Lecture 31 - Quantum States of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 32 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 33 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 34 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 35 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 36 - Quantization of EM Field (Continued...) |
Link |
Quantum Electronics |
Lecture 37 - Beam Splitter |
Link |
Quantum Electronics |
Lecture 38 - Beam Splitter (Continued...) |
Link |
Quantum Electronics |
Lecture 39 - Beam Splitter and Balanced Homodyning |
Link |
Quantum Electronics |
Lecture 40 - Balanced Homodyning |
Link |
Quantum Electronics |
Lecture 41 - Quantum Picture of Parametric Down Conversion |
Link |
Quantum Electronics |
Lecture 42 - Questions |
Link |
Quantum Mechanics and Applications |
Lecture 1 - Basic Quantum Mechanics I: Wave Particle Duality |
Link |
Quantum Mechanics and Applications |
Lecture 2 - Basic Quantum Mechanics II: The Schrodinger Equation and The Dirac Delta Function |
Link |
Quantum Mechanics and Applications |
Lecture 3 - Dirac Delta Function & Fourier Transforms |
Link |
Quantum Mechanics and Applications |
Lecture 4 - The Free Particle |
Link |
Quantum Mechanics and Applications |
Lecture 5 - Physical Interpretation of The Wave Function |
Link |
Quantum Mechanics and Applications |
Lecture 6 - Expectation Values & The Uncertainty Principle |
Link |
Quantum Mechanics and Applications |
Lecture 7 - The Free Particle (Continued...) |
Link |
Quantum Mechanics and Applications |
Lecture 8 - Interference Experiment & The Particle in a Box Problem |
Link |
Quantum Mechanics and Applications |
Lecture 9 - On Eigen Values and Eigen Functions of the 1 Dimensional Schrodinger Equation |
Link |
Quantum Mechanics and Applications |
Lecture 10 - Linear Harmonic Oscillator |
Link |
Quantum Mechanics and Applications |
Lecture 11 - Linear Harmonic Oscillator (Continued...1) |
Link |
Quantum Mechanics and Applications |
Lecture 12 - Linear Harmonic Oscillator (Continued...2) |
Link |
Quantum Mechanics and Applications |
Lecture 13 - Linear Harmonic Oscillator (Continued...3) |
Link |
Quantum Mechanics and Applications |
Lecture 14 - Tunneling through a Barrier |
Link |
Quantum Mechanics and Applications |
Lecture 15 - The 1-Dimensional Potential Wall & Particle in a Box |
Link |
Quantum Mechanics and Applications |
Lecture 16 - Particle in a Box and Density of States |
Link |
Quantum Mechanics and Applications |
Lecture 17 - The Angular Momentum Problem |
Link |
Quantum Mechanics and Applications |
Lecture 18 - The Angular Momentum Problem (Continued...) |
Link |
Quantum Mechanics and Applications |
Lecture 19 - The Hydrogen Atom Problem |
Link |
Quantum Mechanics and Applications |
Lecture 20 - The Two Body Problem |
Link |
Quantum Mechanics and Applications |
Lecture 21 - TheTwo Body Problem: The Hydrogen atom, The Deutron and The Diatomic Molecule |
Link |
Quantum Mechanics and Applications |
Lecture 22 - Two Body Problem: The Diatomic molecule (Continued...) and the 3 Dimensional Oscillator |
Link |
Quantum Mechanics and Applications |
Lecture 23 - 3d Oscillator & Dirac's Bra and Ket Algebra |
Link |
Quantum Mechanics and Applications |
Lecture 24 - Dirac’s Bra and Ket Algebra |
Link |
Quantum Mechanics and Applications |
Lecture 25 - Dirac’s Bra and Ket Algebra : The Linear Harmonic Oscillator |
Link |
Quantum Mechanics and Applications |
Lecture 26 - The Linear Harmonic Oscillator using Bra and Ket Algebra (Continued...) |
Link |
Quantum Mechanics and Applications |
Lecture 27 - The Linear Harmonic Oscillator: Coherent State and Relationship with the Classical Oscillator |
Link |
Quantum Mechanics and Applications |
Lecture 28 - Coherent State and Relationship with the Classical Oscillator |
Link |
Quantum Mechanics and Applications |
Lecture 29 - Angular Momentum Problem using Operator Algebra |
Link |
Quantum Mechanics and Applications |
Lecture 30 - Angular Momentum Problem (Continued...) |
Link |
Quantum Mechanics and Applications |
Lecture 31 - Pauli Spin Matrices and The Stern Gerlach Experiment |
Link |
Quantum Mechanics and Applications |
Lecture 32 - The Larmor Precession and NMR Spherical Harmonics using Operator Algebra |
Link |
Quantum Mechanics and Applications |
Lecture 33 - Addition of Angular Momentum: Clebsch Gordon Coefficient |
Link |
Quantum Mechanics and Applications |
Lecture 34 - Clebsch Gordon Coefficients |
Link |
Quantum Mechanics and Applications |
Lecture 35 - The JWKB Approximation |
Link |
Quantum Mechanics and Applications |
Lecture 36 - The JWKB Approximation: Use of Connection Formulae to solve Eigen value Problems. |
Link |
Quantum Mechanics and Applications |
Lecture 37 - The JWKB Approximation: Use of Connection Formulae to calculate Tunneling Probability. |
Link |
Quantum Mechanics and Applications |
Lecture 38 - The JWKB Approximation: Tunneling Probability Calculations and Applications. |
Link |
Quantum Mechanics and Applications |
Lecture 39 - The JWKB Approximation: Justification of the Connection Formulae |
Link |
Quantum Mechanics and Applications |
Lecture 40 - Time Independent Perturbation Theory |
Link |
Quantum Mechanics and Applications |
Lecture 41 - Time Independent Perturbation Theory (Continued...1) |
Link |
Quantum Mechanics and Applications |
Lecture 42 - Time Independent Perturbation Theory (Continued...2) |
Link |
Semiconductor Optoelectronics |
Lecture 1 - Context and Scope of the Course |
Link |
Semiconductor Optoelectronics |
Lecture 2 - Energy Bands in Solids |
Link |
Semiconductor Optoelectronics |
Lecture 3 - E-K Diagram |
Link |
Semiconductor Optoelectronics |
Lecture 4 - The Density of States |
Link |
Semiconductor Optoelectronics |
Lecture 5 - The Density of States (Continued...) |
Link |
Semiconductor Optoelectronics |
Lecture 6 - The Density of states in a Quantum well Structure |
Link |
Semiconductor Optoelectronics |
Lecture 7 - Occupation Probability and Carrier Concentration |
Link |
Semiconductor Optoelectronics |
Lecture 8 - Carrier Concentration and Fermi Level |
Link |
Semiconductor Optoelectronics |
Lecture 9 - Quasi Fermi Levels |
Link |
Semiconductor Optoelectronics |
Lecture 10 - Semiconductor Materials |
Link |
Semiconductor Optoelectronics |
Lecture 11 - Semiconductor Hetrostructures-Lattice-Matched Layers |
Link |
Semiconductor Optoelectronics |
Lecture 12 - Strained -Layer Epitaxy and Quantum Well Structures |
Link |
Semiconductor Optoelectronics |
Lecture 13 - Bandgap Engineering |
Link |
Semiconductor Optoelectronics |
Lecture 14 - Hetrostructure p-n junctions |
Link |
Semiconductor Optoelectronics |
Lecture 15 - Schottky Junction and Ohmic Contacts |
Link |
Semiconductor Optoelectronics |
Lecture 16 - Fabrication of Heterostructure Devices |
Link |
Semiconductor Optoelectronics |
Lecture 17 - Interaction od Photons with Electrons and Holes in a Semiconductor |
Link |
Semiconductor Optoelectronics |
Lecture 18 - Optical Joint Density of States |
Link |
Semiconductor Optoelectronics |
Lecture 19 - Rates of Emission and Absorption |
Link |
Semiconductor Optoelectronics |
Lecture 20 - Amplication by Stimulated Emission |
Link |
Semiconductor Optoelectronics |
Lecture 21 - The Semiconductor (Laser) Amplifier |
Link |
Semiconductor Optoelectronics |
Lecture 22 - Absorption Spectrum of Semiconductor |
Link |
Semiconductor Optoelectronics |
Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures |
Link |
Semiconductor Optoelectronics |
Lecture 24 - Electro-absorption Modulator |
Link |
Semiconductor Optoelectronics |
Lecture 25 - Electro-absorption Modulator - II Device Configuration |
Link |
Semiconductor Optoelectronics |
Lecture 26 - Mid-Term Revision Question and Discussion |
Link |
Semiconductor Optoelectronics |
Lecture 27 - Part - III Semiconductor Light Sources |
Link |
Semiconductor Optoelectronics |
Lecture 28 - Light Emitting Diode-I Device Structure and Parameters |
Link |
Semiconductor Optoelectronics |
Lecture 29 - Light Emitting Diode-II Device Chracteristics |
Link |
Semiconductor Optoelectronics |
Lecture 30 - Light Emitting Diode-III Output Characteristics |
Link |
Semiconductor Optoelectronics |
Lecture 31 - Light Emitting Diode-IV Modulation Bandwidth |
Link |
Semiconductor Optoelectronics |
Lecture 32 - Light Emitting Diode-V materials and Applications |
Link |
Semiconductor Optoelectronics |
Lecture 33 - Laser Basics |
Link |
Semiconductor Optoelectronics |
Lecture 34 - Semiconductor Laser-I Device Structure |
Link |
Semiconductor Optoelectronics |
Lecture 35 - Semiconductor Laser-II Output Characteristics |
Link |
Semiconductor Optoelectronics |
Lecture 36 - Semiconductor Laser-III Single Frequency Lasers |
Link |
Semiconductor Optoelectronics |
Lecture 37 - Vertical Cavity Surface Emitting Laser (VCSEL) |
Link |
Semiconductor Optoelectronics |
Lecture 38 - Quantum Well Laser |
Link |
Semiconductor Optoelectronics |
Lecture 39 - Practical Laser Diodes and Handling |
Link |
Semiconductor Optoelectronics |
Lecture 40 - General Characteristics of Photodetectors |
Link |
Semiconductor Optoelectronics |
Lecture 41 - Responsivity and Impulse Response |
Link |
Semiconductor Optoelectronics |
Lecture 42 - Photoconductors |
Link |
Semiconductor Optoelectronics |
Lecture 43 - Semiconductor Photo-Diodes |
Link |
Semiconductor Optoelectronics |
Lecture 44 - Semiconductor Photo-Diodes-II : APD |
Link |
Semiconductor Optoelectronics |
Lecture 45 - Other Photodectors |
Link |
Semiconductor Optoelectronics |
Lecture 46 - Photonic Integrated Circuits |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 1 - Context, Scope and Contents of the Course |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 2 - Energy Bands in Solids |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 3 - E-k Diagram - The Band Structure |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 4 - The Density of States |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 5 - The Density of States ρ(k), ρ(E) |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 6 - Density of States in a Quantum Well Structure |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 7 - Occupation Probability and Carrier Concentration |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 8 - Carrier Concentration and Fermi Level |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 9 - Quasi Fermi Levels |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 10 - Semiconductor Materials |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 11 - Semiconductor Heterostructures-Lattice-Matched Layers |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 12 - Strained-Layer Epitaxy and Quantum Well Structures |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 13 - Bandgap Engineering |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 14 - Heterostructure p-n junctions |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 15 - Schottky Junctions and Ohmic Contacts |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 16 - Fabrication of Heterostructure Devices |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 17 - Interaction of Photons with Electrons and Holes in a Semiconductor |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 18 - Optical Joint Density of States, and Probabilities of Emission and Absorption |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 19 - Rates of Emission and Absorption |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 20 - Amplification by Stimulated Emission |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 21 - The Semiconductor (Laser) Amplifier |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 22 - Absorption Spectrum of Semiconductors |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 23 - Gain and Absorption Spectrum of Quantum Well Structures |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 24 - Electro-absorption Modulator-I Principle of Operation |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 25 - Electro-absorption Modulator-II Device Configuration |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 26 - Injuction Electroluminescence |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 27 - Light emitting diode-1 Device structure and parameters |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 28 - Light emitting diode-II Device Characteristics |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 29 - Light emitting diode-III Output Characteristics |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 30 - Light emitting diode-IV Modulation Bandwidth |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 31 - Light emitting diode-V Material and Applications |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 32 - Laser Basics |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 33 - Semiconductor Laser-I Device Structure |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 34 - Semiconductor Laser-II Output Characteristics |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 35 - Semiconductor Laser-III Single Frequency Lasers |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 36 - Vertical cavity Surface Emitting Laser (VCSEL) |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 37 - Quantum Well Laser |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 38 - Practical Laser Diodes and Handling |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 39 - General Characteristics of Photodetectors |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 40 - Responsivity and Impulse Response |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 41 - Photoconductors |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 42 - Semiconductor Photo-Diodes-I: PIN Diode |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 43 - Semiconductor Photo-Diodes-II: APD |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 44 - Other Photodetectors |
Link |
NOC:Semiconductor Optoelectronics |
Lecture 45 - Photonic Integrated Circuits |
Link |
NOC:Introduction to LASER |
Lecture 1 - General Introduction, Scope and Contents |
Link |
NOC:Introduction to LASER |
Lecture 2 - Interaction of Radiation with Matter |
Link |
NOC:Introduction to LASER |
Lecture 3 - The Einstein Coefficients |
Link |
NOC:Introduction to LASER |
Lecture 4 - Atomic Lineshape Function, g(ν) |
Link |
NOC:Introduction to LASER |
Lecture 5 - Amplification by Stimulated Emission |
Link |
NOC:Introduction to LASER |
Lecture 6 - Line Broadening Mechanisms - 1 |
Link |
NOC:Introduction to LASER |
Lecture 7 - Line Broadening Mechanisms - 2 |
Link |
NOC:Introduction to LASER |
Lecture 8 - Laser Rate Equations: 2-Level System |
Link |
NOC:Introduction to LASER |
Lecture 9 - Laser Rate Equations: 3-Level System |
Link |
NOC:Introduction to LASER |
Lecture 10 - Laser Rate Equations: 4-Level System |
Link |
NOC:Introduction to LASER |
Lecture 11 - Laser Amplifiers |
Link |
NOC:Introduction to LASER |
Lecture 12 - Er-Doped Fiber Amplifier |
Link |
NOC:Introduction to LASER |
Lecture 13 - Resonance Frequencies |
Link |
NOC:Introduction to LASER |
Lecture 14 - Spectral Response of an Optical Resonator |
Link |
NOC:Introduction to LASER |
Lecture 15 - Resonator Loss and Cavity Lifetime |
Link |
NOC:Introduction to LASER |
Lecture 16 - Spherical Mirror Resonators |
Link |
NOC:Introduction to LASER |
Lecture 17 - Resonator Stability Condition |
Link |
NOC:Introduction to LASER |
Lecture 18 - Ray Paths in Spherical Mirror Resonators |
Link |
NOC:Introduction to LASER |
Lecture 19 - Tranverse Modes of a Spherical Mirror Resonator |
Link |
NOC:Introduction to LASER |
Lecture 20 - Gaussian Mode of the Spherical Mirror Resonator |
Link |
NOC:Introduction to LASER |
Lecture 21 - Longitudinal Modes of a Spherical Mirror Resonator |
Link |
NOC:Introduction to LASER |
Lecture 22 - Laser Oscillations and The Threshold Condition |
Link |
NOC:Introduction to LASER |
Lecture 23 - Spectral Hole Burning |
Link |
NOC:Introduction to LASER |
Lecture 24 - Variation of Laser Power around Threshold |
Link |
NOC:Introduction to LASER |
Lecture 25 - Optimum Output Coupling |
Link |
NOC:Introduction to LASER |
Lecture 26 - Laser Output Characteristics |
Link |
NOC:Introduction to LASER |
Lecture 27 - Laser Beam Properties |
Link |
NOC:Introduction to LASER |
Lecture 28 - Ultimate Linewidth of a Laser |
Link |
NOC:Introduction to LASER |
Lecture 29 - Pulsed Lasers |
Link |
NOC:Introduction to LASER |
Lecture 30 - Q-Switching |
Link |
NOC:Introduction to LASER |
Lecture 31 - Mode Locking |
Link |
NOC:Introduction to LASER |
Lecture 32 - Methods of Mode Locking |
Link |
NOC:Introduction to LASER |
Lecture 33 - Some Common Lasers |
Link |
NOC:Introduction to LASER |
Lecture 34 - Fiber Lasers |
Link |
NOC:Introduction to LASER |
Lecture 35 - Semiconductor Lasers |
Link |
NOC:Introduction to LASER |
Lecture 36 - Lasers and Laser Amplifiers in Optical Fiber Communication |
Link |
NOC:Introduction to LASER |
Lecture 37 - Lasers in Nonlinear Optics |
Link |
NOC:Introduction to LASER |
Lecture 38 - Laser Safety |
Link |
NOC:Nuclear and Particle Physics |
Lecture 1 - Introduction |
Link |
NOC:Nuclear and Particle Physics |
Lecture 2 - Nuclear Properties |
Link |
NOC:Nuclear and Particle Physics |
Lecture 3 - Properties of Nuclear Force |
Link |
NOC:Nuclear and Particle Physics |
Lecture 4 - Deuteron |
Link |
NOC:Nuclear and Particle Physics |
Lecture 5 - Nucleons Scattering |
Link |
NOC:Nuclear and Particle Physics |
Lecture 6 - Nuclear Models - I |
Link |
NOC:Nuclear and Particle Physics |
Lecture 7 - Nuclear Models - II |
Link |
NOC:Nuclear and Particle Physics |
Lecture 8 - Radioactive Decay - General Properties |
Link |
NOC:Nuclear and Particle Physics |
Lecture 9 - Nuclear Alpha Decay |
Link |
NOC:Nuclear and Particle Physics |
Lecture 10 - Nuclear Beta decay |
Link |
NOC:Nuclear and Particle Physics |
Lecture 11 - Beta-decay details |
Link |
NOC:Nuclear and Particle Physics |
Lecture 12 - Gamma decay |
Link |
NOC:Nuclear and Particle Physics |
Lecture 13 - Nuclear Scattering - Preliminaries |
Link |
NOC:Nuclear and Particle Physics |
Lecture 14 - Types of Reactions |
Link |
NOC:Nuclear and Particle Physics |
Lecture 15 - Particle Accelerators - I |
Link |
NOC:Nuclear and Particle Physics |
Lecture 16 - Particle Accelerators - II |
Link |
NOC:Nuclear and Particle Physics |
Lecture 17 - Detectors |
Link |
NOC:Nuclear and Particle Physics |
Lecture 18 - Elementary Particles - Introduction and Overview |
Link |
NOC:Nuclear and Particle Physics |
Lecture 19 - Quark Model - I |
Link |
NOC:Nuclear and Particle Physics |
Lecture 20 - Quark Model - II |
Link |
NOC:Nuclear and Particle Physics |
Lecture 21 - Quark Model - III |
Link |
NOC:Nuclear and Particle Physics |
Lecture 22 - Structure of the Hadron - Nucleus |
Link |
NOC:Nuclear and Particle Physics |
Lecture 23 - Structure of the Hadron - Proton |
Link |
NOC:Nuclear and Particle Physics |
Lecture 24 - Deep Inelastic Scattering |
Link |
NOC:Nuclear and Particle Physics |
Lecture 25 - Relativistic Kinematics |
Link |
NOC:Nuclear and Particle Physics |
Lecture 26 - Klein-Gordon Equation |
Link |
NOC:Nuclear and Particle Physics |
Lecture 27 - Interaction of charged scalar with EM field |
Link |
NOC:Nuclear and Particle Physics |
Lecture 28 - Relativistic Electrodynamics |
Link |
NOC:Nuclear and Particle Physics |
Lecture 29 - Quantum Electrodynamics |
Link |
NOC:Nuclear and Particle Physics |
Lecture 30 - Interaction between charged scalars |
Link |
NOC:Nuclear and Particle Physics |
Lecture 31 - Dirac Equation - 1 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 32 - Dirac Equation - 2 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 33 - Interacting charged fermions - 1 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 34 - Interacting charged fermions - 2 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 35 - Interacting charged fermions - 3 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 36 - Scattering Cross Section Revisited - 1 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 37 - Scattering Cross Section Revisited - 2 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 38 - Weak Interactions - 1 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 39 - Weak Interactions - 2 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 40 - Lagrangian Framework |
Link |
NOC:Nuclear and Particle Physics |
Lecture 41 - Gauge Symmetry - U(1) |
Link |
NOC:Nuclear and Particle Physics |
Lecture 42 - Electroweak Theory - 1 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 43 - Electroweak Theory - 2 |
Link |
NOC:Nuclear and Particle Physics |
Lecture 44 - SSB and the Higgs Mechanism |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 1 - Propagators - I |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 2 - Propagators - II |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 3 - Second quantization - I |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 4 - Second quantization - II |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 5 - Second quantized Hamiltonian |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 6 - Tight Binding Hamiltonian, Hubbard model |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 7 - Magnetism |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 8 - Singlet and Triplet State: Magnetic Hamiltonian |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 9 - Antiferromagnetism in Hubbard model |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 10 - Green's function and representations in quantum mechanics |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 11 - S matrix and free electron Green's function |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 12 - Wick's theorem and normal ordering |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 13 - Green's function and Feynman diagrams |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 14 - Feynman diagram |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 15 - phonon Green' function and Hartree Fock approaximation |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 16 - Finite temperature Green's function and Matsubara frequencies |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 17 - Dyson's equation and disorder in electronic systems |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 18 - Introduction to electrodynamics, Meissner effect |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 19 - London penetration depth, Type I and II superconductors |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 20 - Cooper's problem, BCS gap equation |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 21 - BCS theory, Transition temperature |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 22 - Ginzburg Landau Theory, Coherence length and penetration depth |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 23 - Quantum Hall Effect |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 24 - Spin Hall effect, 2D topological insulator |
Link |
NOC:Advanced Condensed Matter Physics |
Lecture 25 - Bose-Einstein condensation |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 1 - Introduction, Postulates of Quantum Mechanics |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 2 - Stern Gerlach Experiment, Spin Quantization, Young's Double Slit Experiment |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 3 - The Mathematical Formalism of Quantum Mechanics, Uncertainty Principle |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 4 - The Density Matrix Formalism, Expectation values of Operators |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 5 - Qunatum Harmonic Oscillator, Creation and annihilation Operators |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 6 - Coherent States and their Properties |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 7 - Applications of Coherent States, squeezed states |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 8 - Symmetries and Conservational Principles in Quantum Mechanics |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 9 - Rotation Operator and Invariance of Angular Momentum, Parity |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 10 - Spherically Symmetric System and Applications to quantum dots |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 11 - Spin Angular Momentum, Addition of Angular Momentum, Clebsch gordan coefficients |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 12 - Magnetic Hamiltonian, Heisenberg Model |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 13 - Nuclear Magnetic Resonance (NMR) |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 14 - Applications of NMR, time evolution of Magnetic Moments |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 15 - Introduction to Quantum Computing |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 16 - Qubits,EPR Paradox |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 17 - Quantum Entanglement (QE) |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 18 - Teleportation, Quantum Teleportation for one spin |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 19 - Entangled state for two spins |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 20 - Quantum Gates, Walsh Hadamard Transportation, No cloning theorem |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 21 - Perturbation Theory |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 22 - Stark Effect: First order in ground state |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 23 - Stark Effect: Second order in ground state |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 24 - Variational method, Variation of constants, Upper bound on ground state energy |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 25 - Application of Variational method,Hydrogen,Helium atom,Comparison with perturbation theory |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 26 - WKB Approximation, Bohr Sommerfeld quantization condition |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 27 - Summary of Approximation methods, Time dependent Perturbation Theory |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 28 - Time dependent Perturbation Theory, Fermi's Golden rule, Einstein's A and B coefficients |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 29 - Scattering Theory |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 30 - Linear Response Theory: Derivation of Kubo formula |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 31 - Quantum Dynamics: Two level system |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 32 - Examples |
Link |
NOC:Advanced Quantum Mechanics with Applications |
Lecture 33 - Interaction of Radiation with matter, Landau levels |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 1 - Historical introduction of superconductivity |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 2 - Meissner effect, Electrodynamics of Superconductors, coherence length and penetration depth |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 3 - Electron Pairing, Basics of BCS Theory |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 4 - BCS ground state, variational calculation, expression for Tc |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 5 - Order parameter, Free energy functional, Ginzburg-Landau (GL) Theory, GL equations |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 6 - London Equations, Flux quantization |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 7 - Thermodynamic properties of superconductors, specific heat |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 8 - Experimental determination of Superconducting properties |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 9 - Unconventional Superconductivity, Uemura plot, High-Tc superconductivity, d-wave pairing, ARPES |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 10 - Singlet and triplet states of two s =1/2, magnetic Hamiltonian |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 11 - t-J model, discrete symmetry groups, example square lattice |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 12 - Cuprate Superconductors, electron vs hole doped superconductors |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 13 - Non-Fermi Liquid Theory, Adiabatic continuity |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 14 - Quasiparticle lifetime, breakdown of Fermi Liquid Theory in cuprate superconductors |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 15 - Josephson junctions, Josephson equations |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 16 - AC Josephson effect, Superconducting Quantum Interference devices (SQUID) and its Applications |
Link |
NOC:A Brief Course on Superconductivity |
Lecture 17 - RF SQUID, DC SQUID, Applications of Magnetoencephalography (MEG) |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 1 - Prerequisites and Introduction |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 2 - Combinatorics and Entropy |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 3 - Method of steepest descent |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 4 - Bose and Fermi gases |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 5 - Maxwell Boltzmann distribution |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 6 - Thermodynamic potentials |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 7 - Legendre transformation |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 8 - Specific heats of quantum gases |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 9 - Low and high temperature equations of state |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 10 - Chandrasekhar Limit |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 11 - Radiation thermodynamics |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 12 - Thermodyamics of black holes |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 13 - Van der Waals fluid |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 14 - Landau Diamagnetism |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 15 - Relations between ensembles and Pauli paramagnetism |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 16 - Ferromagnetism |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 17 - Correlations and Mean Field |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 18 - Theories of Specific Heat of Solids |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 19 - Tutorial - I |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 20 - Tutorial - II |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 21 - Tutorial - III |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 22 - Tutorial - IV |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 23 - Tutorial - V |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 24 - RG method Ising model |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 25 - Introduction to Second Quantisation: Harmonic Oscillator |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 26 - Quantum Theory of EM Field - I |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 27 - Quantum Theory of EM Field - II |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 28 - Creation and Annihilation in Fock Space - I |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 29 - Creation and Annihilation in Fock Space - II |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 30 - Green functions in many particle systems |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 31 - Second quantised hamiltonians |
Link |
NOC:Introduction to Statistical Mechanics |
Lecture 32 - Current algebra |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 1 - Error analysis and estimates, significant digits, convergence |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 2 - Roots of Non-linear equations, Bisection method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 3 - Newton Raphson method, Secant method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 4 - Newton Raphson Method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 5 - Newton Raphson Method (example), Curve fitting and interpolation of data |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 6 - Newton’s interpolation formula, statistical interpolation of data |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 7 - Linear and Polynomial regression |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 8 - Numerical differentiation |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 9 - Numerical differentiation, Error analysis |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 10 - Numerical integration, Trapezoidal rule |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 11 - Simpson’s 1/3rd rule |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 12 - Simpson’s 1/3rd rule, Gaussian integration |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 13 - Ordinary Differential equations |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 14 - Solution of differential equation, Taylor series and Euler method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 15 - Heun’s method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 16 - Runge Kutta method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 17 - Examples of differential equation: Heat conduction equation |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 18 - Introduction to Monte Carlo technique |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 19 - Details of the Monte Carlo method |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 20 - Importance sampling |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 21 - Applications: Ising model |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 22 - Introduction to Molecular Dynamics |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 23 - Verlet algorithm |
Link |
NOC:Numerical Methods and Simulation Techniques for Scientists and Engineers |
Lecture 24 - Applications of Molecular dynamics |
Link |
NOC:Theoretical Mechanics |
Lecture 1 - Introduction, Constraints |
Link |
NOC:Theoretical Mechanics |
Lecture 2 - Generalized Coordinates, Configuration Space |
Link |
NOC:Theoretical Mechanics |
Lecture 3 - Principle of Virtual Work |
Link |
NOC:Theoretical Mechanics |
Lecture 4 - D'Alembert's Principle |
Link |
NOC:Theoretical Mechanics |
Lecture 5 - Lagrange's Equations |
Link |
NOC:Theoretical Mechanics |
Lecture 6 - Hamilton's Principle |
Link |
NOC:Theoretical Mechanics |
Lecture 7 - Variational Calculus, Lagrange's Equations |
Link |
NOC:Theoretical Mechanics |
Lecture 8 - Conservation Laws and Symmetries |
Link |
NOC:Theoretical Mechanics |
Lecture 9 - Velocity Dependent Potentials, Non-holonomic Constraints |
Link |
NOC:Theoretical Mechanics |
Lecture 10 - An Example: Hoop on a ramp |
Link |
NOC:Theoretical Mechanics |
Lecture 11 - Phase Space |
Link |
NOC:Theoretical Mechanics |
Lecture 12 - Legendre Transforms |
Link |
NOC:Theoretical Mechanics |
Lecture 13 - Hamilton's Equations |
Link |
NOC:Theoretical Mechanics |
Lecture 14 - Conservation Laws, Routh's procedure |
Link |
NOC:Theoretical Mechanics |
Lecture 15 - An Example:Bead on Spinning Ring |
Link |
NOC:Theoretical Mechanics |
Lecture 16 - Canonical Transformations |
Link |
NOC:Theoretical Mechanics |
Lecture 17 - Symplectic Condition |
Link |
NOC:Theoretical Mechanics |
Lecture 18 - Canonical Invariants, Harmonic Oscillator |
Link |
NOC:Theoretical Mechanics |
Lecture 19 - Poisson Bracket Formulation |
Link |
NOC:Theoretical Mechanics |
Lecture 20 - Infinitesimal Canonical Transformations |
Link |
NOC:Theoretical Mechanics |
Lecture 21 - Symmetry Groups of Mechanical Systems |
Link |
NOC:Theoretical Mechanics |
Lecture 22 - Hamilton Jacobi Theory |
Link |
NOC:Theoretical Mechanics |
Lecture 23 - Action-Angle Variables |
Link |
NOC:Theoretical Mechanics |
Lecture 24 - Separation of Variables and Examples |
Link |
NOC:Theoretical Mechanics |
Lecture 25 - Continuous Systems and Fields |
Link |
NOC:Theoretical Mechanics |
Lecture 26 - The Stress-Energy Tensor |
Link |
NOC:Theoretical Mechanics |
Lecture 27 - Hamiltonian Formulation |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 1 - Energy Scenarios |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 2 - Overview of solar energy conversion devices and applications |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 3 - Physics of propagation of solar radiation from the sun to the earth |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 4 - Solar radiation and sunshine measuring instruments |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 5 - Geometry, angles and measurement - I |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 6 - Geometry, angles and measurement - II |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 7 - Estimation of radiation under different climatic conditions |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 8 - Estimation of radiation in horizontal and inclined surface |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 9 - Fundamentals of PV cells |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 10 - Semiconductor physics |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 11 - Performance characterization of PV cells |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 12 - Photovoltaic modules and arrays |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 13 - Components of standalone PV system |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 14 - Design of standalone PV system |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 15 - Functioning and components of PV system |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 16 - Design of a grid connected PV system |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 17 - Performance analysis of a grid connected PV system |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 18 - Basics of thermal collectors |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 19 - Basics of heat transfer |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 20 - Solar collector losses and loss estimation |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 21 - Analysis of flat plate collector |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 22 - Influence of various parameters on the performance of LFPC |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 23 - Testing and application of LFPC |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 24 - Basics and performance analysis of solar air heaters |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 25 - Testing and application of solar air heaters |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 26 - Fundamentals of concentrating collectors |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 27 - Concentrating collector technologies and working principle |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 28 - Tutorial: Concentrating Collector |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 29 - Sensible heat, latent heat and thermochemical energy storage |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 30 - Solar pond |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 31 - Tutorial: Solar pond power plant design |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 32 - Emerging technologies |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 33 - Solar energy applications in cooking, desalination, refrigeration and electricity generation |
Link |
NOC:Solar Energy Engineering and Technology |
Lecture 34 - Tutorial: COP of VARS and performance analysis of PVT collector |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 1 - Introduction and Basic Quantum Mechanics |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 2 - Problem Solving Session - 1 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 3 - Two-level System - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 4 - Bloch Sphere: Supplementary Lecture - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 5 - Two-level Systems - II |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 6 - Two-level Systems - III |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 7 - Dressed States;Introduction to Density Matrix |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 8 - Problem Solving Session - 2 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 9 - Density-matrix formalism |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 10 - Quantum Harmonic Oscillators |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 11 - Quantization of Electromagnetic Radiation |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 12 - Quantization of Standing EM Waves;Quantum States of Radiation Fields - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 13 - Problem Solving Session - 3 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 14 - Quantum States of Radiation Fields-II: Squeezed States |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 15 - Problem Solving Session - 4 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 16 - Introduction and Basics of Superconductivity |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 17 - Cooper Pair Box as TLS;Introduction to Transmission Line |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 18 - Quantization of Transmission Line - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 19 - Quantization of Transmission Line - II |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 20 - The Jaynes Cummings Model - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 21 - Problem Solving Session - 5 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 22 - The Jaynes Cummings Model - II |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 23 - Josephson Junctions - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 24 - Josephson Junctions - II |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 25 - Problem Solving Session - 6 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 26 - Transmon;Introduction to Dissipation in Quantum Systems |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 27 - Quantum Master Equation |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 28 - Pure dephasing and Dissipative Bloch Equations |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 29 - Derivation of Fermi-Golden Rule |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 30 - Introduction to Cavity Optomechanics;Fabry-Perot Cavity |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 31 - Cavity Optomechanics: Basic Physics - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 32 - Problem Solving Session - 7 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 33 - Cavity Optomechanics: Basic Physics - II |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 34 - Classical Regime - I |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 35 - Classical Regime - II; Classical Langevin Equation |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 36 - Problem Solving Session - 8 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 37 - Langevin Equation |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 38 - Quantum Langevin Noise |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 39 - Problem Solving Session - 9 |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 40 - Input-Output Relation |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 41 - Cavity Quantum Optomechanics |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 42 - Linearized Cavity Optomechanics; Ground state cooling |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 43 - Normal-Mode Splitting |
Link |
NOC:Quantum Technology and Quantum Phenomena in Macroscopic Systems |
Lecture 44 - Quantum Optomechanics: Squeezed States |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 1 - Introduction |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 2 - Lagrangian Formalism |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 3 - Hamiltonian Mechanics |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 4 - Flows and Symmetries |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 5 - Examples of Continuum Systems |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 6 - Symmetries and Noether's Theorem |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 7 - Dynamical Symmetries |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 8 - Symmetries in Field Theories |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 9 - The Relativistic Electromagnetic Field |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 10 - Stress-Energy (Energy-Momentum) Tensor |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 11 - Green's Theorem and Green's Functions |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 12 - Diffraction Theory |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 13 - Introduction to Elasticity Theory |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 14 - Solution of the rubber band problem |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 15 - The Stress Function Method |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 16 - Strain Energy |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 17 - The Euler Equation |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 18 - Bernoulli's Principle |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 19 - Matter, Momentum and Energy Transport |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 20 - Stokes' Drag - I |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 21 - Stokes' Drag - II |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 22 - Towards Quantum Fields |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 23 - Right and Left Movers |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 24 - Functional Integration - I |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 25 - Functional Integration - II |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 26 - Perturbation theory |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 27 - Quantum Mechanics using Lagrangians |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 28 - Path Integrals - Formalism |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 29 - Path Integrals - Free particles |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 30 - Path Integrals - Harmonic oscillator |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 31 - Creation and annihilation operators - Excitations |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 32 - Creation and annihilation operators - Photons |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 33 - Creation and annihilation operators - Many-body physics |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 34 - Particle and Hole Green functions |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 35 - Current Algebra |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 36 - Tight Binding Models - I |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 37 - Tight Binding Models - II |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 38 - Order Parameters |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 39 - Schrieffer Wolff Transformation |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 40 - Matsubara Green functions - I |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 41 - Matsubara Green functions - II |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 42 - Self Energy and Spectral Functions |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 43 - S-Matrix Perturbation Theory |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 44 - Keldysh Contour |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 45 - Bosonic Coherent States |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 46 - Fermionic Coherent States |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 47 - Nonlocal particle hole operators - Bosons |
Link |
NOC:Dynamics of Classical and Quantum Fields |
Lecture 48 - Nonlocal particle hole operators - Fermions |
Link |
NOC:Quantum Hall Effects |
Lecture 1 - Conductance in Nanostructures |
Link |
NOC:Quantum Hall Effects |
Lecture 2 - S-Matrix, Reflection and Transmission |
Link |
NOC:Quantum Hall Effects |
Lecture 3 - Introduction to Classical and Quantum Hall Effect |
Link |
NOC:Quantum Hall Effects |
Lecture 4 - Quantum Hall Effect |
Link |
NOC:Quantum Hall Effects |
Lecture 5 - Landau Levels |
Link |
NOC:Quantum Hall Effects |
Lecture 6 - Degenracy of Landau levels |
Link |
NOC:Quantum Hall Effects |
Lecture 7 - Shubnikov de Haas Oscillations |
Link |
NOC:Quantum Hall Effects |
Lecture 8 - Kubo Formula |
Link |
NOC:Quantum Hall Effects |
Lecture 9 - Symmetric gauge |
Link |
NOC:Quantum Hall Effects |
Lecture 10 - Tight binding model, Hofstadter Butterfly |
Link |
NOC:Quantum Hall Effects |
Lecture 11 - Topological Invariant, Chern number |
Link |
NOC:Quantum Hall Effects |
Lecture 12 - Electronic structure of Graphene |
Link |
NOC:Quantum Hall Effects |
Lecture 13 - Low energy Dispersion |
Link |
NOC:Quantum Hall Effects |
Lecture 14 - Dirac Hamiltonian, Hofstadter Butterfly |
Link |
NOC:Quantum Hall Effects |
Lecture 15 - QHE, Landau Levels |
Link |
NOC:Quantum Hall Effects |
Lecture 16 - Properties of Spin angular Momentum, Spin Hall Effect |
Link |
NOC:Quantum Hall Effects |
Lecture 17 - Quantum spin Hall insulator, Kene-Mele Model |
Link |
NOC:Quantum Hall Effects |
Lecture 18 - Kene-Mele Model |
Link |
NOC:Quantum Hall Effects |
Lecture 19 - Landau gauge in fractional quantum Hall effect |
Link |
NOC:Quantum Hall Effects |
Lecture 20 - Laughlin States, Properties |
Link |
NOC:Quantum Hall Effects |
Lecture 21 - Plasma analogy |
Link |
NOC:Quantum Hall Effects |
Lecture 22 - Composite Fermions, Hierarchy |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 1 - Introduction |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 2 - Review of Quantum Mechanics |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 3 - Mathematical Tools: Density Matrix - Part 1 |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 4 - Mathematical Tools: Density Matrix - Part 2 |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 5 - Problem solving session - 1 |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 6 - Basic Technical Introduction to Quantum Entanglement |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 7 - Schmidt Decomposition Method |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 8 - The EPR Paradox and Bell Inequalities |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 9 - Problem solving session - 2 |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 10 - Quantum Measurements |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 11 - Properties of Quantum Entanglement |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 12 - Quantum Entanglement Measures - I |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 13 - Problem solving session - 3 |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 14 - Quantum Entanglement Measures - II |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 15 - Applications of Quantum Entanglement - I |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 16 - Applications of Quantum Entanglement - II |
Link |
NOC:Quantum Entanglement: Fundamentals, Measures and Applications |
Lecture 17 - Problem solving session - 4 |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 1 - Introduction to Topology |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 2 - Topological invariant, Berry phase |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 3 - Second quantization |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 4 - Ten Fold Classification |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 5 - Symmetries and SSH - model |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 6 - SSH - model, Introduction to superconductivity |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 7 - Kitaev model |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 8 - Introduction to Classical and Quantum Hall effect |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 9 - Quantum Hall Effect |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 10 - Landau Levels |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 11 - Properties of Landau Levels |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 12 - Edge modes of Landau levels, Incompressibility of Quantum Hall States |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 13 - Kubo formula |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 14 - Hall quantization and Topological invariant |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 15 - Electronic structure of Graphene |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 16 - Symmetries and QHE in Graphene |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 17 - Haldane model |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 18 - Anomalous quantum Hall effect in Haldane model |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 19 - Introduction of spin Hall effect |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 20 - Spin current, quantum spin Hall effect |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 21 - Quantum spin Hall insulator, Kane Mele model |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 22 - Kane Mele model with Rashba spin-orbit coupling, spin Hall conductivity |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 23 - Symmetric gauge in FQHE |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 24 - Laughlin States |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 25 - Plasma analogy |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 26 - Composite Fermions, Hierarchy picture |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 27 - Topological Consideration of FQHE |
Link |
NOC:Topology and Condensed Matter Physics |
Lecture 28 - 3D Topological Insulators |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 1 - Review of Thermodynamics |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 2 - Laws of Thermodynamics, Entropy |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 3 - Maxwell's relations, velocity distribution |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 4 - Thermodynamic Potentials |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 5 - Binomial expansion, Random Walk |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 6 - Ensemble Theory, Micro and Macrostates and Liouvilles's Theorem |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 7 - Ergodic Hypothesis, Phase Space |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 8 - Microcanonical Ensemble and Its Applications |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 9 - Canonical Ensemble, Parition Function, Central Limit Theorem |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 10 - Applications of Canonical Ensemble |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 11 - Bounded System, Negative Temparature, Specific Heat of Solids |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 12 - Virial Theorem, Grand Canonical Distribution |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 13 - Grand Canonical Distribution, Photon Gas |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 14 - Canonical Ensemble, Parition Function, Central Limit Theorem |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 15 - Applications of Canonical Ensemble |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 16 - Bounded System, Negative Temparature, Specific Heat of Solids |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 17 - Virial Theorem, Grand Canonical Distribution |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 18 - Grand Canonical Distribution, Photon Gas |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 19 - Quantum Statistical Mechanics, Indistinguishability of Particles, Ensembles |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 20 - Density Matrix, Exchange Statistics, Bosons and Fermions |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 21 - MB, BE, FD Statistics |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 22 - Bose Statistics, Bose Einstein Condensation |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 23 - Properties of BEC, Phase Transition |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 24 - Experimental Aspects of BEC, Black Body Radiation, Phonons |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 25 - FD Statistics, Properties of Fermi Systems |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 26 - Bethe Ansatz |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 27 - Cluster expansion, Critical Isotherms |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 28 - Virial Coefficients, Equation of State for real gases |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 29 - de Haas-van Alphen effect |
Link |
NOC:Statistical Physics of Non-Interacting and Interacting Systems |
Lecture 30 - Black Hole Thermodynamics |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 1 - Brief Overview of the course |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 2 - Nuclear Size |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 3 - Nuclear Size (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 4 - Nuclear Size (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 5 - Semi empirical Mass Formula |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 6 - Semi empirical Mass Formula (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 7 - Semi empirical Mass Formula (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 8 - Semi empirical Mass Formula (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 9 - Semi empirical Mass Formula (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 10 - How are Neutron stars bound |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 11 - Deuteron |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 12 - Deuteron (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 13 - Deuteron (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 14 - Scattering of nucleons |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 15 - Low energy n-p scattering |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 16 - Theories of nuclear forces |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 17 - Shell model |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 18 - Shell model (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 19 - Shell model (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 20 - Shell model (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 21 - Shell model (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 22 - Collective models |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 23 - Vibrational and Rotational levels |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 24 - Radioactivity, Alpha Decay |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 25 - Alpha decay (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 26 - Beta decay |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 27 - Beta decay (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 28 - Beta decay (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 29 - Gamma decay |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 30 - Nuclear Reactions |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 31 - Nuclear reaction (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 32 - Nuclear reaction (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 33 - Nuclear Fission basics |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 34 - Nuclear fission of uranium |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 35 - Nuclear Fission Reactor |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 36 - Nuclear Energy Programme of India |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 37 - Nuclear Fusion |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 38 - Nuclear fusion (Continued...) |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 39 - Thermonuclear fusion reactors |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 40 - Fusion reactions in Stars and stellar neutrinos |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 41 - Nucleosynthesis of elements in Stars |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 42 - Mossbauer Spectroscopy |
Link |
Nuclear Physics: Fundamentals and Applications |
Lecture 43 - RBS, PIXE, NAA, Summary |
Link |
NOC:Introduction to Electromagnetism |
Lecture 1 - Coloumb's Law |
Link |
NOC:Introduction to Electromagnetism |
Lecture 2 - Coloumb's Force due to several Point charges |
Link |
NOC:Introduction to Electromagnetism |
Lecture 3 - Force due to distribution of Charges |
Link |
NOC:Introduction to Electromagnetism |
Lecture 4 - What is an Electric Field? |
Link |
NOC:Introduction to Electromagnetism |
Lecture 5 - Electric Field due to a Charged Distribution |
Link |
NOC:Introduction to Electromagnetism |
Lecture 6 - Helmholtz's Theorem for Electric Field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 7 - Divergence of a Field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 8 - Divergence of Electric Field & Gauss's Law |
Link |
NOC:Introduction to Electromagnetism |
Lecture 9 - Curl Of a Field - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 10 - Curl of a Field - II & Stokes' Theorem |
Link |
NOC:Introduction to Electromagnetism |
Lecture 11 - Line surface area & volume elements in Cartesian & Cylindrical Coordinates |
Link |
NOC:Introduction to Electromagnetism |
Lecture 12 - Line surface area & volume elements in Spherical Polar Coordinates |
Link |
NOC:Introduction to Electromagnetism |
Lecture 13 - Examples of application of the divergence and stokes' theorems |
Link |
NOC:Introduction to Electromagnetism |
Lecture 14 - Electrostatic Potential |
Link |
NOC:Introduction to Electromagnetism |
Lecture 15 - Electric field as the gradient of electrostatic potential |
Link |
NOC:Introduction to Electromagnetism |
Lecture 16 - Laplace's and Poisson's equations for electrostatic potential |
Link |
NOC:Introduction to Electromagnetism |
Lecture 17 - Elecrostatic potential due to a charge distribution - I; a line charge of finite length |
Link |
NOC:Introduction to Electromagnetism |
Lecture 18 - Elecrostatic potential due to a charge distribution - II;a ring and a spherical shell of charge |
Link |
NOC:Introduction to Electromagnetism |
Lecture 19 - Uniqueness of the solution of Laplace's and Poisson's equations |
Link |
NOC:Introduction to Electromagnetism |
Lecture 20 - Method of images I: point charge in front of a grounded metallic plane - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 21 - Method of imagesII: point charge in front of a grounded metallic plane and grounded metal sphere |
Link |
NOC:Introduction to Electromagnetism |
Lecture 22 - Laplaces equations in some other physical phenomena |
Link |
NOC:Introduction to Electromagnetism |
Lecture 23 - Energy of a charge distribution - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 24 - Energy of a charge distribution - II An example |
Link |
NOC:Introduction to Electromagnetism |
Lecture 25 - Energy of a charge distribution - III Energy density in terms of electric field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 26 - Electric field and potential in a conductor |
Link |
NOC:Introduction to Electromagnetism |
Lecture 27 - Reciprocity theorem for conductors - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 28 - Reciprocity theorem for conductors - II |
Link |
NOC:Introduction to Electromagnetism |
Lecture 29 - Electric polarization and bound charges - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 30 - Electric polarization and bound charges - II |
Link |
NOC:Introduction to Electromagnetism |
Lecture 31 - Electric Displacement |
Link |
NOC:Introduction to Electromagnetism |
Lecture 32 - Elecrostatics in presence of Dielectric Materials - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 33 - Elecrostatics in presence of Dielectric Materials - II |
Link |
NOC:Introduction to Electromagnetism |
Lecture 34 - Introduction to Magnetostatics; The BiO-Savart law |
Link |
NOC:Introduction to Electromagnetism |
Lecture 35 - Divergence and curl of Magnetic Field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 36 - Amperes law for Magnetic Fields |
Link |
NOC:Introduction to Electromagnetism |
Lecture 37 - Vector Potential for Magnetic Fields |
Link |
NOC:Introduction to Electromagnetism |
Lecture 38 - Calculation of Vector Potential for a given magnetic field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 39 - Equation for the Vector Potentialin terms of current density |
Link |
NOC:Introduction to Electromagnetism |
Lecture 40 - Vector potential from Current Densities - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 41 - Vector potential from Current Densities - II |
Link |
NOC:Introduction to Electromagnetism |
Lecture 42 - Magnetic Materials - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 43 - Magnetic Materials - II Bound Current Densities |
Link |
NOC:Introduction to Electromagnetism |
Lecture 44 - The Auxiliary Field - H |
Link |
NOC:Introduction to Electromagnetism |
Lecture 45 - Solving for Magnetic Field of a magnet - I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 46 - Solving for Magnetic Field of a magnet in presence of Magnetic Materials |
Link |
NOC:Introduction to Electromagnetism |
Lecture 47 - Faradays Law |
Link |
NOC:Introduction to Electromagnetism |
Lecture 48 - Induced Electric field due to changing Magnetic Field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 49 - Demonstrations on faradays law, Lenzs law and Nonconservative nature of Induced electric field |
Link |
NOC:Introduction to Electromagnetism |
Lecture 50 - Energy stord in a magnetic Field-I |
Link |
NOC:Introduction to Electromagnetism |
Lecture 51 - Energy stord in a magnetic Field-I;solved examples |
Link |
NOC:Introduction to Electromagnetism |
Lecture 52 - Displacement Current |
Link |
NOC:Introduction to Electromagnetism |
Lecture 53 - Quasistatic approximation |
Link |
NOC:Introduction to Electromagnetism |
Lecture 54 - Energy transport by electromagnetic fields; The Poynting Vector |
Link |
NOC:Introduction to Electromagnetism |
Lecture 55 - The Poynting Vector;solved examples |
Link |
NOC:Introduction to Electromagnetism |
Lecture 56 - Linear Momentum and Angular Momentum carried by Electromagnetic Fields |
Link |
NOC:Introduction to Electromagnetism |
Lecture 57 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 58 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 59 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 60 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 61 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 62 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 63 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 64 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 65 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 66 - Solution Assignment 1 - Problems 1 to 3 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 67 - Solution Assignment 1 - Problems 4 to 9 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 68 - Solution Assignment 2 - Problems 1 to 4 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 69 - Solution Assignment 2 - Problems 5 to 11 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 70 - Solution Assignment 3 - Problems 1 to 5 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 71 - Solution Assignment 3 - Problems 6 to 10 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 72 - Solution Assignment 4- Problems 1 to 5 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 73 - Solution Assignment 4- Problems 6 to 10 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 74 - Solution Assignment 5- Problems 6 to 11 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 75 - Solution Assignment 5- Problems 1to 5 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 76 - Solution Assignment 6- Problems 1 to 4 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 77 - Solution Assignment 6- Problems 5 to 8 |
Link |
NOC:Introduction to Electromagnetism |
Lecture 78 - Solution Problem Set 7 |
Link |
NOC:Engineering Mechanics |
Lecture 1 - Introduction to Vectors |
Link |
NOC:Engineering Mechanics |
Lecture 2 - Addition and subtraction of vectors |
Link |
NOC:Engineering Mechanics |
Lecture 3 - Multiplying vectors |
Link |
NOC:Engineering Mechanics |
Lecture 4 - Introduction to vectors: solved examples - I |
Link |
NOC:Engineering Mechanics |
Lecture 5 - Transformation of vectors under rotation |
Link |
NOC:Engineering Mechanics |
Lecture 6 - Vector products and their geometric interpretation |
Link |
NOC:Engineering Mechanics |
Lecture 7 - Vector Product: Kronecker Delta and Levi-Civita symbols - I |
Link |
NOC:Engineering Mechanics |
Lecture 8 - Vector Product: Kronecker Delta and Levi-Civita symbols - II |
Link |
NOC:Engineering Mechanics |
Lecture 9 - Introduction to vectors: solved examples - II |
Link |
NOC:Engineering Mechanics |
Lecture 10 - Equilibrium of rigid bodies Forces and torques |
Link |
NOC:Engineering Mechanics |
Lecture 11 - Calculating torques and couple moments - I |
Link |
NOC:Engineering Mechanics |
Lecture 12 - Calculating torques and couple moments - II |
Link |
NOC:Engineering Mechanics |
Lecture 13 - Finding a force and a couple equivalent to an applied force |
Link |
NOC:Engineering Mechanics |
Lecture 14 - Different elements and associated forces and torques - I |
Link |
NOC:Engineering Mechanics |
Lecture 15 - Different elements and associated forces and torques - II |
Link |
NOC:Engineering Mechanics |
Lecture 16 - Solved examples; equilibrium of bodies I |
Link |
NOC:Engineering Mechanics |
Lecture 17 - Solved examples; equilibrium of bodies II |
Link |
NOC:Engineering Mechanics |
Lecture 18 - Forces in different geometric configuration |
Link |
NOC:Engineering Mechanics |
Lecture 19 - Plane trusses I - building a truss and condition for it to be statically determinate |
Link |
NOC:Engineering Mechanics |
Lecture 20 - Plane trusses II - calculating forces in a simple truss and different types of trusses |
Link |
NOC:Engineering Mechanics |
Lecture 21 - Plane trusses III - calculating forces in a simple truss by method of joints |
Link |
NOC:Engineering Mechanics |
Lecture 22 - Plane trusses IV- Solved examples for calculating forces in a simple truss by method of joints |
Link |
NOC:Engineering Mechanics |
Lecture 23 - Plane trusses V - Solved examples for calculating forces in a simple truss by method of joints |
Link |
NOC:Engineering Mechanics |
Lecture 24 - Plane trusses VI - method of sections for calculating forces in a simple truss |
Link |
NOC:Engineering Mechanics |
Lecture 25 - Dry friction I - introduction with an example |
Link |
NOC:Engineering Mechanics |
Lecture 26 - Dry friction II - a solved example |
Link |
NOC:Engineering Mechanics |
Lecture 27 - Dry friction III - Dry thrust bearing and belt friction with demonstration |
Link |
NOC:Engineering Mechanics |
Lecture 28 - Dry friction IV - Screw friction and rolling friction |
Link |
NOC:Engineering Mechanics |
Lecture 29 - Dry friction V - Solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 30 - Properties of plane surfaces I - First moment and centroid of an area |
Link |
NOC:Engineering Mechanics |
Lecture 31 - Properties of plane surfaces II - Centroid of an area made by joining several plane surfaces |
Link |
NOC:Engineering Mechanics |
Lecture 32 - Properties of plane surfaces III - Centroid of a distributed force and its relation with centre of gravity |
Link |
NOC:Engineering Mechanics |
Lecture 33 - Properties of plane surfaces IV - solved examples of calculation of first moment and centroid of distributed forces |
Link |
NOC:Engineering Mechanics |
Lecture 34 - Properties of plane surfaces V- Second moment and product of an area and radius of gyration |
Link |
NOC:Engineering Mechanics |
Lecture 35 - Properties of plane surfaces VI - Parallel axis transfer theorem for second moment and product of an area |
Link |
NOC:Engineering Mechanics |
Lecture 36 - Properties of plane surfaces VII - transformation of second moment and product of an area under rotation of coordinate axes |
Link |
NOC:Engineering Mechanics |
Lecture 37 - Properties of plane surfaces VIII - second moment and product of an area, solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 38 - Method of virtual work I - degrees of freedom, constraints and constraint forces |
Link |
NOC:Engineering Mechanics |
Lecture 39 - Method of virtual work II - virtual displacement, virtual work and equilibrium condition in terms of virtual work |
Link |
NOC:Engineering Mechanics |
Lecture 40 - Method of virtual work III - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 41 - Motion of a particle in a plane in terms of planar polar coordinates |
Link |
NOC:Engineering Mechanics |
Lecture 42 - Planar polar coordinates: solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 43 - Description of motion in cylindrical and spherical coordinate systems |
Link |
NOC:Engineering Mechanics |
Lecture 44 - Using planar polar, cylindrical and spherical coordinate systems: solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 45 - Motion with constraints, constraint forces and free body diagram |
Link |
NOC:Engineering Mechanics |
Lecture 46 - Motion with constraints solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 47 - Motion with dry friction solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 48 - Motion with drag solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 49 - Equation of motion in terms of linear momentum and the principle of conservation of linear momentum |
Link |
NOC:Engineering Mechanics |
Lecture 50 - Linear momentum and centre of mass |
Link |
NOC:Engineering Mechanics |
Lecture 51 - Momentum transfer, impulse and force due to a stream of particles hitting an object |
Link |
NOC:Engineering Mechanics |
Lecture 52 - Momentum and the variable mass problem |
Link |
NOC:Engineering Mechanics |
Lecture 53 - Linear momentum solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 54 - Work and energy I - work energy theorem; conservative and non-conservative force fields |
Link |
NOC:Engineering Mechanics |
Lecture 55 - Work and energy II - Definition of potential energy for conservative forces; total mechanical energy and the principle of conservation of energy |
Link |
NOC:Engineering Mechanics |
Lecture 56 - Work and energy III - Two solved examples using conservation principles |
Link |
NOC:Engineering Mechanics |
Lecture 57 - Work and energy IV Further discussion on potential energy |
Link |
NOC:Engineering Mechanics |
Lecture 58 - Work and energy V - Solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 59 - Work and energy VI Applying conservation principles to solve a collision problem |
Link |
NOC:Engineering Mechanics |
Lecture 60 - Work and energy VII - Solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 61 - Rigid body motion I - degrees of freedom and number of variables required to describe motion of a rigid body |
Link |
NOC:Engineering Mechanics |
Lecture 62 - Rigid body motion II - Equation of motion for a single particle in terms of angular momentum and torque; motion of a conical pendulum |
Link |
NOC:Engineering Mechanics |
Lecture 63 - Rigid body motion III - Conservation of angular momentum; angular momentum for a collection of particles |
Link |
NOC:Engineering Mechanics |
Lecture 64 - Rigid body motion IV - applying angular momentum conservation, a solved example |
Link |
NOC:Engineering Mechanics |
Lecture 65 - Rigid body motion V (fixed axis rotation) - some demonstrations of conservation of angular momentum about fixed axis |
Link |
NOC:Engineering Mechanics |
Lecture 66 - Rigid body motion VI (fixed axis rotation) - Some more demonstrations and related problems |
Link |
NOC:Engineering Mechanics |
Lecture 67 - Rigid body motion VII (fixed axis rotation) - Kinetic energy and moment of inertia for fixed axis rotation and some solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 68 - Rigid body motion VIII (fixed axis rotation) - solved examples for calculating moment of inertia and conservation of angular momentum |
Link |
NOC:Engineering Mechanics |
Lecture 69 - Rigid body motion IX (fixed axis rotation) - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 70 - Rigid body motion X - rotation and translation with axis moving parallel to itself |
Link |
NOC:Engineering Mechanics |
Lecture 71 - Rigid body motion XI - solved examples for rotation and translation with axis moving parallel to itself |
Link |
NOC:Engineering Mechanics |
Lecture 72 - Rigid-body dynamics XII - Some demonstrations on general motion of rigid bodies |
Link |
NOC:Engineering Mechanics |
Lecture 73 - Rigid-body dynamics XIII - Infinitesimal angles as vector quantities and change of a vector when rotated by an infinitesimal angle |
Link |
NOC:Engineering Mechanics |
Lecture 74 - Rigid-body dynamics XIV - Angular velocity and the rate of change of a rotating vector; relating change in angular velocity to an applied torque |
Link |
NOC:Engineering Mechanics |
Lecture 75 - Rigid-body dynamics XV - Relationship between angular momentum and angular velocity the moment of inertia tensor and the principal axes |
Link |
NOC:Engineering Mechanics |
Lecture 76 - Rigid-body dynamics XVI - Solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 77 - Rigid body motion XVII A review of the relation between angular momentum and angular velocity, moment of inertia tensor and the principal axes Edit Lesson |
Link |
NOC:Engineering Mechanics |
Lecture 78 - Rigid body motion XVIII- Solved examples for calculating rate of change of angular momentum and torque when angular velocity and angular momentum are not parallel |
Link |
NOC:Engineering Mechanics |
Lecture 79 - Rigid body dynamics XIX - understanding demonstrations shown earlier using equation of motion |
Link |
NOC:Engineering Mechanics |
Lecture 80 - Rigid body dynamics XX - understanding demonstrations shown earlier using equation of motion (Euler equations) |
Link |
NOC:Engineering Mechanics |
Lecture 81 - Rigid body dynamics XXI - Euler equations, solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 82 - Simple harmonic motion I - expanding potential energy about the equilibrium point and the corresponding force |
Link |
NOC:Engineering Mechanics |
Lecture 83 - Simple harmonic motion II - solving the equation of motion with given initial conditions |
Link |
NOC:Engineering Mechanics |
Lecture 84 - Simple harmonic motion III - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 85 - Simple harmonic motion IV - representing simple harmonic motion on a phasor diagram; energy of an oscillator |
Link |
NOC:Engineering Mechanics |
Lecture 86 - Simple harmonic motion V - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 87 - Simple harmonic motion VI - solving the equation of motion with constant friction in the system |
Link |
NOC:Engineering Mechanics |
Lecture 88 - Simple harmonic motion VII - harmonic oscillator with velocity-dependent damping (heavy damping) |
Link |
NOC:Engineering Mechanics |
Lecture 89 - Simple harmonic motion VIII - harmonic oscillator with velocity-dependent damping (critical damping) |
Link |
NOC:Engineering Mechanics |
Lecture 90 - Simple harmonic motion IX - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 91 - Simple harmonic motion X - harmonic oscillator with velocity-dependent damping (light damping) |
Link |
NOC:Engineering Mechanics |
Lecture 92 - Simple harmonic motion XI - solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 93 - Simple harmonic motion XII - oscillations of an un-damped harmonic oscillator subjected to an oscillatory force |
Link |
NOC:Engineering Mechanics |
Lecture 94 - Simple harmonic motion XIII - oscillations of a forced damped harmonic oscillator - I |
Link |
NOC:Engineering Mechanics |
Lecture 95 - Simple harmonic oscillator XIV - oscillations of a forced damped harmonic oscillator - II |
Link |
NOC:Engineering Mechanics |
Lecture 96 - Simple harmonic oscillator XV - Energy and power in a forced damped harmonic oscillator |
Link |
NOC:Engineering Mechanics |
Lecture 97 - Simple harmonic oscillator XVI - Solved examples |
Link |
NOC:Engineering Mechanics |
Lecture 98 - Equation of motion in a uniformly accelerating frame |
Link |
NOC:Engineering Mechanics |
Lecture 99 - Motion described in a uniformly accelerating frame; solved examples - I |
Link |
NOC:Engineering Mechanics |
Lecture 100 - Motion described in a uniformly accelerating frame; solved examples - II |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 1 - Lecture 1 - About Computers |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 2 - Lecture 2 - Python: Variables and Assignments |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 3 - Lecture 3 - Python: Numpy arrays |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 4 - Lecture 4 - Python: Control structures |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 5 - Lecture 5A - Python packages; Programming |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 6 - Lecture 5B - Some suggestions on programming |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 7 - Lecture 6 - Plotting in Python |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 8 - Lecture 7 - Errors and Nondimensionalization |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 9 - Lecture 8 - Data I/O and Mayavi |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 10 - Lecture 9 - Lagrange interpolation |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 11 - Lecture 10 - Interpolation II: 2D, splines |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 12 - Lecture 11 - Integration I: Newton-Cotes |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 13 - Lecture 12 - Integration II: Gaussian quadrature |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 14 - Lecture 13 - Gaussian quadrature continued |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 15 - Lecture 14 - Numerical Differentiation |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 16 - Lecture 15 - ODE solvers |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 17 - Lecture 16 - ODE solvers continued |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 18 - Lecture 17 - Fourier transform |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 19 - Lecture 18 - PDE solver: Diffusion equation in spectral method |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 20 - Lecture 19A - PDE solver: Diffusion equation using finite difference |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 21 - Lecture 19B - PDE solver: Wave equation using finite difference |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 22 - Lecture 20 - Linear algebra: Ax = b solver |
Link |
NOC:Computational Science and Engineering Using Python |
Lecture 23 - Lecture 21 - Summary |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 1 - Black Body Radiation I - Relevant Definitions and Black Body as cavity |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 2 - Black Body Radiation II - Intensity of radiation in terms of energy density |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 3 - Black Body Radiation III - Spectral energy density and radiation pressure inside a black body radiation |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 4 - Black Body Radiation IV - Stephen's Boltzman law |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 5 - Black Body Radiation V - Wein's Displacement law and analysis for spectral density |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 6 - Black Body Radiation VI - Wein's distribution law and rayleigh - Jeans distribution law |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 7 - Black Body Radiation VII - Quantum Hypothesis and plank's distribution Formula |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 8 - Radiation as a collection of particles called photons |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 9 - Quantum Hypothesis and specific heat of soilds |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 10 - Bohr's Model of hydrogen spectrum |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 11 - Wilson Sommerfeld quantum condition I - Harmonic oscillator and particle in a box |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 12 - Wilson Sommerfeld quantum condition II - Particle moving in a coulomb potential in a plane and related quantum numbers |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 13 - Wilson Sommerfeld quantum condition III - Particle moving in a coulomb potential in 3D and related quantum numbers |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 14 - Quantum conditions and atomic structure, electron spin and Pauli exclusion principle |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 15 - Interaction of atoms with radiation : Eienstien's A and B coefficients |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 16 - Stimulated emmision and amplification of light in a LASER |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 17 - Brief description of a LASER |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 18 - Introduction to the correspondence principle |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 19 - General nature of the correspondence principle |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 20 - Selection rules (for transitions) through the correspondence principle |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 21 - Applications of the correspondence principle : Einstiens A coefficient for the harmonic oscillator and the selection rules for atomic transitions |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 22 - Heisenberg's formulations of quantum mechanics : expressing kinetic variables as matrices |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 23 - Heisenberg's formulation of quantum mechanics : the quantum condition |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 24 - Heisenberg's formulation of the quantum mechanics : Application to harmonic oscillator |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 25 - Brief introduction to matrix mechanics and the quantum condition in matrix form |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 26 - Introduction to waves and wave equation |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 27 - Sationary waves eigen values and eigen functions |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 28 - Matter waves and their experimental detection |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 29 - Represenating a moving paticle by a wave packet |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 30 - Stationary-state Schrodinger equation and its solution for a particle in a box |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 31 - Solution of the stationary-state Schrodinger equation for a simple harmonic oscillator |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 32 - Equivalance of Heisenberg and the Schrodinger formulations : Mathematical preliminaries |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 33 - Equivalance of Heisenberg and Schrodinger formulations : The x and p operators and the quantum condition |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 34 - Born interpretation of the wavefunction and expectation values of x and p operators |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 35 - Uncertainty principle and its simple applications |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 36 - Time dependent Schrodinger equation the probability current density and the continuity equation for the probability density |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 37 - Ehrenfest theorem for the expectation values of x and p operators |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 38 - Solution of Schrodinger equation for a particle in one and two delta function potentials |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 39 - Solution of Schrodinger equation for a particle in a finite well |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 40 - Numerical solution of a one dimensional Schrodinger equation for bound states - I |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 41 - Numerical solution of a one dimensional Schrodinger equation for bound states - II |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 42 - Reflection and transmission of particles across a potential barrier |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 43 - Quantum-tunneling and its examples |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 44 - Solution of the Schrodinger for free paticles and periodic boundary conditions |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 45 - Electrons in a metal : Density of states and Fermi energy |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 46 - Schrodinger equation for particles in spherically symmetric potential, angular momentum operator |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 47 - Angular momentum operator and its eigenfunctions |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 48 - Equation for radial component of the wavefunction in spherically symmteric potentials and general properties of its solution |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 49 - Solution for radial component of the wavefunction for the hydrogen atom |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 50 - Numerical solution for the radial component of wavefunction for spherically symmetric potentials |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 51 - Solution of the Schrodinger equation for one dimensional periodic potential : Bloch's theorem |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 52 - Kroning-Penny model and energy bands |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 53 - Kroning-Penny model with periodic Dirac delta function and energy bands |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 54 - Discussion on bands |
Link |
NOC:Introductory Quantum Mechanics |
Lecture 55 - Summary of the course |
Link |
NOC:Introduction to Solid State Physics |
Lecture 1 - Introduction to Drude's theory of electrons in a metal - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 2 - Introduction to Drude's theory of electrons in a metal - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 3 - Postulates of Drude's theory |
Link |
NOC:Introduction to Solid State Physics |
Lecture 4 - Calculating electrical conductivity of metal using Drude's theory of electrons in metal - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 5 - Calculating the electrical conductivity of metal using Drude's Model - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 6 - Introduction to Hall effect in Metals - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 7 - Introduction to Hall effect in metals - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 8 - Introduction to Hall effect in metals - Part 3 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 9 - Understanding thermal conductivity of a metal using Drude's model - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 10 - Understanding thermal conductivity of a metal using Drude's model - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 11 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 12 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 13 - Introduction to Sommerfeld's Theory of electrons in a metal - Part 3 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 14 - Fermi Energy and Fermi Sphere - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 15 - Fermi Energy and Fermi Sphere - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 16 - Density of States - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 17 - Density of States - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 18 - Summary and Discussions of Sommerfeld's Model |
Link |
NOC:Introduction to Solid State Physics |
Lecture 19 - Electronic Contribution to the Specific heat of a Solid - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 20 - Electronic Contribution to the Specific heat of a Solid - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 21 - Electronic Contribution to the Specific heat of a Solid - Part 3 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 22 - Electronic Contribution to the Specific heat of a Solid - Part 4 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 23 - Understanding Thermal conductivity of Metals |
Link |
NOC:Introduction to Solid State Physics |
Lecture 24 - Introduction to Magnetism in Metal - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 25 - Introduction to Magnetism in Metal - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 26 - Introduction to Magnetism in Metal - Part 3 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 27 - Introduction to crystals and bonding in crystals |
Link |
NOC:Introduction to Solid State Physics |
Lecture 28 - Understanding crystal structure using Bravais Lattice |
Link |
NOC:Introduction to Solid State Physics |
Lecture 29 - Bravais Lattice Types - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 30 - Bravais Lattice Types - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 31 - Introduction to different crystal types - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 32 - Introduction to different crystal types - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 33 - Indexing crystal planes |
Link |
NOC:Introduction to Solid State Physics |
Lecture 34 - Scattering of X rays from crystals - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 35 - Scattering of X rays from crystals - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 36 - Reciprocal lattice vectors - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 37 - Reciprocal lattice vectors - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 38 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 1 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 39 - Reciprocal lattice vectors and Laue's condition for diffraction of waves in crystals - Part 2 |
Link |
NOC:Introduction to Solid State Physics |
Lecture 40 - Reciprocal lattice vectors, Laue's condition and Bragg's law for diffraction of waves by a crystal |
Link |
NOC:Introduction to Solid State Physics |
Lecture 41 - Wave equation in a continuous medium and generalization to a discrete medium |
Link |
NOC:Introduction to Solid State Physics |
Lecture 42 - Derivation of wave equation for motion of atoms in a crystal |
Link |
NOC:Introduction to Solid State Physics |
Lecture 43 - Solution of the wave equation for a crystal and the relation between frequency ω and wavevector k |
Link |
NOC:Introduction to Solid State Physics |
Lecture 44 - Group velocity of waves and speed of sound in a crystal |
Link |
NOC:Introduction to Solid State Physics |
Lecture 45 - Waves in a crystal considering interaction among atoms beyond their nearest neighbours |
Link |
NOC:Introduction to Solid State Physics |
Lecture 46 - Normal modes in a crystal : Phonons and their momenta and energy |
Link |
NOC:Introduction to Solid State Physics |
Lecture 47 - Experimental determination of Phonon dispersion curves |
Link |
NOC:Introduction to Solid State Physics |
Lecture 48 - Lattice with two atom basis: Optical Phonons |
Link |
NOC:Introduction to Solid State Physics |
Lecture 49 - Displacement of the atoms for the acoustic and optical Phonons |
Link |
NOC:Introduction to Solid State Physics |
Lecture 50 - Density of states of phonons |
Link |
NOC:Introduction to Solid State Physics |
Lecture 51 - Calculating the density of states of Phonons: The Einstein's and the Debye's Models |
Link |
NOC:Introduction to Solid State Physics |
Lecture 52 - Average energy of Phonons at Temperature T |
Link |
NOC:Introduction to Solid State Physics |
Lecture 53 - Debye's Model of specific heat of crystals |
Link |
NOC:Introduction to Solid State Physics |
Lecture 54 - Anharmonic effects in crystals: thermal expansion and Umkclapp processes |
Link |
NOC:Introduction to Solid State Physics |
Lecture 55 - Going beyond free electron model: Periodic crystal potential and Bloch's theorem for the wavefunction |
Link |
NOC:Introduction to Solid State Physics |
Lecture 56 - Applying perturbation theory to free electron wavefunctions and nearly free electron model |
Link |
NOC:Introduction to Solid State Physics |
Lecture 57 - Applying perturbation theory to free electron wavefunctions and creation of energy gap at zone boundaries |
Link |
NOC:Introduction to Solid State Physics |
Lecture 58 - Mixing of plane waves to get Bloch Wavefunction - I |
Link |
NOC:Introduction to Solid State Physics |
Lecture 59 - Mixing of plane waves to get Bloch Wavefunction - II |
Link |
NOC:Introduction to Solid State Physics |
Lecture 60 - Equivalence of wave vectors k and k+G and reduced zone scheme |
Link |
NOC:Introduction to Solid State Physics |
Lecture 61 - Applying periodic boundary condition to Bloch wavefunction and counting the number of states |
Link |
NOC:Introduction to Solid State Physics |
Lecture 62 - Band theory of metals, insulators and semiconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 63 - Kronig- Penney model |
Link |
NOC:Introduction to Solid State Physics |
Lecture 64 - Bloch wavefunction as a linear combination of atomic orbitals: Tight Binding Model- I |
Link |
NOC:Introduction to Solid State Physics |
Lecture 65 - Tight Binding Model - II |
Link |
NOC:Introduction to Solid State Physics |
Lecture 66 - Semiclassical dynamics of a particle in a band and Bloch oscillations |
Link |
NOC:Introduction to Solid State Physics |
Lecture 67 - Experimental observations of Bloch oscillations |
Link |
NOC:Introduction to Solid State Physics |
Lecture 68 - Concept of hole as a current carrier in semiconductors - I |
Link |
NOC:Introduction to Solid State Physics |
Lecture 69 - Concept of hole as a current carrier in semiconductors - II |
Link |
NOC:Introduction to Solid State Physics |
Lecture 70 - Calculating carrier density in semiconductors - I |
Link |
NOC:Introduction to Solid State Physics |
Lecture 71 - Calculating carrier density in semiconductors - II |
Link |
NOC:Introduction to Solid State Physics |
Lecture 72 - Donor and acceptor energy levels in a semiconductor |
Link |
NOC:Introduction to Solid State Physics |
Lecture 73 - charge carrier density in n-type and p-type semiconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 74 - Electrical conductivity and hall coefficient in semiconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 75 - Paramagnetism in solids I - Magnetic moment and Lande g factor for atoms |
Link |
NOC:Introduction to Solid State Physics |
Lecture 76 - Paramagnetism in solids II - temperature dependence of paramagnetic susceptibility and Curie's Law |
Link |
NOC:Introduction to Solid State Physics |
Lecture 77 - Hund's rule for calculating the total angular momentum J, orbital angular momentum L and spin angular momentum S for an atom |
Link |
NOC:Introduction to Solid State Physics |
Lecture 78 - Examples of performing paramagnetic susceptibility calculations |
Link |
NOC:Introduction to Solid State Physics |
Lecture 79 - Diamagnetism in Solids |
Link |
NOC:Introduction to Solid State Physics |
Lecture 80 - Understanding quenching of orbital angular momentum in transition metal ions |
Link |
NOC:Introduction to Solid State Physics |
Lecture 81 - Ferromagnetism in solids |
Link |
NOC:Introduction to Solid State Physics |
Lecture 82 - Introduction to Meissner state of superconductors and levitation |
Link |
NOC:Introduction to Solid State Physics |
Lecture 83 - Superconducting materials and Type-I and Type-II superconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 84 - London's equation for superconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 85 - Application of London's equation, behavior of specific heat and density of states in superconductors |
Link |
NOC:Introduction to Solid State Physics |
Lecture 86 - A qualitative introduction to BCS theory of superconductivity |
Link |
NOC:Introduction to Solid State Physics |
Lecture 87 - Josephson's effect in superconductors and tunneling current across barriers |
Link |
NOC:Physics of Turbulence |
Lecture 1 - The turbulence problem |
Link |
NOC:Physics of Turbulence |
Lecture 2 - Basic hydrodynamics - Governing equations |
Link |
NOC:Physics of Turbulence |
Lecture 3 - Basic hydrodynamics - Vorticity |
Link |
NOC:Physics of Turbulence |
Lecture 4 - Basic hydrodynamics - Conservation Laws |
Link |
NOC:Physics of Turbulence |
Lecture 5 - Basic hydrodynamics - Example problems |
Link |
NOC:Physics of Turbulence |
Lecture 6 - Fourier space representation - Definitions |
Link |
NOC:Physics of Turbulence |
Lecture 7 - Fourier space representation - Flow equations |
Link |
NOC:Physics of Turbulence |
Lecture 8 - Fourier space representation - Kinetic energy |
Link |
NOC:Physics of Turbulence |
Lecture 9 - Fourier space representation - Vorticity, Kinetic Helicity, and Enstrophy |
Link |
NOC:Physics of Turbulence |
Lecture 10 - Fourier space representation - Examples |
Link |
NOC:Physics of Turbulence |
Lecture 11 - Fourier space representation - Examples (Continued...) |
Link |
NOC:Physics of Turbulence |
Lecture 12 - Craya-Herring Basis: Definitions |
Link |
NOC:Physics of Turbulence |
Lecture 13 - Craya-Herring Basis: Equations of Motion for a Triad |
Link |
NOC:Physics of Turbulence |
Lecture 14 - Craya-Herring Basis: Equations of Motion for an Anticlockwise Triad |
Link |
NOC:Physics of Turbulence |
Lecture 15 - Thermal Instability |
Link |
NOC:Physics of Turbulence |
Lecture 16 - Thermal Instabilities (Continued...) |
Link |
NOC:Physics of Turbulence |
Lecture 17 - Rotating Convection: Instability and Patterns |
Link |
NOC:Physics of Turbulence |
Lecture 18 - Magnetoconvection: Instability and Patterns |
Link |
NOC:Physics of Turbulence |
Lecture 19 - Nonlinear Saturation: Lorenz Equation |
Link |
NOC:Physics of Turbulence |
Lecture 20 - Patterns, Chaos, and Turbulence |
Link |
NOC:Physics of Turbulence |
Lecture 21 - Energy Transfers: Mode-to-mode Energy Transfers |
Link |
NOC:Physics of Turbulence |
Lecture 22 - Energy Transfers: Mode-to-mode Energy Transfers (Continued...) |
Link |
NOC:Physics of Turbulence |
Lecture 23 - Energy Transfers: Examples |
Link |
NOC:Physics of Turbulence |
Lecture 24 - Energy Transfers: Spectral Energy Flux and Shell-to-Shell Energy Transfer |
Link |
NOC:Physics of Turbulence |
Lecture 25 - Energy Transfers: Fluid Simulations using Spectral Method |
Link |
NOC:Physics of Turbulence |
Lecture 26 - Energy Transfers: Fluid Simulations - Dealiasing |
Link |
NOC:Physics of Turbulence |
Lecture 27 - Kolmogorov's Theory: Energy Spectrum and Flux |
Link |
NOC:Physics of Turbulence |
Lecture 28 - Kolmogorov's Theory: Insights and its Verification with Direct Numerical Simulation |
Link |
NOC:Physics of Turbulence |
Lecture 29 - Kolmogorov's Theory: Spectrum and Flux in inertial-dissipation range |
Link |
NOC:Physics of Turbulence |
Lecture 30 - Kolmogorov's four-fifth law: Isotropic Tensor and Correlations |
Link |
NOC:Physics of Turbulence |
Lecture 31 - Kolmogorov's four-fifth law: Derivation |
Link |
NOC:Physics of Turbulence |
Lecture 32 - Kolmogorov's four-fifth law: Derivation (Final steps) |
Link |
NOC:Physics of Turbulence |
Lecture 33 - Enstrophy Spectrum and Flux |
Link |
NOC:Physics of Turbulence |
Lecture 34 - Two-dimensional Turbulence |
Link |
NOC:Physics of Turbulence |
Lecture 35 - Helical turbulence |
Link |
NOC:Physics of Turbulence |
Lecture 36 - Flow with a scalar |
Link |
NOC:Physics of Turbulence |
Lecture 37 - Passive scalar turbulence |
Link |
NOC:Physics of Turbulence |
Lecture 38 - Stably stratified turbulence |
Link |
NOC:Physics of Turbulence |
Lecture 39 - Turbulent thermal convection |
Link |
NOC:Physics of Turbulence |
Lecture 40 - Flow with a vector |
Link |
NOC:Physics of Turbulence |
Lecture 41 - MHD Turbulence: Formalism |
Link |
NOC:Physics of Turbulence |
Lecture 42 - MHD Turbulence: Energy Transfers |
Link |
NOC:Physics of Turbulence |
Lecture 43 - MHD Turbulence: Turbulence Models |
Link |
NOC:Physics of Turbulence |
Lecture 44 - MHD Turbulence: Dynamo |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 1 - General introduction |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 2 - Phase space and Liouville's theorem |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 3 - Collisionless Boltzmann equation |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 4 - Boltzmann equation for collisional system - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 5 - Boltzmann equation for collisional system - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 6 - Equilibrium distribution function - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 7 - Equilibrium distribution function - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 8 - Derivation of moment equations - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 9 - Derivation of moment equations - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 10 - Application of moment equations in collisionless systems |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 11 - Derivation of ideal fluid equations |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 12 - Macroscopic forces on an ideal fluid |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 13 - Properties of ideal fluid |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 14 - Kevin's vorticity theorem |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 15 - Conservative form and invariants in ideal fluids |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 16 - Steady flow, streamlines and stream function |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 17 - Departure from Maxwellian distribution |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 18 - Derivation of real fluid equations |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 19 - Hydrostatics: Model of solar corona |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 20 - Stellar/solar wind |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 21 - Accretion disks - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 22 - A small digression: Newtonian fluids |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 23 - Accretion disk - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 24 - Weak perturbation in a compressible fluid: sound wave |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 25 - Effect of nonlinearity: shocks |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 26 - Supernova explosion and spherical blast waves - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 27 - Supernova explosion and spherical blast waves - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 28 - de Laval nozzle and extragalactic jets |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 29 - Convective instability and Swarzschild stability criterian |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 30 - Rayleigh Benard convection - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 31 - Rayleigh Benard convection - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 32 - Jeans instability |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 33 - Waves and instabilities in a two-fluid interface - I |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 34 - Waves and instabilities in a two-fluid interface - II |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 35 - Oscillations of stars |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 36 - Oscillation of stars (Continued...) |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 37 - Rotation in astrofluids and Rayleigh criterion |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 38 - Fluid dynamics in a rotating frame of reference |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 39 - Vorticity theorem in rotating frame and Taylor-Proudman theorem |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 40 - Effect of rotation on a self gravitating mass |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 41 - Effect of rotation in stars |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 42 - Introduction to Plasmas |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 43 - Description of Plasma |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 44 - Kinetic to fluid picture of plasmas |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 45 - MHD fluids: magnetic pressure, magnetic tension and plasma beta |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 46 - Inviscid invariants in MHD |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 47 - Inviscid invariants in MHD (Continued...) |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 48 - Elsasser variables in MHD |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 49 - Linear wave modes in MHD |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 50 - MHD in space plasmas |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 51 - Introduction to turbulence in fluids |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 52 - Richardson-Kolmogorov phenomenology of turbulence |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 53 - Turbulent diffusion |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 54 - Turbulent viscosity |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 55 - Turbulence in MHD fluids |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 56 - Introduction to astrophysical dynamos |
Link |
NOC:Introduction to Astrophysical Fluids |
Lecture 57 - Anti-dynamo theorem and turbulent dynamos |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 1 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 2 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 3 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 4 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 5 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 6 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 7 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 8 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 9 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 10 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 11 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 12 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 13 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 14 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 15 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 16 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 17 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 18 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 19 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 20 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 21 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 22 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 23 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 24 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 25 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 26 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 27 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 28 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 29 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 30 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 31 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 32 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 33 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 34 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 35 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 36 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 37 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 38 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 39 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 40 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 41 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 42 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 43 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 44 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 45 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 46 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 47 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 48 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 49 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 50 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 51 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 52 |
Link |
NOC:Introduction to Electromagnetic Theory (Hindi) |
Lecture 53 |
Link |
NOC:Scientific Computing Using Python |
Lecture 1 |
Link |
NOC:Scientific Computing Using Python |
Lecture 2 |
Link |
NOC:Scientific Computing Using Python |
Lecture 3 |
Link |
NOC:Scientific Computing Using Python |
Lecture 4 |
Link |
NOC:Scientific Computing Using Python |
Lecture 5 |
Link |
NOC:Scientific Computing Using Python |
Lecture 6 |
Link |
NOC:Scientific Computing Using Python |
Lecture 7 |
Link |
NOC:Scientific Computing Using Python |
Lecture 8 |
Link |
NOC:Scientific Computing Using Python |
Lecture 9 |
Link |
NOC:Scientific Computing Using Python |
Lecture 10 |
Link |
NOC:Scientific Computing Using Python |
Lecture 11 |
Link |
NOC:Scientific Computing Using Python |
Lecture 12 |
Link |
NOC:Scientific Computing Using Python |
Lecture 13 |
Link |
NOC:Scientific Computing Using Python |
Lecture 14 |
Link |
NOC:Scientific Computing Using Python |
Lecture 15 |
Link |
NOC:Scientific Computing Using Python |
Lecture 16 |
Link |
NOC:Scientific Computing Using Python |
Lecture 17 |
Link |
NOC:Scientific Computing Using Python |
Lecture 18 |
Link |
NOC:Scientific Computing Using Python |
Lecture 19 |
Link |
NOC:Scientific Computing Using Python |
Lecture 20 |
Link |
NOC:Scientific Computing Using Python |
Lecture 21 |
Link |
NOC:Scientific Computing Using Python |
Lecture 22 |
Link |
NOC:Scientific Computing Using Python |
Lecture 23 |
Link |
NOC:Scientific Computing Using Python |
Lecture 24 |
Link |
NOC:Scientific Computing Using Python |
Lecture 25 |
Link |
NOC:Scientific Computing Using Python |
Lecture 26 |
Link |
NOC:Scientific Computing Using Python |
Lecture 27 |
Link |
NOC:Scientific Computing Using Python |
Lecture 28 |
Link |
NOC:Scientific Computing Using Python |
Lecture 29 |
Link |
NOC:Scientific Computing Using Python |
Lecture 30 |
Link |
NOC:Scientific Computing Using Python |
Lecture 31 |
Link |
NOC:Scientific Computing Using Python |
Lecture 32 |
Link |
NOC:Scientific Computing Using Python |
Lecture 33 |
Link |
NOC:Scientific Computing Using Python |
Lecture 34 |
Link |
NOC:Scientific Computing Using Python |
Lecture 35 |
Link |
NOC:Scientific Computing Using Python |
Lecture 36 |
Link |
NOC:Scientific Computing Using Python |
Lecture 37 |
Link |
NOC:Scientific Computing Using Python |
Lecture 38 |
Link |
NOC:Scientific Computing Using Python |
Lecture 39 |
Link |
NOC:Scientific Computing Using Python |
Lecture 40 |
Link |
NOC:Scientific Computing Using Python |
Lecture 41 |
Link |
NOC:Scientific Computing Using Python |
Lecture 42 |
Link |
NOC:Scientific Computing Using Python |
Lecture 43 |
Link |
NOC:Scientific Computing Using Python |
Lecture 44 |
Link |
NOC:Scientific Computing Using Python |
Lecture 45 |
Link |
NOC:Scientific Computing Using Python |
Lecture 46 |
Link |
NOC:Scientific Computing Using Python |
Lecture 47 |
Link |
NOC:Scientific Computing Using Python |
Lecture 48 |
Link |
NOC:Scientific Computing Using Python |
Lecture 49 |
Link |
NOC:Scientific Computing Using Python |
Lecture 50 |
Link |
NOC:Scientific Computing Using Python |
Lecture 51 |
Link |
NOC:Scientific Computing Using Python |
Lecture 52 |
Link |
NOC:Scientific Computing Using Python |
Lecture 53 |
Link |
NOC:Scientific Computing Using Python |
Lecture 54 |
Link |
NOC:Scientific Computing Using Python |
Lecture 55 |
Link |
NOC:Scientific Computing Using Python |
Lecture 56 |
Link |
NOC:Scientific Computing Using Python |
Lecture 57 |
Link |
NOC:Scientific Computing Using Python |
Lecture 58 |
Link |
NOC:Scientific Computing Using Python |
Lecture 59 |
Link |
NOC:Scientific Computing Using Python |
Lecture 60 |
Link |
NOC:Scientific Computing Using Python |
Lecture 61 |
Link |
NOC:Scientific Computing Using Python |
Lecture 62 |
Link |
NOC:Scientific Computing Using Python |
Lecture 63 |
Link |
NOC:Scientific Computing Using Python |
Lecture 64 |
Link |
NOC:Scientific Computing Using Python |
Lecture 65 |
Link |
NOC:Scientific Computing Using Python |
Lecture 66 |
Link |
NOC:Scientific Computing Using Python |
Lecture 67 |
Link |
NOC:Scientific Computing Using Python |
Lecture 68 |
Link |
NOC:Scientific Computing Using Python |
Lecture 69 |
Link |
NOC:Scientific Computing Using Python |
Lecture 70 |
Link |
NOC:Scientific Computing Using Python |
Lecture 71 |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 1 - Introduction to Field Theory and Course |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 2 - Integration using Complex Analysis |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 3 - Cauchy Principal Value Theorem |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 4 - Fourier Transform |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 5 - Green's Function and Examples |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 6 - Green's Function in Fourier Space |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 7 - Fourier Transform, Time Frequency |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 8 - Green's Function for Helmholtz Equation and Wave Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 9 - Green's Function for Diffusion and Schrodinger Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 10 - Dimensional Analysis |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 11 - Functionals - Part 1 |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 12 - Lagrangian Formalism - Part 2 |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 13 - Relativistic Fields |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 14 - Hamiltonian Formalism |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 15 - Principle of Least Action |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 16 - Relativistic Fields and Hamiltonian Formalism |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 17 - Noether's Theorem and Symmetries |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 18 - Review of Quantum Mechanics |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 19 - Second Quantization |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 20 - Field Operators |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 21 - Fock Space and Vaccum Energy |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 22 - Quantization of Bosons and Fermions |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 23 - Examples |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 24 - Free Fermi Gas |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 25 - Propagators and Perturbations |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 26 - Relativistic Quantum Field Theory |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 27 - Feynman Propagator |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 28 - Review of Statistical Mechanics (Partition Function) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 29 - Feynman Path Integral |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 30 - Diagrammatic Field Theory (Wick's Theorem) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 31 - Wick's Theorem (Continued...) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 32 - Diagrammatic Perturbation Theory |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 33 - Green's Function and Correlation Function |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 34 - Feynman Diagrams |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 35 - Phase Transition and Landau Theory |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 36 - Failure of Landau's Theory |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 37 - Scale Invariance |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 38 - Renormalization Group - Preliminary |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 39 - RG Steps |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 40 - Pertubative Calculations |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 41 - RG Fixed Points |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 42 - Relevent and Irrelevant Variables |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 43 - Behaviour Near Critical Points |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 44 - Computing Critical Exponents |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 45 - Mass and Charge Renormalization, Running Coupling const: Φ4 Theory |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 46 - Charge and Mass Renormalization: QED and QCD |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 47 - Breaking a Continuous Symmetry (Goldstone Mode) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 48 - Covariant Electrodynamics (Gauge Interactions) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 49 - Higgs Mechanism |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 50 - Introduction to Non-Equilibrium Field Theory (Langevin Equation) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 51 - Fluctuation Dissipation Theorem |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 52 - Kolgomorov's Theory of Turbulence |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 53 - Equilibrium and Non Equilibrium Solution of Navier Stokes |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 54 - Energy Flux in Navier Stokes Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 55 - RG Analysis of Field Theory of Turbulence |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 56 - Renormalized Viscosity and Discussion |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 57 - Renormalization of the Coupling Constant for the Shell Model |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 58 - Flux Computation for the Shell Model of Turbulence |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 59 - Renormalization Group Analysis of Navier Stokes Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 60 - Flux Computation for the Navier Stokes Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 61 - Functional Form of a Dynamical Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 62 - Surface Growth Phenomena: Introduction |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 63 - Surface Growth Phenomena: EW Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 64 - Surface Growth Phenomena: KPZ Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 65 - Surface Growth Phenomena: KPZ Equation (Continued...) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 66 - RG Procedure for KPZ Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 67 - Noise Renormalization |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 68 - Fixed Point Solution |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 69 - Weak Turbulence Theory using Examples |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 70 - Weak Turbulence Applications (Rotating Turbulence, Internal and Surface Gravity Waves) |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 71 - Nonlinear Schodinger Equation |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 72 - Field Theory of Passive Scalar Turbulence |
Link |
NOC:Tapestry of Field theory: Classical and Quantum, Equilibrium and Nonequilibrium Perspectives |
Lecture 73 - Course Summary |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 1 - Main differences between classical and quantum mechanics |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 2 - Introduction to Coherence and Stochastic Processes |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 3 - The Joint Probability Function used in Classical Optics: The Correlation Functions |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 4 - Second-order Coherence Theory (Temporal) |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 5 - Quantifying the Temporal Correlations |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 6 - Second-order Coherence Theory (Spatial); Spatial Correlations |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 7 - Quantifying the Spatial Correlations |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 8 - Second-order Coherence Theory (Angular); Angular Correlations |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 9 - Second-order Coherence Theory (Polarization) |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 10 - Degree of Polarization |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 11 - Coherent Mode Representation of Optical Fields |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 12 - Review of Quantum Mechanics |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 13 - Quantum Mechanical Correlation Functions |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 14 - Basics of Nonlinear Optics |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 15 - Two-Photon State Produced by Parametric Down-Conversion |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 16 - Coherence and Quantum Entanglement |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 17 - Temporal Two-Photon Interference |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 18 - Some example of Two-Photon Interference Effects |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 19 - Spatial Two-Photon Interference |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 20 - Quantum Measurements |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 21 - Can the Quantum Mechanical Description of Physical Reality be Considered Complete ? |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 22 - Hidden Variable Interpretation of Quantum Mechanics |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 23 - Bell Inequalities |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 24 - Entanglement Verification |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 25 - Entanglement Quantification and Connection Between Coherence and Entanglement |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 26 - 84 Quantum Cryptography |
Link |
NOC:Coherence and Quantum Entanglement |
Lecture 27 - Quantum Teleportation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 1 - Introduction and Newton's laws of motion |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 2 - From dynamics to Kinematics |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 3 - Equations of dynamics and constants of motion |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 4 - Constants of motion (Continued...), Wrok-energy theorem and conservative forces |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 5 - Dynamics under constants and central forces |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 6 - Derivation of gradient form from zero curl condition |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 7 - Concept of equilibrium |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 8 - Terminal velocity, stable and unstable equilibria |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 9 - Stable and unstable equilibria in more than one dimensions |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 10 - Motion in one-dimensional potential |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 11 - Solving equations of motion in one dimension |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 12 - Calculation of Work Done in a Force Field |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 13 - Central forces, Velocity and Acceleration in Plane Polar Coordinates |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 14 - Dynamics and Trajectories Under a Central Force |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 15 - Equation For Trajectories Under a Central Force (Continued...) : Binet Equation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 16 - Trajectory of a Particle Under Attractive Inverse-Square Force Law |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 17 - Energy Diagram in an Effective One-Dimensional Motion |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 18 - Two Interesting Problems On the motion Under Central Forces |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 19 - Motion Under an Attractive Inverse-Square Force |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 20 - Motion Under an Attractive Inverse-Square Force (Continued...) |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 21 - Trajectories Under Attractive Inverse-Square Force, Laws of Kepler |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 22 - Laplace Runge-Lenz Vector |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 23 - Simple harmonic oscillators |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 24 - Two examples of simple harmonic oscillation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 25 - Forced harmonic oscillator |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 26 - Forced harmonic oscillator at resonance |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 27 - Damped harmonic oscillator |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 28 - Nature of motion under a harmonic potential |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 29 - Comparison among three types of damped oscillation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 30 - Forced harmonic oscillator with damping |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 31 - A problem on damped harmonic oscillator |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 32 - Beats |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 33 - Motion of a particle in electric and magnetic fields |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 34 - E X B drift |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 35 - Inertial frames of reference, Galilean transformation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 36 - Non-inertial frames of reference, pseudo forces |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 37 - Motion of a particle in a rotating frame of reference |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 38 - Motion of a particle relative to an observer on earth |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 39 - Motion of a particle under various constraints |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 40 - Principle of Virtual work, D'Alembert's principle |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 41 - Lagrange's equation of first kind |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 42 - Solving problems using Lagrange's equation of first kind |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 43 - Generalized Coordinates and Generalized Velocities |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 44 - Knetic Energy and Acceleration in Terms of Generalized Coordinates |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 45 - Generalized Momentum and Generalized Force; Derivation of Euler-Lagrange Equation |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 46 - Euler Lagrange Equation, Cyclic Coordinates and Other Properties |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 47 - Properties of Euler-Lagrange equations (Continued...) |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 48 - Lagrangian of various oscillating systems |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 49 - Problem solving using Euler-Lagrange equations |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 50 - Concept of Phase Space |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 51 - Phase space trajectories and fixed points |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 52 - Stability of fixed points |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 53 - Different types of fixed points |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 54 - Fixed points and their stability for mechanical systems |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 55 - Linear two-dimensional phase space dynamics |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 56 - Linear two-dimensional phase space dynamics (Continued...) |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 57 - Concept of limit cycles |
Link |
NOC:Classical Motion of a Single Particle |
Lecture 58 - Lorenz equations and introduction to chaos |
Link |
Astrophysics and Cosmology |
Lecture 1 - Introduction |
Link |
Astrophysics and Cosmology |
Lecture 2 - Keplers Law |
Link |
Astrophysics and Cosmology |
Lecture 3 - The Solar System |
Link |
Astrophysics and Cosmology |
Lecture 4 - The Solar System (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 5 - Binary Systems |
Link |
Astrophysics and Cosmology |
Lecture 6 - Binary Systems (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 7 - Tidal Forces and the Earth Moon System |
Link |
Astrophysics and Cosmology |
Lecture 8 - Fluid Mechanics |
Link |
Astrophysics and Cosmology |
Lecture 9 - Hydrostatics and the Solar Wind |
Link |
Astrophysics and Cosmology |
Lecture 10 - Radiative Transfer |
Link |
Astrophysics and Cosmology |
Lecture 11 - Radiative Transfer (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 12 - Thermal Radiation |
Link |
Astrophysics and Cosmology |
Lecture 13 - Thermal Radiation and the Sun |
Link |
Astrophysics and Cosmology |
Lecture 14 - Virial Theorem and Its Application to Stars |
Link |
Astrophysics and Cosmology |
Lecture 15 - Stars: Magnitudes and the H-R Diagram |
Link |
Astrophysics and Cosmology |
Lecture 16 - Stellar Physics - I |
Link |
Astrophysics and Cosmology |
Lecture 17 - Stellar Physics - II |
Link |
Astrophysics and Cosmology |
Lecture 18 - Stellar Physics - III |
Link |
Astrophysics and Cosmology |
Lecture 19 - Stellar Physics - IV |
Link |
Astrophysics and Cosmology |
Lecture 20 - Stellar Physics - V |
Link |
Astrophysics and Cosmology |
Lecture 21 - White Dwarfs |
Link |
Astrophysics and Cosmology |
Lecture 22 - White Dwarfs and Neutron Stars |
Link |
Astrophysics and Cosmology |
Lecture 23 - Galaxies |
Link |
Astrophysics and Cosmology |
Lecture 24 - Galaxies and the Expanding Universe |
Link |
Astrophysics and Cosmology |
Lecture 25 - The Expanding Universe |
Link |
Astrophysics and Cosmology |
Lecture 26 - Dynamics of the Expanding Universe |
Link |
Astrophysics and Cosmology |
Lecture 27 - Dynamics of the Expanding Universe (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 28 - The Expanding Universe and the Cosmological Metric |
Link |
Astrophysics and Cosmology |
Lecture 29 - The Cosmological Space - Time |
Link |
Astrophysics and Cosmology |
Lecture 30 - Distances |
Link |
Astrophysics and Cosmology |
Lecture 31 - Distances (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 32 - Distances and the Hubble Parameter |
Link |
Astrophysics and Cosmology |
Lecture 33 - Distances, the Hubble Parameter and Dark Energy (Continued...) |
Link |
Astrophysics and Cosmology |
Lecture 34 - CMBR and Thermal History |
Link |
Astrophysics and Cosmology |
Lecture 35 - CMBR and Thermal History (Continued...1) |
Link |
Astrophysics and Cosmology |
Lecture 36 - CMBR and Thermal History (Continued...2) |
Link |
Astrophysics and Cosmology |
Lecture 37 - Thermal History, Expansion Rate and Neutrino Mass |
Link |
Astrophysics and Cosmology |
Lecture 38 - Thermal History: Neutrino Mass, Nucleosynthesis |
Link |
Astrophysics and Cosmology |
Lecture 39 - Big Bang Nucleosynthesis |
Link |
Astrophysics and Cosmology |
Lecture 40 - Big Bang Nucleosynthesis (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 1 - Set, Group, Field, Ring |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 2 - Vector Space |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 3 - Span, Linear combination of vectors |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 4 - Linearly dependent and independent vector, Basis |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 5 - Dual Space |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 6 - Inner Product |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 7 - Schwarz Inequality |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 8 - Inner product space, Gram-Schmidt Ortho-normalization |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 9 - Projection operator |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 10 - Transformation of Basis |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 11 - Transformation of Basis (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 12 - Unitary transformation, Similarity Transformation |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 13 - Eigen Value, Eigen Vectors |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 14 - Normal Matrix |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 15 - Diagonalization of a Matrix |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 16 - Hermitian Matrix |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 17 - Rank of a Matrix |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 18 - Cayley - Hamilton Theorem, Function space |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 19 - Metric Space, Linearly dependent - independent functions |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 20 - Linearly dependent –independent functions (Continued...), Inner Product of functions |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 21 - Orthogonal functions |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 22 - Delta Function, Completeness |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 23 - Fourier |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 24 - Fourier Series (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 25 - Parseval Theorem, Fourier Transform |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 26 - Parseval Relation, Convolution Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 27 - Polynomial space, Legendre Polynomial |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 28 - Monomial Basis, Factorial Basis, Legendre Basis |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 29 - Complex Numbers |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 30 - Geometrical interpretation of complex numbers |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 31 - de Moivre’s Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 32 - Roots of a complex number |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 33 - Set of complex no, Stereographic projection |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 34 - Complex Function, Concept of Limit |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 35 - Derivative of Complex Function, Cauchy-Riemann Equation |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 36 - Analytic Function |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 37 - Harmonic Conjugate |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 38 - Polar form of Cauchy-Riemann Equation |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 39 - Multi-valued function and Branches |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 40 - Complex Line Integration, Contour, Regions |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 41 - Complex Line Integration (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 42 - Cauchy-Goursat Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 43 - Application of Cauchy-Goursat Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 44 - Cauchy’s Integral Formula |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 45 - Cauchy’s Integral Formula (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 46 - Series and Sequence |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 47 - Series and Sequence (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 48 - Circle and radius of convergence |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 49 - Taylor Series |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 50 - Classification of singularity |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 51 - Laurent Series, Singularity |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 52 - Laurent series expansion |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 53 - Laurent series expansion (Continued...), Concept of Residue |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 54 - Classification of Residue |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 55 - Calculation of Residue for quotient from |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 56 - Cauchy’s Residue Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 57 - Cauchy’s Residue Theorem (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 58 - Real Integration using Cauchy’s Residue Theorem |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 59 - Real Integration using Cauchy’s Residue Theorem (Continued...) |
Link |
NOC:Mathematics Methods in Physics - I |
Lecture 60 - Real Integration using Cauchy’s Residue Theorem (Continued...) |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 5 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 6 - Systems with variable mass - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 7 - Systems with variable mass - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 8 - Central force - 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 9 - Central force - 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 10 - Central force - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 11 - Central force - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 12 - Central force - 5 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 13 - Central force - 6 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 14 - Central force - 7 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 15 - Central force - 8 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 16 - Central force - 9 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 17 - Central force - 10 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 18 - Central force - 11 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 19 - Central force - 12 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 20 - Central force - 13 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 21 - Central force - 14 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 22 - Central force - 15 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 23 - Mooring Co-ordinate Systems - 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 24 - Mooring Co-ordinate Systems - 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 25 - Mooring Co-ordinate Systems - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 26 - Mooring Co-ordinate Systems - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 27 - Rigid body dynamics - 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 28 - Rigid body dynamics - 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 29 - Rigid body dynamics - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 30 - Rigid body dynamics - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 31 - Rigid body dynamics - 5 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 32 - Rigid body dynamics - 6 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 33 - Rigid body dynamics - 7 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 34 - Rigid body dynamics - 8 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 35 - Rigid body dynamics - 9 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 36 - Rigid body dynamics - 10 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 37 - Rigid body dynamics - 11 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 38 - Rigid body dynamics - 12 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 39 - Rigid body dynamics - 13 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 40 - Rigid body dynamics - 14 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 41 - Rigid body dynamics - 15 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 42 - Rigid body dynamics - 16 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 43 - Lagrangian Formulation - 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 44 - Lagrangian Formulation - 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 45 - Lagrangian Formulation - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 46 - Lagrangian Formulation - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 47 - Lagrangian Formulation - 5 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 48 - Lagrangian Formulation - 6 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 49 - Lagrangian Formulation - 7 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 50 - Lagrangian Formulation - 8 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 51 - Lagrangian Formulation - 9 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 52 - Lagrangian Formulation - 10 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 53 - Small oscillation - 1 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 54 - Small oscillation - 2 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 55 - Small oscillation - 3 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 56 - Small oscillation - 4 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 57 - Small oscillation - 5 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 58 - Small oscillation - 6 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 59 - Small oscillation - 7 |
Link |
NOC:Classical Mechanics - from Newtonian to Lagrangian Formulation |
Lecture 60 - Small oscillation - 8 |
Link |
NOC:Solid State Physics |
Lecture 1 - Atom to Solid Structure |
Link |
NOC:Solid State Physics |
Lecture 2 - Atom to Solid Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 3 - Structure of Solid |
Link |
NOC:Solid State Physics |
Lecture 4 - Structure of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 5 - Crystal Structure |
Link |
NOC:Solid State Physics |
Lecture 6 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 7 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 8 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 9 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 10 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 11 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 12 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 13 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 14 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 15 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 16 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 17 - Crystal Structure (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 18 - X-ray Diffraction from Crystal |
Link |
NOC:Solid State Physics |
Lecture 19 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 20 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 21 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 22 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 23 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 24 - X-ray Diffraction from Crystal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 25 - Reciprocal Lattice |
Link |
NOC:Solid State Physics |
Lecture 26 - Reciprocal Lattice (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 27 - Reciprocal Lattice (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 28 - Reciprocal Lattice (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 29 - Reciprocal Lattice (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 30 - Intensity of Bragg Diffraction |
Link |
NOC:Solid State Physics |
Lecture 31 - Intensity of Bragg Diffraction (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 32 - Electrical Properties of Metal |
Link |
NOC:Solid State Physics |
Lecture 33 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 34 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 35 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 36 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 37 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 38 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 39 - Electrical Properties of Metal (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 40 - Band Theory of Solids |
Link |
NOC:Solid State Physics |
Lecture 41 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 42 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 43 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 44 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 45 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 46 - Band Theory of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 47 - Physics of Semiconductor |
Link |
NOC:Solid State Physics |
Lecture 48 - Physics of Semiconductor (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 49 - Physics of Semiconductor |
Link |
NOC:Solid State Physics |
Lecture 50 - Electrical Conduction |
Link |
NOC:Solid State Physics |
Lecture 51 - Electrical Conduction |
Link |
NOC:Solid State Physics |
Lecture 52 |
Link |
NOC:Solid State Physics |
Lecture 53 |
Link |
NOC:Solid State Physics |
Lecture 54 - Thermal Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 55 - Thermal Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 56 - Thermal Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 57 - Thermal Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 58 - Magnetic Property of Solid |
Link |
NOC:Solid State Physics |
Lecture 59 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 60 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 61 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 62 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 63 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 64 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 65 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 66 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 67 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 68 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 69 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 70 - Magnetic Property of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 71 - Magnetic Property of Solids (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 72 - Dielectric Properties of Solid |
Link |
NOC:Solid State Physics |
Lecture 73 - Dielectric Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 74 - Dielectric Properties of Solid (Continued...) |
Link |
NOC:Solid State Physics |
Lecture 75 - Superconductivity |
Link |
NOC:Atomic and Molecular Physics |
Lecture 1 - Experimental observations and theoretical development in discovery of constituents of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 2 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 3 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 4 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...: |
Link |
NOC:Atomic and Molecular Physics |
Lecture 5 - Experimental observations and theoretical development in discovery of constituents of an atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 6 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 7 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 8 - Structure of an atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 9 - Atomic structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 10 - Atomic structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 11 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 12 - Atomic structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 13 - Atomic structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 14 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 15 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 16 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 17 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 18 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 19 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 20 - Structure of an atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 21 - Atomic spectra |
Link |
NOC:Atomic and Molecular Physics |
Lecture 22 - Atomic spectra |
Link |
NOC:Atomic and Molecular Physics |
Lecture 23 - Multielectron atoms |
Link |
NOC:Atomic and Molecular Physics |
Lecture 24 - Multielectron atoms (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 25 - Multielectron atoms (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 26 - Multielectron atoms (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 27 - Quantum mechanical treatment |
Link |
NOC:Atomic and Molecular Physics |
Lecture 28 - Quantum mechanical treatment (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 29 - Quantum mechanical treatment of H-like atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 30 - Quantum mechanical treatment of H-like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 31 - Quantum mechanical treatment of Hydrogen like atom |
Link |
NOC:Atomic and Molecular Physics |
Lecture 32 - Quantum mechanical treatment of Hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 33 - Quantum mechanical treatment of hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 34 - Quantum mechanical treatment of hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 35 - Quantum mechanical treatment of hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 36 - Quantum Mechanical treatment of Hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 37 - Quantum Mechanical treatment of Hydrogen like atom (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 38 - Hydrogen like atom in magnetic field |
Link |
NOC:Atomic and Molecular Physics |
Lecture 39 - Hydrogen like atom in magnetic field (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 40 - Hydrogen like atom in electric field |
Link |
NOC:Atomic and Molecular Physics |
Lecture 41 - Physics of molecules |
Link |
NOC:Atomic and Molecular Physics |
Lecture 42 - Rotation of a molecule |
Link |
NOC:Atomic and Molecular Physics |
Lecture 43 - Rotation of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 44 - Rotation of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 45 - Rotation of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 46 - Vibration of a molecule |
Link |
NOC:Atomic and Molecular Physics |
Lecture 47 - Vibration of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 48 - Vibration of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 49 - Vibration of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 50 - Vibration of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 51 - Electronic spectra of a molecule |
Link |
NOC:Atomic and Molecular Physics |
Lecture 52 - Electronic spectra of a molecule (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 53 - Electronic structure of molecules |
Link |
NOC:Atomic and Molecular Physics |
Lecture 54 - Electronic structure of molecules (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 55 - Electronic structure of a molecule |
Link |
NOC:Atomic and Molecular Physics |
Lecture 56 - Atomic and Molecular Spectroscopy |
Link |
NOC:Atomic and Molecular Physics |
Lecture 57 - Raman Spectroscopy |
Link |
NOC:Atomic and Molecular Physics |
Lecture 58 - Raman Spectroscopy (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 59 - Raman Spectroscopy (Continued...) |
Link |
NOC:Atomic and Molecular Physics |
Lecture 60 - Resonance spectroscopy |
Link |
NOC:Modern Optics |
Lecture 1 - Maxwells equations and electromagnetic waves |
Link |
NOC:Modern Optics |
Lecture 2 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 3 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 4 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 5 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 6 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 7 - Maxwells equations and electromagnetic waves (Continued...) |
Link |
NOC:Modern Optics |
Lecture 8 - Wave propagation in anisotropic media |
Link |
NOC:Modern Optics |
Lecture 9 - Wave propagation in anisotropic media (Continued...) |
Link |
NOC:Modern Optics |
Lecture 10 - Wave propagation in anisotropic media (Continued...) |
Link |
NOC:Modern Optics |
Lecture 11 - Wave propagation in anisotropic media (Continued...) |
Link |
NOC:Modern Optics |
Lecture 12 - Wave propagation in anisotropic media (Continued...) |
Link |
NOC:Modern Optics |
Lecture 13 - Wave propagation in layered structures |
Link |
NOC:Modern Optics |
Lecture 14 - Wave propagation in layered structures (Continued...) |
Link |
NOC:Modern Optics |
Lecture 15 - Wave propagation in layered structures (Continued...) |
Link |
NOC:Modern Optics |
Lecture 16 - Wave propagation in layered structures (Continued...) |
Link |
NOC:Modern Optics |
Lecture 17 - Wave propagation in layered structures (Continued...) |
Link |
NOC:Modern Optics |
Lecture 18 - Waves in guided structures and modes |
Link |
NOC:Modern Optics |
Lecture 19 - Waves in guided structures and modes (Continued...) |
Link |
NOC:Modern Optics |
Lecture 20 - Waves in guided structures and modes (Continued...) |
Link |
NOC:Modern Optics |
Lecture 21 - Waves in guided structures and modes (Continued...) |
Link |
NOC:Modern Optics |
Lecture 22 - Waves in guided structures and modes (Continued...) |
Link |
NOC:Modern Optics |
Lecture 23 - Waves in guided structures and modes (Continued...) |
Link |
NOC:Modern Optics |
Lecture 24 - Coupling of waves and optical couplers |
Link |
NOC:Modern Optics |
Lecture 25 - Coupling of waves and optical couplers (Continued...) |
Link |
NOC:Modern Optics |
Lecture 26 - Coupling of waves and optical couplers (Continued...) |
Link |
NOC:Modern Optics |
Lecture 27 - Coupling of waves and optical couplers (Continued...) |
Link |
NOC:Modern Optics |
Lecture 28 - Coupling of waves and optical couplers (Continued...) |
Link |
NOC:Modern Optics |
Lecture 29 - Electro-optic Effect |
Link |
NOC:Modern Optics |
Lecture 30 - Electro-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 31 - Electro-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 32 - Electro-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 33 - Electro-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 34 - Electro-optic Modulators and Devices |
Link |
NOC:Modern Optics |
Lecture 35 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 36 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 37 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 38 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 39 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 40 - Electro-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 41 - Acousto-optic Effect |
Link |
NOC:Modern Optics |
Lecture 42 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 43 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 44 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 45 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 46 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 47 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 48 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 49 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 50 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 51 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 52 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 53 - Acousto-optic Effect (Continued...) |
Link |
NOC:Modern Optics |
Lecture 54 - Acousto-optic Modulators and Devices |
Link |
NOC:Modern Optics |
Lecture 55 - Acousto-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 56 - Acousto-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 57 - Acousto-optic Modulators and Devices (Continued...) |
Link |
NOC:Modern Optics |
Lecture 58 - Magneto-optic Effect |
Link |
NOC:Modern Optics |
Lecture 59 - Magneto-optic Effect (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 1 - Basic Linear Optics |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 2 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 3 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 4 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 5 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 6 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 7 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 8 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 9 - Basic Linear Optics (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 10 - Nonlinear Optics : An Introduction |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 11 - Classical origin of optical nonlinearity |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 12 - Miller’s Rule |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 13 - Second Harmonic Generation (SHG) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 14 - Optical Rectification, Linear electro-optic effect |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 15 - Sum and Difference frequency generation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 16 - Nonlinear Maxwell’s equation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 17 - Theory of SHG |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 18 - Phase matching |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 19 - Phase matching of SHG, Gain band width calculation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 20 - Manley-Rowe Relation, Energy conservation in SHG, |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 21 - Birefringence phase-matching (BPM),Type I and Type II phase matching |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 22 - Type II phase matching, Symmetry in nonlinear susceptibility |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 23 - Kleinman’s Symmetry, Neumann’s Principle |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 24 - Neumann’s Principle (Continued...) Centrosymmetric system |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 25 - Matrix form : SHG, SFG, DFG , SHG in KDP Crystal |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 26 - SHG in KDP crystal, Calculation of deff |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 27 - SHG in LiNbO3 |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 28 - Quasi phase matching (QPM) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 29 - Quasi phase matching (QPM) (Continued...), Periodic d function |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 30 - 1st, 2nd, 3rd order QPM, SHG under depleted pump |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 31 - Realistic calculation of SHG, 3 wave interaction |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 32 - 3 wave interaction, Equation for pump, signal and idler wave, Non-collinear phase matching |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 33 - Manley-Rowe Relation (3 wave mixing), Parametric down conversion |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 34 - Parametric down conversion (Continued...), Optical Parametric Amplification (OPA) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 35 - Optical Parametric Amplification (OPA), Difference frequency generation under OPA |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 36 - Sum frequency generation under OPA |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 37 - OPA under non-phase matching condition, Expression of gain |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 38 - Optical parametric Oscillator (OPO), Singly resonant oscillator |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 39 - Doubly Resonant Oscillator (DRO) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 40 - Doubly Resonant Oscillator (DRO) (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 41 - 3rd order nonlinear effect |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 42 - Optical Kerr effect and Self-focusing, Symmetry in 3rd order susceptibility |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 43 - Symmetry in 3rd order susceptibility (Continued...), Self Phase Modulation (SPM) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 44 - Self Phase Modulation (Continued...), Frequency Shift |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 45 - Third Harmonic Generation(3HG), Energy conservation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 46 - Third Harmonic Generation (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 47 - Third Harmonic Generation (Continued...), Cross Phase Modulation (XPM) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 48 - Cross Phase Modulation (Continued...), Nonlinear Absorption |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 49 - Four Wave Mixing |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 50 - Four Wave mixing (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 51 - Parametric Amplification under FWM |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 52 - Parametric Amplification under FWM (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 53 - Optical Phase Conjugation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 54 - Raman Scattering |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 55 - Stimulated Raman Scattering |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 56 - Raman Amplification |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 57 - Raman Amplification (Continued...) |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 58 - Linear pulse propagation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 59 - Nonlinear Pulse propagation |
Link |
NOC:Introduction to Non-linear Optics and its Applications |
Lecture 60 - Optical Soliton |
Link |
NOC:Upstream LNG Technology |
Lecture 1 - Introduction |
Link |
NOC:Upstream LNG Technology |
Lecture 2 - Concentration |
Link |
NOC:Upstream LNG Technology |
Lecture 3 - Sources and Process Overview of Natural Gas |
Link |
NOC:Upstream LNG Technology |
Lecture 4 - Pure Component Phase Behavior |
Link |
NOC:Upstream LNG Technology |
Lecture 5 - Mixture Phase Behavior |
Link |
NOC:Upstream LNG Technology |
Lecture 6 - Phase Behaviour of Natural Gas |
Link |
NOC:Upstream LNG Technology |
Lecture 7 - Dew Point and Bubble Point Calculations |
Link |
NOC:Upstream LNG Technology |
Lecture 8 - Vapor Liquid Equilibrium |
Link |
NOC:Upstream LNG Technology |
Lecture 9 - Problems on Vapor Pressure, Gibb's Phase Rule, Dew Point Bubble Point Temperatures |
Link |
NOC:Upstream LNG Technology |
Lecture 10 - Thermophysical Properties of Natural Gas - I |
Link |
NOC:Upstream LNG Technology |
Lecture 11 - Thermophysical Properties of Natural Gas - II |
Link |
NOC:Upstream LNG Technology |
Lecture 12 - Thermodynamic and Chemical Properties |
Link |
NOC:Upstream LNG Technology |
Lecture 13 - Combustion Properties |
Link |
NOC:Upstream LNG Technology |
Lecture 14 - Flow in Natural Gas Systems |
Link |
NOC:Upstream LNG Technology |
Lecture 15 - Flow Measurement In Natural Gas - I |
Link |
NOC:Upstream LNG Technology |
Lecture 16 - Flow Measurement In Natural Gas - II |
Link |
NOC:Upstream LNG Technology |
Lecture 17 - Temperature and Quality Measurement in Natural Gas Systems |
Link |
NOC:Upstream LNG Technology |
Lecture 18 - Pressure measurement in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 19 - Tutorial on the estimation of thermophysical properties |
Link |
NOC:Upstream LNG Technology |
Lecture 20 - Tutorial on the combustion and thermodynamic properties of natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 21 - Tutorial on fluid mechanics |
Link |
NOC:Upstream LNG Technology |
Lecture 22 - Tutorial on flow and pressure measurement in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 23 - Tutorial on temperature and quality measurement in natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 24 - Heat transfer in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 25 - Tutorial on heat transfer in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 26 - Heat exchangers in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 27 - Analysis of heat exchangers in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 28 - Tutorial on heat exchanger analysis |
Link |
NOC:Upstream LNG Technology |
Lecture 29 - Equillibrium vapour-liquid separation |
Link |
NOC:Upstream LNG Technology |
Lecture 30 - Equillibrium in multicomponent systems |
Link |
NOC:Upstream LNG Technology |
Lecture 31 - Separation by distillation |
Link |
NOC:Upstream LNG Technology |
Lecture 32 - Design of distillation column |
Link |
NOC:Upstream LNG Technology |
Lecture 33 - Equillibrium fluid solid separation |
Link |
NOC:Upstream LNG Technology |
Lecture 34 - Membrane separation in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 35 - Estimation of water content in natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 36 - Multistage single component equillibrium separation |
Link |
NOC:Upstream LNG Technology |
Lecture 37 - Tutorial on vapour liquid separation |
Link |
NOC:Upstream LNG Technology |
Lecture 38 - Tutorial on ideal binary distillation |
Link |
NOC:Upstream LNG Technology |
Lecture 39 - Tutorial on equillibrium gas- solid separation |
Link |
NOC:Upstream LNG Technology |
Lecture 40 - Tutorial on membrane gas separation |
Link |
NOC:Upstream LNG Technology |
Lecture 41 - Dehydration of natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 42 - Natural gas Processing - hydrate removal |
Link |
NOC:Upstream LNG Technology |
Lecture 43 - Acid gas removal in natural gas system - I |
Link |
NOC:Upstream LNG Technology |
Lecture 44 - Acid gas removal in natural gas system - II |
Link |
NOC:Upstream LNG Technology |
Lecture 45 - Nitrogen removal in natural gas system - I |
Link |
NOC:Upstream LNG Technology |
Lecture 46 - Nitrogen removal in natural gas system - II |
Link |
NOC:Upstream LNG Technology |
Lecture 47 - Compression in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 48 - Compressors used in natural gas systems |
Link |
NOC:Upstream LNG Technology |
Lecture 49 - Tutorial on hydrate removal |
Link |
NOC:Upstream LNG Technology |
Lecture 50 - Multicomponent distillation column design: Approximate method |
Link |
NOC:Upstream LNG Technology |
Lecture 51 - Sulfur recovery in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 52 - Tutorial on compression |
Link |
NOC:Upstream LNG Technology |
Lecture 53 - Pigging |
Link |
NOC:Upstream LNG Technology |
Lecture 54 - Sulfur recovery in natural gas systems - II |
Link |
NOC:Upstream LNG Technology |
Lecture 55 - Trace components in natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 56 - Helium recovery, upgradation and purification |
Link |
NOC:Upstream LNG Technology |
Lecture 57 - Fundamentals of absorption and stripping for natural gas processing |
Link |
NOC:Upstream LNG Technology |
Lecture 58 - Tutorial on absorption and stripping |
Link |
NOC:Upstream LNG Technology |
Lecture 59 - Gas liquid separation in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 60 - Gas liquid separation in natural gas systems - II |
Link |
NOC:Upstream LNG Technology |
Lecture 61 - Tutorial on equillibrium in multicomponent systems |
Link |
NOC:Upstream LNG Technology |
Lecture 62 - Tutorial on multicomponent distillation - I |
Link |
NOC:Upstream LNG Technology |
Lecture 63 - Tutorial on multicomponent distillation - II |
Link |
NOC:Upstream LNG Technology |
Lecture 64 - Pumps in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 65 - Pumps in natural gas systems - II |
Link |
NOC:Upstream LNG Technology |
Lecture 66 - Pumps in natural gas systems - III |
Link |
NOC:Upstream LNG Technology |
Lecture 67 - Tutorial on pumps - I |
Link |
NOC:Upstream LNG Technology |
Lecture 68 - Tutorial on pumps - II |
Link |
NOC:Upstream LNG Technology |
Lecture 69 - Cryogenic refrigeration and liquefaction in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 70 - Cryogenic refrigeration and liquefaction in natural gas systems - II |
Link |
NOC:Upstream LNG Technology |
Lecture 71 - Tutorial on refrigeration - I |
Link |
NOC:Upstream LNG Technology |
Lecture 72 - Tutorial on refrigeration - II |
Link |
NOC:Upstream LNG Technology |
Lecture 73 - Cryogenic refrigeration and liquefaction in natural gas systems - III |
Link |
NOC:Upstream LNG Technology |
Lecture 74 - Cryogenic refrigeration and liquefaction in natural gas systems - IV |
Link |
NOC:Upstream LNG Technology |
Lecture 75 - Cryogenic refrigeration and liquefaction in natural gas systems - V |
Link |
NOC:Upstream LNG Technology |
Lecture 76 - Tutorial on refrigeration - III |
Link |
NOC:Upstream LNG Technology |
Lecture 77 - Tutorial on refrigeration and liquefaction - IV |
Link |
NOC:Upstream LNG Technology |
Lecture 78 - Tutorial on refrigeration and liquefaction - V |
Link |
NOC:Upstream LNG Technology |
Lecture 79 - Hydrocarbon recovery in natural gas system - I |
Link |
NOC:Upstream LNG Technology |
Lecture 80 - Hydrocarbon recovery in natural gas system - II |
Link |
NOC:Upstream LNG Technology |
Lecture 81 - Hydrocarbon recovery in natural gas system - III |
Link |
NOC:Upstream LNG Technology |
Lecture 82 - Tutorial on hydrocarbon recovery in natural gas |
Link |
NOC:Upstream LNG Technology |
Lecture 83 - Piping in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 84 - Piping in natural gas systems - II |
Link |
NOC:Upstream LNG Technology |
Lecture 85 - Tutorial on piping in natural gas systems - I |
Link |
NOC:Upstream LNG Technology |
Lecture 86 - Tutorial on piping in natural gas systems - II |
Link |
NOC:Experimental Physics-I |
Lecture 1 - Introduction |
Link |
NOC:Experimental Physics-I |
Lecture 2 - Basic tools and apparatus |
Link |
NOC:Experimental Physics-I |
Lecture 3 - Basic tools and apparatus (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 4 - Basic tools and apparatus (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 5 - Basic tools and apparatus (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 6 - Basic tools and apparatus (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 7 - Basic components |
Link |
NOC:Experimental Physics-I |
Lecture 8 - Basic apparatus |
Link |
NOC:Experimental Physics-I |
Lecture 9 - Basic apparatus (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 10 - Basic analysis |
Link |
NOC:Experimental Physics-I |
Lecture 11 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 12 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 13 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 14 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 15 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 16 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 17 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 18 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 19 - Basics analysis (Continued...) |
Link |
NOC:Experimental Physics-I |
Lecture 20 - Determination of Young's modulus |
Link |
NOC:Experimental Physics-I |
Lecture 21 - Demonstration on the experiment of Young's modulus of mettalic bar and data collection |
Link |
NOC:Experimental Physics-I |
Lecture 22 - Calculate the value of young's modulus of given metallic bar form the recorded datas |
Link |
NOC:Experimental Physics-I |
Lecture 23 - Experimental demonstration to calculate the spring constant of a given spring |
Link |
NOC:Experimental Physics-I |
Lecture 24 - Calculate the value of calculate the spring constant of a given spring form the recorded datas |
Link |
NOC:Experimental Physics-I |
Lecture 25 - Theory regarding Moment of inertia of a flywheel |
Link |
NOC:Experimental Physics-I |
Lecture 26 - Experimental demonstration to calculate the moment of inertia of a given flywheel |
Link |
NOC:Experimental Physics-I |
Lecture 27 - How to calculate the value of moment of inertia of a flywheelform the recorded data |
Link |
NOC:Experimental Physics-I |
Lecture 28 - Theory regarding surface tension of the liquid |
Link |
NOC:Experimental Physics-I |
Lecture 29 - Demonstration on the experiment of surface tension and data collection |
Link |
NOC:Experimental Physics-I |
Lecture 30 - How to calculate the value of surface tension of water from the recorded data |
Link |
NOC:Experimental Physics-I |
Lecture 31 - Theory regarding viscosity of liquid |
Link |
NOC:Experimental Physics-I |
Lecture 32 - Demonstration on the experiment of viscosity |
Link |
NOC:Experimental Physics-I |
Lecture 33 - Data analysis of recorded data on viscosity |
Link |
NOC:Experimental Physics-I |
Lecture 34 - Forced Oscillations Pohls pendulum |
Link |
NOC:Experimental Physics-I |
Lecture 35 - Coupled Pendulum |
Link |
NOC:Experimental Physics-I |
Lecture 36 - Demonstration on the experiment of compound pendulum |
Link |
NOC:Experimental Physics-I |
Lecture 37 - Theory regarding compound pendulum has been discussed |
Link |
NOC:Experimental Physics-I |
Lecture 38 - Experimental demonstration on the standing Waves on a String has been shown clearly how to determine the linear mass density of the string. |
Link |
NOC:Experimental Physics-I |
Lecture 39 - Linear expansion of metal |
Link |
NOC:Experimental Physics-I |
Lecture 40 - Expt. to study linear expansion |
Link |
NOC:Experimental Physics-I |
Lecture 41 - Determine the coefficient of thermal conductivity of a bad conductor |
Link |
NOC:Experimental Physics-I |
Lecture 42 - Determination of electrical equivalent of heat |
Link |
NOC:Experimental Physics-I |
Lecture 43 - Determination of specific heat of the given solid metals using Dulong-Petit's law |
Link |
NOC:Experimental Physics-I |
Lecture 44 - Determination of the calibration curve of a given (Type K chromel–alumel) thermocouple and hence determination of Seebeck coefficient |
Link |
NOC:Experimental Physics-I |
Lecture 45 - Theorey and Demonstartion Platinum Resistance thermometer |
Link |
NOC:Experimental Physics-I |
Lecture 46 - Experiment on Platinum Resistance thermometer |
Link |
NOC:Experimental Physics-I |
Lecture 47 - To study the current-voltage relationship of an L-R circuit |
Link |
NOC:Experimental Physics-I |
Lecture 48 - To study the variation in current and voltage in a series LCR circuit |
Link |
NOC:Experimental Physics-I |
Lecture 49 - Sensitivity of Blastic Galvanometer |
Link |
NOC:Experimental Physics-I |
Lecture 50 - Expt. for Sensitivity of Blastic Galvanometer |
Link |
NOC:Experimental Physics-I |
Lecture 51 - Theory on RC Circuit |
Link |
NOC:Experimental Physics-I |
Lecture 52 - Expt. on RC Circuit |
Link |
NOC:Experimental Physics-I |
Lecture 53 - Theory regarding the magnetic field along the axis of a circular coil |
Link |
NOC:Experimental Physics-I |
Lecture 54 - Experiment regarding the magnetic field along the axis of a circular coil |
Link |
NOC:Experimental Physics-I |
Lecture 55 - Study the induced e.m.f of inductance coil |
Link |
NOC:Experimental Physics-I |
Lecture 56 - Mutual inductance |
Link |
NOC:Experimental Physics-I |
Lecture 57 - Theory regarding permeability of air |
Link |
NOC:Experimental Physics-I |
Lecture 58 - Experiment to determination the permeability of air |
Link |
NOC:Experimental Physics-I |
Lecture 59 - Devices around us |
Link |
NOC:Experimental Physics-I |
Lecture 60 - Devices around us (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 1 - Introduction |
Link |
NOC:Experimental Physics-II |
Lecture 2 - Summary of Experimental Physics - I |
Link |
NOC:Experimental Physics-II |
Lecture 3 - Summary of Experimental Physics - I (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 4 - Summary of Experimental Physics - I (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 5 - Summary of Experimental Physics - I (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 6 - Basic analysis |
Link |
NOC:Experimental Physics-II |
Lecture 7 - Basic analysis (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 8 - Basic components |
Link |
NOC:Experimental Physics-II |
Lecture 9 - Basic components (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 10 - Basic components (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 11 - Basic idea on mirros and lenses and their applications |
Link |
NOC:Experimental Physics-II |
Lecture 12 - Determination of focal length of concave mirror |
Link |
NOC:Experimental Physics-II |
Lecture 13 - Determination of focal length of concave mirror (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 14 - Determination of focal length of convex mirror |
Link |
NOC:Experimental Physics-II |
Lecture 15 - Determination of focal length of convex lens |
Link |
NOC:Experimental Physics-II |
Lecture 16 - Determination of focal length of concave lens |
Link |
NOC:Experimental Physics-II |
Lecture 17 - Determination of focal length of convex lens by diplacement method |
Link |
NOC:Experimental Physics-II |
Lecture 18 - Applications of mirrors and lenses |
Link |
NOC:Experimental Physics-II |
Lecture 19 - Determination of refractive index of liquid using travelling microscope |
Link |
NOC:Experimental Physics-II |
Lecture 20 - Basic discussion on spectrometer and prism |
Link |
NOC:Experimental Physics-II |
Lecture 21 - Basic discussion on spectrometer and prism (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 22 - Basic discussion on spectrometer and prism (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 23 - Schuster's method |
Link |
NOC:Experimental Physics-II |
Lecture 24 - Discussion on angle of the prism, angular dispersion and dispersive power of given prism |
Link |
NOC:Experimental Physics-II |
Lecture 25 - Determination of the angle of prism |
Link |
NOC:Experimental Physics-II |
Lecture 26 - Determination of the angle of minimum deviation for a given prism and hence to determine the refractive index of the given prism |
Link |
NOC:Experimental Physics-II |
Lecture 27 - Discussion on the angle of incidence and corresponding deviation of light through a prism and determination of the angle of minimum deviation for a given prism from the plot of the angle of incidence versus deviation. |
Link |
NOC:Experimental Physics-II |
Lecture 28 - Determination of the angle of minimum deviation from (i-D) plot for a given prism and hence to determine the refractive index of the given prism. |
Link |
NOC:Experimental Physics-II |
Lecture 29 - Determination of the calibration plot of deviation versus wavelength for a given prism and hence determination of the wavelength of the unknown light source using the calibration plot |
Link |
NOC:Experimental Physics-II |
Lecture 30 - Determination of the dispersive power, Cauchy constant and resolving power of a given prism. |
Link |
NOC:Experimental Physics-II |
Lecture 31 - Interference Phenomena |
Link |
NOC:Experimental Physics-II |
Lecture 32 - Interference Phenomena (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 33 - Interference Phenomena (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 34 - Bi-prism |
Link |
NOC:Experimental Physics-II |
Lecture 35 - Bi-prism (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 36 - Interference phenomena by Newton ring (Theory) |
Link |
NOC:Experimental Physics-II |
Lecture 37 - Interference phenomena by Newton ring (Experiment) |
Link |
NOC:Experimental Physics-II |
Lecture 38 - Michelson interferometer (Theory) |
Link |
NOC:Experimental Physics-II |
Lecture 39 - Michelson interferometer (Experiment) |
Link |
NOC:Experimental Physics-II |
Lecture 40 - Theory of diffraction |
Link |
NOC:Experimental Physics-II |
Lecture 41 - Theory of diffraction (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 42 - Theory of diffraction (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 43 - Single slit diffraction |
Link |
NOC:Experimental Physics-II |
Lecture 44 - Double slit diffraction |
Link |
NOC:Experimental Physics-II |
Lecture 45 - Plane transmission grating |
Link |
NOC:Experimental Physics-II |
Lecture 46 - Plane transmission grating (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 47 - Theory of polarization |
Link |
NOC:Experimental Physics-II |
Lecture 48 - Theory of polarization (Continued...) |
Link |
NOC:Experimental Physics-II |
Lecture 49 - Experiment for Verification of Malus law |
Link |
NOC:Experimental Physics-II |
Lecture 50 - Experiment for brewester |
Link |
NOC:Experimental Physics-II |
Lecture 51 - Experiment for Brewester angle |
Link |
NOC:Experimental Physics-II |
Lecture 52 - Experiment on e-ray and o-ray |
Link |
NOC:Experimental Physics-II |
Lecture 53 - Polarimeter |
Link |
NOC:Experimental Physics-II |
Lecture 54 - Zone-plate Theory |
Link |
NOC:Experimental Physics-II |
Lecture 55 - Zone-plate Experiment |
Link |
NOC:Experimental Physics-II |
Lecture 56 - Theory of Photoelectric Effect |
Link |
NOC:Experimental Physics-II |
Lecture 57 - Experiment on Photoelectric Effect |
Link |
NOC:Experimental Physics-II |
Lecture 58 - Thomson experiment to determine the specific charge of an electron (e/m) |
Link |
NOC:Experimental Physics-II |
Lecture 59 - Frank-Hertz Experiment |
Link |
NOC:Experimental Physics-II |
Lecture 60 - Experiment on Rydberg constant |
Link |
NOC:Experimental Physics-II |
Lecture 61 - Experiment on Rydberg constant (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 1 - Basic Tools and Instruments in the Laboratory |
Link |
NOC:Experimental Physics-III |
Lecture 2 - Basic Tools and Instruments in the Laboratory (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 3 - Cathode Ray Oscilloscope (CRO) |
Link |
NOC:Experimental Physics-III |
Lecture 4 - Cathode Ray Oscilloscope (CRO) (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 5 - Electro Magnet and Constant Current Power Supply |
Link |
NOC:Experimental Physics-III |
Lecture 6 - Electro Magnet and Constant Current Power Supply (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 7 - Electro Magnet and Constant Current Power Supply (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 8 - Gaussmeter/Teslameter |
Link |
NOC:Experimental Physics-III |
Lecture 9 - Gaussmeter/Teslameter (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 10 - Lock in Amplifier |
Link |
NOC:Experimental Physics-III |
Lecture 11 - Lock in Amplifier (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 12 - Measurement of magneto resistance |
Link |
NOC:Experimental Physics-III |
Lecture 13 - Magneto resistance for Semiconductor |
Link |
NOC:Experimental Physics-III |
Lecture 14 - Hall Effect |
Link |
NOC:Experimental Physics-III |
Lecture 15 - Hall Effect as a function of magnetic Field |
Link |
NOC:Experimental Physics-III |
Lecture 16 - Hall Effect as a function of temperature |
Link |
NOC:Experimental Physics-III |
Lecture 17 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 18 - To study the variation of resistivity of metal and semiconductor at low temperature region (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 19 - Measurement of magnetisation of ferromagnetic material |
Link |
NOC:Experimental Physics-III |
Lecture 20 - Measurement of magnetisation of ferromagnetic material (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 21 - Susceptibility of paramagnetic substance by Quincke's tube method |
Link |
NOC:Experimental Physics-III |
Lecture 22 - Experiment of Quincke's Tube Method |
Link |
NOC:Experimental Physics-III |
Lecture 23 - Susceptibility of paramagnetic substance by Gouy's method |
Link |
NOC:Experimental Physics-III |
Lecture 24 - Dielectric constant of solid |
Link |
NOC:Experimental Physics-III |
Lecture 25 - Dielectric constant of non-conducting liquid |
Link |
NOC:Experimental Physics-III |
Lecture 26 - P-E Loop of Ferroelectric Material |
Link |
NOC:Experimental Physics-III |
Lecture 27 - Measurement of Ionic Conductivity |
Link |
NOC:Experimental Physics-III |
Lecture 28 - Measurement of Ionic Conductivity (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 29 - Electron Spin Resonance (ESR) |
Link |
NOC:Experimental Physics-III |
Lecture 30 - Electron Spin Resonance (ESR) Experiment |
Link |
NOC:Experimental Physics-III |
Lecture 31 - Superconductivity |
Link |
NOC:Experimental Physics-III |
Lecture 32 - Superconductivity (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 33 - Superconductivity (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 34 - Nuclear g-factor |
Link |
NOC:Experimental Physics-III |
Lecture 35 - Nuclear g-factor (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 36 - P-N Junction |
Link |
NOC:Experimental Physics-III |
Lecture 37 - P-N Junction (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 38 - P-N Junction (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 39 - Zeeman Effect |
Link |
NOC:Experimental Physics-III |
Lecture 40 - Zeeman Effect (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 41 - Zeeman Effect (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 42 - Sodium Yellow Doublet |
Link |
NOC:Experimental Physics-III |
Lecture 43 - Sodium Yellow Doublet (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 44 - Study of Absorption Spectrum of Iodine Vapour |
Link |
NOC:Experimental Physics-III |
Lecture 45 - Study of Absorption Spectrum of Iodine Vapour (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 46 - Study of Absorption Spectrum of Iodine Vapour (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 47 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer |
Link |
NOC:Experimental Physics-III |
Lecture 48 - Determination of Wavelength of Spectral Lines using Constant Deviation Spectrometer (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 49 - Photoelastic Property of Materials |
Link |
NOC:Experimental Physics-III |
Lecture 50 - Photoelastic Property of Materials (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 51 - Photoelastic Property of Materials (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 52 - Faraday Effect |
Link |
NOC:Experimental Physics-III |
Lecture 53 - Faraday Effect (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 54 - Electron Diffraction |
Link |
NOC:Experimental Physics-III |
Lecture 55 - Electron Diffraction (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 56 - Determination of Velocity of Light in Free Space |
Link |
NOC:Experimental Physics-III |
Lecture 57 - Determination of Velocity of Light in Free Space (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 58 - X-Ray Diffraction and Crystal Structure |
Link |
NOC:Experimental Physics-III |
Lecture 59 - X-Ray Diffraction and Crystal Structure (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 60 - X-Ray Diffraction and Crystal Structure (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 61 - X-Ray Diffraction and Crystal Structure (Continued...) |
Link |
NOC:Experimental Physics-III |
Lecture 62 |
Link |
NOC:Electronic Theory of Solids |
Lecture 1 - Free electrons: Drude Theory |
Link |
NOC:Electronic Theory of Solids |
Lecture 2 - Weidemann Franz Law |
Link |
NOC:Electronic Theory of Solids |
Lecture 3 - Drude Model continued: Hall Effect |
Link |
NOC:Electronic Theory of Solids |
Lecture 4 - Schrodinger Equation: Boundary Conditions |
Link |
NOC:Electronic Theory of Solids |
Lecture 5 - Density of States |
Link |
NOC:Electronic Theory of Solids |
Lecture 6 - Properties of Degenerate Fermi Gas |
Link |
NOC:Electronic Theory of Solids |
Lecture 7 - Statistics Fermi-Dirac distribution and Maxwell-Boltzmann Distribution: comparison and Specific Heat |
Link |
NOC:Electronic Theory of Solids |
Lecture 8 - Sommerfeld Expansion and Band Formation: Temperature dependent densities, Chemical Potential, Specific Heat |
Link |
NOC:Electronic Theory of Solids |
Lecture 9 - Bonding and Band Formation: N=2 solid Molecular Orbitals, Linear combinations of Atomic Orbitals (LCAO) |
Link |
NOC:Electronic Theory of Solids |
Lecture 10 - Variational Method: Molecular Orbitals, Bonding and anti-bonding Orbitals |
Link |
NOC:Electronic Theory of Solids |
Lecture 11 - Bonding and Band Formation (LCAO) |
Link |
NOC:Electronic Theory of Solids |
Lecture 12 - Bonding and Band Formation (LCAO) (Continued...) |
Link |
NOC:Electronic Theory of Solids |
Lecture 13 - Bloch's Theorem |
Link |
NOC:Electronic Theory of Solids |
Lecture 14 - Proof of Bloch's Theorem |
Link |
NOC:Electronic Theory of Solids |
Lecture 15 - N atoms Solid |
Link |
NOC:Electronic Theory of Solids |
Lecture 16 - Brillouin Zones |
Link |
NOC:Electronic Theory of Solids |
Lecture 17 - Tight binding: lattice with a basis |
Link |
NOC:Electronic Theory of Solids |
Lecture 18 - Fermi Surfaces |
Link |
NOC:Electronic Theory of Solids |
Lecture 19 - Lattice with basis:Energy Spectrum |
Link |
NOC:Electronic Theory of Solids |
Lecture 20 - Energy spectrum (Continued...) |
Link |
NOC:Electronic Theory of Solids |
Lecture 21 - Graphene and Fermi Surfaces |
Link |
NOC:Electronic Theory of Solids |
Lecture 22 - Fermi Surfaces Instabilities |
Link |
NOC:Electronic Theory of Solids |
Lecture 23 - Low Dimensional Systems |
Link |
NOC:Electronic Theory of Solids |
Lecture 24 - Integer Quantum Hall Effect (IQHE) |
Link |
NOC:Electronic Theory of Solids |
Lecture 25 - Integer Quantum Hall Effect (Continued...) |
Link |
NOC:Electronic Theory of Solids |
Lecture 26 - Electron in a Strong Magnetic Field and IQHE |
Link |
NOC:Electronic Theory of Solids |
Lecture 27 - Spintronics: Introduction and Applications |
Link |
NOC:Electronic Theory of Solids |
Lecture 28 - Magnetism |
Link |
NOC:Electronic Theory of Solids |
Lecture 29 - Magnetism: Quantum Theory |
Link |
NOC:Electronic Theory of Solids |
Lecture 30 - Hund's Rule |
Link |
NOC:Electronic Theory of Solids |
Lecture 31 - Curie's Law and Van Vleck Paramagnetism |
Link |
NOC:Electronic Theory of Solids |
Lecture 32 - Curie's law for any J, Susceptibility |
Link |
NOC:Electronic Theory of Solids |
Lecture 33 - Susceptibility and Thermal Properties |
Link |
NOC:Electronic Theory of Solids |
Lecture 34 - Adiabatic Demagnetisation |
Link |
NOC:Electronic Theory of Solids |
Lecture 35 - Pauli Paramagnetism |
Link |
NOC:Electronic Theory of Solids |
Lecture 36 - Paramagnetism of metals |
Link |
NOC:Electronic Theory of Solids |
Lecture 37 - Exchange interaction for 2 electrons |
Link |
NOC:Electronic Theory of Solids |
Lecture 38 - Exchange interactions of different types |
Link |
NOC:Electronic Theory of Solids |
Lecture 39 - Magnetic Order |
Link |
NOC:Electronic Theory of Solids |
Lecture 40 - Magnetic Order of different types and Heisenberg model |
Link |
NOC:Electronic Theory of Solids |
Lecture 41 - Ising Model |
Link |
NOC:Electronic Theory of Solids |
Lecture 42 - Mean Field Theory |
Link |
NOC:Electronic Theory of Solids |
Lecture 43 - Spontaneous magnetisation and 1D Ising Model |
Link |
NOC:Electronic Theory of Solids |
Lecture 44 - Symmetries of Ising model, Exact Solution |
Link |
NOC:Electronic Theory of Solids |
Lecture 45 - Ferromagnetic Heisenberg Model |
Link |
NOC:Electronic Theory of Solids |
Lecture 46 - Ground State and Magnons/Excitations |
Link |
NOC:Electronic Theory of Solids |
Lecture 47 - Superconductivity |
Link |
NOC:Electronic Theory of Solids |
Lecture 48 - London Equation |
Link |
NOC:Electronic Theory of Solids |
Lecture 49 - Meisner Effect from London Equation |
Link |
NOC:Electronic Theory of Solids |
Lecture 50 - Cooper problem |
Link |
NOC:Electronic Theory of Solids |
Lecture 51 - Instability of the Fermi Surface |
Link |
NOC:Electronic Theory of Solids |
Lecture 52 - BCS Theory Introduction |
Link |
NOC:Electronic Theory of Solids |
Lecture 53 - BCS Theory, Excitation Spectrum |
Link |
NOC:Electronic Theory of Solids |
Lecture 54 - BCS |
Link |
NOC:Electronic Theory of Solids |
Lecture 55 - Tunneling and Ginzberg Landau Theory |
Link |
NOC:Electronic Theory of Solids |
Lecture 56 - Electrodynamics of Superconductivity |
Link |
NOC:Electronic Theory of Solids |
Lecture 57 - Type II superconductors |
Link |
NOC:Electronic Theory of Solids |
Lecture 58 - Josephson junction |
Link |
NOC:Electronic Theory of Solids |
Lecture 59 - Vortices, SQUID, Quantum Supremacy and Qubits |
Link |
NOC:Electronic Theory of Solids |
Lecture 60 - Topological state of matter, XY Model, Topological Insulators |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 1 - Wave Equation, Maxwell’s equation, Plane wave |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 2 - EM wave in vacuum, Poynting vector, Maxwell’s equation in Dielectric Medium |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 3 - Poynting Vector, Maxwell’s equation in dielectric medium (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 4 - Total Internal reflection, Evanescent wave |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 5 - Step-index fiber (SIF), Light guidance in SIF |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 6 - Light guidance in SIF (Skew Ray), V-Parameter, Discrete Ray |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 7 - Cutoff wavelength, Fiber characteristics |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 8 - Fiber Loss, dB units, Dispersion |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 9 - Dispersion, Ray Path constant |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 10 - Ray path constant, Ray equation |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 11 - Ray equation (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 12 - Ray transit time |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 13 - Ray transit time (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 14 - Material dispersion |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 15 - Material dispersion (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 16 - Material Dispersion (Continued...), Dispersion Coefficient |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 17 - Pulse Broadening |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 18 - Pulse Propagation in Dispersive Medium |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 19 - Pulse Propagation in Dispersive Medium (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 20 - Concept of Modes |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 21 - TE and TM Modes |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 22 - TE and TM Modes (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 23 - Modes in Slab waveguide |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 24 - Modes in Slab waveguide (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 25 - Modes in Slab waveguide (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 26 - Modes in Slab Waveguide (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 27 - Waveguide Dispersion |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 28 - Physical Understanding of Modes |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 29 - Power Associated with a Modes |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 30 - Modes in an Optical Fiber |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 31 - Modes in an optical fiber (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 32 - Modes in an optical fiber (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 33 - LPlm mode structure |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 34 - Optical fiber mode morphology (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 35 - Effective area of mode, Fiber optics components |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 36 - Directional Coupler |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 37 - Coupled Mode Theory |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 38 - Coupled Mode Theory (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 39 - 3 dB power splitter |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 40 - Working principle of WDM coupler |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 41 - Fiber Bragg Grating |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 42 - Fiber Bragg Grating (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 43 - Reflectivity Calculation |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 44 - Reflectivity Calculation (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 45 - Reflectivity calculation of FBG (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 46 - Reflectivity calculation of FBG (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 47 - Reflectivity calculation of FBG (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 48 - Bandwidth of reflectivity |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 49 - Basic nonlinear optics |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 50 - Frequency mixing, Optical Kerr effect |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 51 - Optical Kerr effect (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 52 - Self Phase Modulation |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 53 - Self Phase Modulation (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 54 - Self Phase Modulation (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 55 - Pulse propagation in nonlinear waveguide |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 56 - Pulse propagation in nonlinear waveguide (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 57 - Pulse propagation in nonlinear dispersive waveguide |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 58 - Pulse propagation in nonlinear dispersive waveguide (Continued...) |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 59 - Concept of optical soliton |
Link |
NOC:Physics of Linear and Nonlinear Optical Waveguides |
Lecture 60 - Concept of optical soliton (Continued...) |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 1 - Introduction and relevance of the course |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 2 - Energy sources |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 3 - Solar Radiation |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 4 - Solar Photovoltaic Systems |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 5 - Origin of Band Structure and Energy Band Gap |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 6 - Basics of Semiconductors |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 7 - Construction of Solar Cells |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 8 - Characterization of Solar Cells and Future Direction |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 9 - Solar Heaters |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 10 - Introduction to Wind Energy |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 11 - Continuity Equation and its applications |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 12 - Betz Criteria for extracting wind power |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 13 - Wind turbines and their operation |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 14 - Materials Aspects and future direction |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 15 - Introduction to Hydroelectric Power |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 16 - Hydroelectric Power Station and Turbines |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 17 - Wave power and converters |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 18 - Introduction to Tidal Power |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 19 - Tidal Power and Geothermal Energy |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 20 - Introduction to Energy Storage Systems |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 21 - Thermal Energy Storage |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 22 - Basics of Mechanical Energy Storage |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 23 - Pumped Hydroelectric to Flywheels (Mechanical Energy Storage Systems) |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 24 - Introduction to Li-ion battery |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 25 - Characteristics and Parameters of Li-ion batteries |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 26 - Cathode Materials for Li-ion batteries |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 27 - Anode Materials for Li-ion batteries |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 28 - Electrolytes and Separators for Li-batteries |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 29 - From battery to supercapacitors |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 30 - Construction, development and classification of Supercapacitors |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 31 - Electric double layer capacitors (EDLCs) |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 32 - Pseudocapacitors |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 33 - Electrochemical Techniques for Supercapacitors and Batteries |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 34 - From material to a supercapacitor device |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 35 - Effect of temperature on supercapacitor performance |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 36 - Effect of external magnetic field and frequency on supercapacitors |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 37 - Introduction to Fuel Cells |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 38 - Explanation of Fuel cell systems |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 39 - Microbial Fuel Cells |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 40 - Nanotechnology and Nanomaterials for Energy Applications |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 41 - Synthesis of nanomaterials |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 42 - Carbon- and metal-oxide based nanomaterials |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 43 - Nanocatalysts |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 44 - Characterization techniques for solid materials |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 45 - X-ray diffraction method |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 46 - UV-Visible Spectroscopy |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 47 - Fourier Transform Infrared Spectroscopy |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 48 - SEM, TEM and XPS |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 49 - Particle size and zeta potential analysis |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 50 - BET analysis |
Link |
NOC:Physics of Renewable Energy Systems |
Lecture 51 - Electrochemical Impedance Spectroscopy |
Link |
NOC:Thermal Physics |
Lecture 1 - Foundation of kinetic theory of gasses |
Link |
NOC:Thermal Physics |
Lecture 2 - Maxwell's law for speed distribution of gas molecules |
Link |
NOC:Thermal Physics |
Lecture 3 - Average speeds in an ideal gas assembly |
Link |
NOC:Thermal Physics |
Lecture 4 - Principle of equipartition of energy |
Link |
NOC:Thermal Physics |
Lecture 5 - Maxwell's law for energy distribution of gas molecules |
Link |
NOC:Thermal Physics |
Lecture 6 - The mean free path of a gas assembly |
Link |
NOC:Thermal Physics |
Lecture 7 - Expression for mean free path |
Link |
NOC:Thermal Physics |
Lecture 8 - Experimental determination of mean free path |
Link |
NOC:Thermal Physics |
Lecture 9 - Pressure an molecular flux from mean free path |
Link |
NOC:Thermal Physics |
Lecture 10 - Problems on mean free path |
Link |
NOC:Thermal Physics |
Lecture 11 - Transport in fluids: introduction |
Link |
NOC:Thermal Physics |
Lecture 12 - Viscosity: transport of momentum |
Link |
NOC:Thermal Physics |
Lecture 13 - Thermal conductivity: trasnport of thermal energy |
Link |
NOC:Thermal Physics |
Lecture 14 - Diffusion coefficient: transport of mass |
Link |
NOC:Thermal Physics |
Lecture 15 - Molecular effusion: theory and applications |
Link |
NOC:Thermal Physics |
Lecture 16 - Brownian motion: concept, features, theory of fluctuation |
Link |
NOC:Thermal Physics |
Lecture 17 - Brownian motion: mean square displacement and vertical distribution of particles |
Link |
NOC:Thermal Physics |
Lecture 18 - Perrin's experiment on Brownian motion - Part 1 |
Link |
NOC:Thermal Physics |
Lecture 19 - Perrin's experiment on Brownian motion - Part 2 |
Link |
NOC:Thermal Physics |
Lecture 20 - Problems on Brownian motion, Rotational brownian motion |
Link |
NOC:Thermal Physics |
Lecture 21 - Specific heat of solids: Dulong-Petit law and Einstein theory |
Link |
NOC:Thermal Physics |
Lecture 22 - Limitaion of Einstein theory of specific heat |
Link |
NOC:Thermal Physics |
Lecture 23 - Debye theory of specific heat |
Link |
NOC:Thermal Physics |
Lecture 24 - Behavior of real gasses |
Link |
NOC:Thermal Physics |
Lecture 25 - Van der Waals equation of state |
Link |
NOC:Thermal Physics |
Lecture 26 - Critical parameters from Van der Waal's equation |
Link |
NOC:Thermal Physics |
Lecture 27 - Determination of Van der Waals' constants and Boyle temperature |
Link |
NOC:Thermal Physics |
Lecture 28 - Other equations of state |
Link |
NOC:Thermal Physics |
Lecture 29 - Measurement of temperature: Celcius scale, ideal gas scale, absolute zero |
Link |
NOC:Thermal Physics |
Lecture 30 - The platinum resistance thermometer |
Link |
NOC:Thermal Physics |
Lecture 31 - Basic concepts of classical thermodynamics |
Link |
NOC:Thermal Physics |
Lecture 32 - Basic concepts of classical thermodynamics (Continued...) |
Link |
NOC:Thermal Physics |
Lecture 33 - First law of thermodynamics |
Link |
NOC:Thermal Physics |
Lecture 34 - General description of work done and specific heat |
Link |
NOC:Thermal Physics |
Lecture 35 - General discussion on Heat conduction and elastic properties |
Link |
NOC:Thermal Physics |
Lecture 36 - Cyclic processes |
Link |
NOC:Thermal Physics |
Lecture 37 - The reversible heat engine: Carnot cycle |
Link |
NOC:Thermal Physics |
Lecture 38 - Refrigarator and Carnot Theorem |
Link |
NOC:Thermal Physics |
Lecture 39 - 2nd law and Clausius theorem |
Link |
NOC:Thermal Physics |
Lecture 40 - Concept of Entropy and mathematical form of 2nd law |
Link |
NOC:Thermal Physics |
Lecture 41 - The entropy principle |
Link |
NOC:Thermal Physics |
Lecture 42 - Efficiency of a cycle from T-S diagram |
Link |
NOC:Thermal Physics |
Lecture 43 - The Otto cycle |
Link |
NOC:Thermal Physics |
Lecture 44 - The Diesel cycle |
Link |
NOC:Thermal Physics |
Lecture 45 - Entropy and available energy |
Link |
NOC:Thermal Physics |
Lecture 46 - Thermodynamic relations |
Link |
NOC:Thermal Physics |
Lecture 47 - Application of thermodynamic relation |
Link |
NOC:Thermal Physics |
Lecture 48 - The free energy functions |
Link |
NOC:Thermal Physics |
Lecture 49 - Condition for thermodynamic equilibri |
Link |
NOC:Thermal Physics |
Lecture 50 - Thermodynamics of chemical reaction |
Link |
NOC:Thermal Physics |
Lecture 51 - Equilibruim between phases: The Clapeyron equation |
Link |
NOC:Thermal Physics |
Lecture 52 - 1st order phase transion along liquid-vapor equilibrium |
Link |
NOC:Thermal Physics |
Lecture 53 - Phase diagram and triple point |
Link |
NOC:Thermal Physics |
Lecture 54 - The 2nd latent heat equation |
Link |
NOC:Thermal Physics |
Lecture 55 - Gibbs phase rule and basics of second order phase transion |
Link |
NOC:Thermal Physics |
Lecture 56 - Basic concepts of radiation |
Link |
NOC:Thermal Physics |
Lecture 57 - Diffused radiation and Kirchhoff's law |
Link |
NOC:Thermal Physics |
Lecture 58 - Cavity radiation as a thermodynamic system: Stefan-Boltzmann law |
Link |
NOC:Thermal Physics |
Lecture 59 - Thermodynamics of cavity radiation |
Link |
NOC:Thermal Physics |
Lecture 60 - 3rd law of thermodynamics |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 1 - Introduction: Magnetism and superconductivity as macroscopic quantum phenomena |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 2 - Bohr magneton, BvL theorem |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 3 - An electron in a magnetic field, magnetism of isolated atoms |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 4 - Magnetism of isolated atoms (Continued...), Diamagnetism |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 5 - Magnetism of atoms-dia and paramagnetic susceptibilities. Hund's rules,Van Vleck paramagnetism |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 6 - Van Vleck paramagnetism (Continued...), Paramagnetism |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 7 - Curie's law for arbitrary J, adiabatic demagnetization |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 8 - Paramagnetism of conduction electrons - Pauli paramagnetism |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 9 - Ions in a solid: crystal field, orbital quenching, Jahn-Teller effect |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 10 - Jahn-Teller effect (Continued...), Magnetic resonance techniques NMR, ESR |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 11 - Resonance techniques (Continued...), Recapitulation and overview |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 12 - Recapitulation, interacting moments and long range order, dipolar exchange |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 13 - Interacting moments, 2-electron system, origin of exchange and spin Hamiltonian |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 14 - Spin Hamiltonian, Heisenberg model, Exchange interactions: direct |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 15 - GMR, spin model and mean-field theory, Ising model |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 16 - Ising model and its properties |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 17 - Ising model and its properties (Continued...), absence of LRO in d=1, mean-field theory |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 18 - Ising model recap, applications, exact solutions |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 19 - Exact solution of Ising model in d=1, exact results in d=2. Mermin-Wagner theorem |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 20 - Recap - Exact solution of Ising model. Mermin-Wagner theorem on the absence |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 21 - Ferromagnetic Heisenberg model ground state |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 22 - Ferromagnetic Heisenberg model, spin-waves and magnons |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 23 - Antiferromagnetic Heisenberg model, AF magnetic structures |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 24 - AF magnetic structures, susceptibility and excitations |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 25 - Antiferromagnets and frustration, spin glass |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 26 - Superconductivity: discovery, properties |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 27 - Superconductivity: Meissner effect, London Equation |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 28 - Electron-phonon interaction, Cooper problem |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 29 - Cooper problem, setting up the BCS theory |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 30 - BCS wave function, the Superconducting state and calculations of various properties |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 31 - BCS theory (Continued...), energy gap, transition temperature |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 32 - Consequences of BCS theory, gap vs T, Transition temperature, specific heat, tunnelling |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 33 - Transition temperature, specific heat, tunnelling |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 34 - Andreev reflection, Ginzburg-Landau Theory and electrodynamics of superconductors |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 35 - Ginzburg-Landau theory, coherence length and Type I and II superconductors |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 36 - Flux lattice, Flux quantization, Josephson junctions |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 37 - Josephson effect and Josephson junctions |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 38 - SQUID, Quantum computers and Josephson junction Qubits |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 39 - High-Temperature Superconductivity: an enduring enigma |
Link |
NOC:Concepts in Magnetism and Superconductivity |
Lecture 40 - Overview and conclusion |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 1 - Vector analysis, Scalar and vector fields, vector identities |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 2 - Vector Analysis (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 3 - Use of Levi-Civita Symbol, Coordinate system |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 4 - Coordinate system, Orthogonal Transformation |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 5 - Spherical Coordinate system, Line, surface and volume element |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 6 - Line, surface and volume element (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 7 - Line, surface and volume integral |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 8 - Differential calculus, Gradient |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 9 - Gradient operator, Concept of divergence |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 10 - Divergence operator, Divergence Theorem |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 11 - Curl operator, Stokes Theorem |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 12 - Gradient, Divergence and Curl (A recap), Vector identities |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 13 - Curvilinear coordinate system |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 14 - Curvilinear coordinate system (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 15 - Curvilinear coordinate system (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 16 - Delta Function |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 17 - Delta Function (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 18 - Helmholtz's Theorem |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 19 - Helmholtz's Theorem(Recap), Tutorial |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 20 - Tutorial (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 21 - Concept of charge, Charge density |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 22 - Coulomb's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 23 - Coulomb's Law (Continued...), Charge distribution |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 24 - Charge distribution problem, Gauss's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 25 - Topics More on Gauss's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 26 - Application of Gauss's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 27 - Electrostatic potential |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 28 - Electrostatic potential (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 29 - Electrostatic energy |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 30 - Electrostatic energy (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 31 - Electrostatic energy calculation |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 32 - Electrostatic dipole |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 33 - Electric dipole (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 34 - Multipole expansion |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 35 - Monopole and Dipole moment |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 36 - Quadrupole moment |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 37 - Dipole and Quadrupole moment (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 38 - Conductor |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 39 - Conductor (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 40 - Boundary condition |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 41 - Electrostatic pressure, Capacitor |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 42 - Energy of the Capacitor, Dielectric |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 43 - Dielectric (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 44 - Displacement Vector |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 45 - Electrostatic boundary value problem |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 46 - Electrostatic boundary value problem (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 47 - Electrostatic boundary value problem (Continued...), Image method |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 48 - Image method (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 49 - Charge particle in magnetic field |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 50 - Biot-Savart Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 51 - Application of Biot-Savart Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 52 - Ampere's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 53 - Application of Ampere's Law |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 54 - Magnetic vector potential |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 55 - Magnetic vector potential (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 56 - Magnetic dipole moment |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 57 - Magnetic dipole moment (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 58 - Torque and potential energy of magnetic dipole, Magnetization |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 59 - Bound Current |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 60 - Magnetic materials |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 61 - Electromagnetic Induction |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 62 - Self and mutual inductance |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 63 - Wave equation, Maxwell’s Equation |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 64 - Maxwells Equation (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 65 - Maxwells Equation: a complete overview |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 66 - Maxwells Equation: a complete overview (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 67 - Lorentz Gauge, Maxwell's wave equation |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 68 - Maxwell's wave equation (Coninued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 69 - Maxwell's Equation in matter |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 70 - Maxwell's Equation in matter (Continued...) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 71 - Tutorial 2 (Electrostatic) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 72 - Tutorial 3 (Magnetostatic) |
Link |
NOC:Foundations of Classical Electrodynamics |
Lecture 73 - Tutorial 4 (Magnetostatic and EM Wave) |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 1 - Introduction to solid state materials - From conventional to functional |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 2 - Ceramics and Composites - I |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 3 - Ceramics and Composites - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 4 - Polymers |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 5 - Introduction to Nanomaterials and functionality |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 6 - Synthesis protocols - I |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 7 - Synthesis protocols - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 8 - Synthesis protocols - III |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 9 - Crystal structure - I |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 10 - Crystal structure - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 11 - Crystal structure - III |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 12 - Crystal imperfections |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 13 - Alloys and Melts |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 14 - Theory of Solids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 15 - Nearlly free electron model |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 16 - Bonds in molecules and solids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 17 - Transformations kinetics and reaction rates |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 18 - Themodynamics |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 19 - Phase and phase transitions |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 20 - Diffusion and various properties |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 21 - Mechanical properties of solids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 22 - Thermal Properties of Solids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 23 - Negative and Zero Expansion Ceramics |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 24 - Heat Capacity |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 25 - Thermogravimetric (TGA) analysis |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 26 - Introduction to magnetism and Magnetic properties of solids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 27 - From magnetic to multiferroic materials |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 28 - Magnetic materials and their applications |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 29 - Magnetism at nanoscale |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 30 - GMR materials |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 31 - CMR materials |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 32 - Ferrofluids |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 33 - Spintronics and devices |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 34 - Introduction to the basic properties of liquids and melts |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 35 - Heat capacity and diffusion of liquids and melts |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 36 - Viscosity, electric and thermal conduction of liquids and melts |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 37 - Sensors |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 38 - Electrochemical Sensors |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 39 - Introduction to energy storage devices and basics of supercapacitors |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 40 - Supercapacitors - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 41 - Magnetic supercapacitors |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 42 - Battery - I |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 43 - Battery - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 44 - Solar Cells - I |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 45 - Solar Cells - II |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 46 - X-ray Diffraction (XRD) |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 47 - Fourier Transform Infrared Spectroscopy |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 48 - UV- Vis Spectroscopy |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 49 - Scanning and Transmission Electron Microscopy |
Link |
NOC:Physics of Functional Materials and Devices |
Lecture 50 - Summary |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 1 - Introduction to waves, 1D wave equation and its solutions |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 2 - 1D Light waves |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 3 - Characteristics of light waves - amplitude, absolute phase, wavelenght and frequency |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 4 - Phase, Phase velocity and Phase delay |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 5 - Complex notation for the description light waves and superposition |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 6 - Maxwell's equations to the 3D wave equation and its solutions |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 7 - Recap of Week 1 |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 8 - 3D wave equation and plane waves |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 9 - Complex notation for Electric fields, Superposition and interference |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 10 - Fabry-Perot inteferometer and it transmittance |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 11 - Physical interpretation of FP transmittance |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 12 - Recap of Fabry-Perot modes |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 13 - Free spectral range of a Fabry-Perot etalon |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 14 - Resonator modes and optical pulses - insight |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 15 - Table - Top Coherent and Incoherent Imaging |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 16 - Recap of Etalon free spectral range |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 17 - Line width and finesse of an etalon |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 18 - Actual resonator modes |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 19 - Resonator configurations and stability |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 20 - Recap of optical resonators |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 21 - Introduction of light pulses |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 22 - Complex amplitude, Gaussian pulse |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 23 - Recap of light pulses |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 24 - Introduction of Fourier Transforms |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 25 - Tutorial 1 |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 26 - Motivating Fourier Transforms |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 27 - Fourier Transform Properties |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 28 - Frequency domain electric field |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 29 - Recap of Fourier transform properties |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 30 - Frequency domain description of pulses |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 31 - Spectral Phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 32 - Recap of spectral phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 33 - Instantaneous Frequency and group delay |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 34 - Phase wrapping, blanking, and Tayor series expansion |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 35 - Recap of instantaneous frequency, phase wrapping, and phase blanking |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 36 - Frequency domain phase expansion, group delay dispersion |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 37 - Absolute Phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 38 - Recap of concepts + discussion |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 39 - Absolute Phase (revisited) |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 40 - Carrier envelope phase, frequency comb |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 41 - Discussion |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 42 - Recap of concepts |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 43 - First order phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 44 - Second order phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 45 - Recap of first order and second order phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 46 - Chirped pulse: Instantaneous frequency and Fourier transform |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 47 - Group delay, nonlinearly chirped pulse |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 48 - Recap of chirped pulses |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 49 - Quadratic chirp pulses |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 50 - Higher order spectral phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 51 - Recap and discussion on higher order phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 52 - Relative importance of intensity and phase |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 53 - Pulse propagation through a medium |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 54 - Recap of pulse propagation and pulse length |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 55 - Discussion of RMS pulse width and uncertainty principle |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 56 - Time-bandwidth product |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 57 - Recap of previous module |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 58 - Introduction of Lorentz Oscillator Model |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 59 - Effect of matter on light |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 60 - Recap of Lorentz oscillator, Polarization tensor |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 61 - Dynamics of electrons in the Lorentz oscillator |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 62 - Solving the inhomogeneous wave equation |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 63 - Inhomogeneous wave equation, absorption coefficient, refractive index |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 64 - Nonlinear response of matter |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 65 - Origin of nonlinear optical effects |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 66 - Wave equation in an inert gas |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 67 - Perturbation theory and second harmonics |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 68 - Numerical simulation strategy |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 69 - Atoms in the presence of fields |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 70 - Ionization models |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 71 - Attosecond pulse generation and metrology |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 72 - Nonlinear optics review |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 73 - Nonlinear response of matter to light |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 74 - Sum and difference frequency generation |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 75 - Recap of sum and difference frequency generation, second harmonic generation |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 76 - Generalized nonlinear effects, conservation laws in SHG |
Link |
NOC:Fundamentals of Attosecond Science and Technology (FAST) |
Lecture 77 - Phase matching in SHG, polarization dependent refractive index |
Link |
NOC:Wave Optics |
Lecture 1 - Introduction |
Link |
NOC:Wave Optics |
Lecture 2 - Introduction (Continued...) |
Link |
NOC:Wave Optics |
Lecture 3 - Concept of wave, Wave Equation |
Link |
NOC:Wave Optics |
Lecture 4 - Plane wave, Spherical wave |
Link |
NOC:Wave Optics |
Lecture 5 - Maxwell's wave equation, Poynting Vector |
Link |
NOC:Wave Optics |
Lecture 6 - Superposition of waves |
Link |
NOC:Wave Optics |
Lecture 7 - Superposition of wave (Complex method) |
Link |
NOC:Wave Optics |
Lecture 8 - Random and coherent sourse, standing wave formation |
Link |
NOC:Wave Optics |
Lecture 9 - Group and Phase velocity |
Link |
NOC:Wave Optics |
Lecture 10 - Material Dispersion |
Link |
NOC:Wave Optics |
Lecture 11 - Material Dispersion (Continued...) |
Link |
NOC:Wave Optics |
Lecture 12 - Concept of Coherence |
Link |
NOC:Wave Optics |
Lecture 13 - Concept of Coherence (Continued...) |
Link |
NOC:Wave Optics |
Lecture 14 - Concept of Coherence (Continued...) |
Link |
NOC:Wave Optics |
Lecture 15 - Concept of Coherence (Continued...) |
Link |
NOC:Wave Optics |
Lecture 16 - Two beam interference |
Link |
NOC:Wave Optics |
Lecture 17 - Young's double slit experiment |
Link |
NOC:Wave Optics |
Lecture 18 - Young’s double slit experiment (Continued...) |
Link |
NOC:Wave Optics |
Lecture 19 - Interference by division of amplitude |
Link |
NOC:Wave Optics |
Lecture 20 - Interference by division of amplitude (Continued...) |
Link |
NOC:Wave Optics |
Lecture 21 - Newton's Ring |
Link |
NOC:Wave Optics |
Lecture 22 - Newton’s Ring (Continued...) |
Link |
NOC:Wave Optics |
Lecture 23 - Newton’s Ring (Continued...) |
Link |
NOC:Wave Optics |
Lecture 24 - Optical Interferometers |
Link |
NOC:Wave Optics |
Lecture 25 - Michelson Interferometer |
Link |
NOC:Wave Optics |
Lecture 26 - Multiple beam interference |
Link |
NOC:Wave Optics |
Lecture 27 - Febry-Perot Interferometer |
Link |
NOC:Wave Optics |
Lecture 28 - Febry-Perot Interferometer (Continued...) |
Link |
NOC:Wave Optics |
Lecture 29 - Resolving power of Fabry-Perot interferometer |
Link |
NOC:Wave Optics |
Lecture 30 - Diffraction of Light |
Link |
NOC:Wave Optics |
Lecture 31 - Huygen’s Theory |
Link |
NOC:Wave Optics |
Lecture 32 - Fraunhofer Diffraction |
Link |
NOC:Wave Optics |
Lecture 33 - Single-slit Diffraction |
Link |
NOC:Wave Optics |
Lecture 34 - Single-slit Diffraction (Continued...) |
Link |
NOC:Wave Optics |
Lecture 35 - Double–Slit Diffraction |
Link |
NOC:Wave Optics |
Lecture 36 - Multi–Slit Diffraction |
Link |
NOC:Wave Optics |
Lecture 37 - Multi-Slit Diffraction (Continued...) |
Link |
NOC:Wave Optics |
Lecture 38 - Grating spectra |
Link |
NOC:Wave Optics |
Lecture 39 - Grating spectra (Continued...) |
Link |
NOC:Wave Optics |
Lecture 40 - Resolving power of grating |
Link |
NOC:Wave Optics |
Lecture 41 - Fraunhofer diffraction for a circular aperture |
Link |
NOC:Wave Optics |
Lecture 42 - Fraunhofer diffraction for a rectangular aperture |
Link |
NOC:Wave Optics |
Lecture 43 - Fresnel Diffraction |
Link |
NOC:Wave Optics |
Lecture 44 - Fresnel’s half period zone |
Link |
NOC:Wave Optics |
Lecture 45 - Fresnel’s half period zone (Continued...) |
Link |
NOC:Wave Optics |
Lecture 46 - Zone Plate |
Link |
NOC:Wave Optics |
Lecture 47 - Fresnel’s diffraction from an aperture |
Link |
NOC:Wave Optics |
Lecture 48 - Fresnel’s diffraction for a circular aperture |
Link |
NOC:Wave Optics |
Lecture 49 - Fresnel’s diffraction for a rectangular aperture |
Link |
NOC:Wave Optics |
Lecture 50 - Fresnel’s diffraction for a rectangular aperture (Continued...) |
Link |
NOC:Wave Optics |
Lecture 51 - Fresnel’s diffraction for semi-infinite opaque screen |
Link |
NOC:Wave Optics |
Lecture 52 - Polarization of light (Basic concept) |
Link |
NOC:Wave Optics |
Lecture 53 - Circularly polarized light |
Link |
NOC:Wave Optics |
Lecture 54 - Matrix treatment of polarization |
Link |
NOC:Wave Optics |
Lecture 55 - Jones Matrix for polarization |
Link |
NOC:Wave Optics |
Lecture 56 - Jones Matrix for polarization (Continued...) |
Link |
NOC:Wave Optics |
Lecture 57 - Jones Matrix for polarization (Continued...) |
Link |
NOC:Wave Optics |
Lecture 58 - Jones Matrix for polarization (Continued...) |
Link |
NOC:Wave Optics |
Lecture 59 - Jones matrix for polarization (Continued...) |
Link |
NOC:Wave Optics |
Lecture 60 - Production of polarized light |
Link |
NOC:Wave Optics |
Lecture 61 - Production of polarized light (Continued...) |
Link |
NOC:Wave Optics |
Lecture 62 - Birefrigent Crystal |
Link |
NOC:Wave Optics |
Lecture 63 - Birefrigent Crystal (Continued...) |
Link |
NOC:Wave Optics |
Lecture 64 - Index Ellipsoid |
Link |
NOC:Wave Optics |
Lecture 65 - Analyzing Polarised Light |
Link |
NOC:Wave Optics |
Lecture 66 - Babinet Compensator |
Link |
Special Topics in Atomic Physics |
Lecture 1 - Introductory lecture about this course |
Link |
Special Topics in Atomic Physics |
Lecture 2 - Quantum Mechanics and Symmetry of the Hydrogen Atom |
Link |
Special Topics in Atomic Physics |
Lecture 3 - Hydrogen atom: Rotational and Dynamical Symmetry of the 1/r Potential |
Link |
Special Topics in Atomic Physics |
Lecture 4 - Hydrogen atom: Dynamical Symmetry of the 1/r Potential |
Link |
Special Topics in Atomic Physics |
Lecture 5 - Degeneracy of the Hydrogen Atom: SO(4) |
Link |
Special Topics in Atomic Physics |
Lecture 6 - Wavefunctions of the Hydrogen Atom |
Link |
Special Topics in Atomic Physics |
Lecture 7 - Angular Momentum in Quantum Mechanics |
Link |
Special Topics in Atomic Physics |
Lecture 8 - Angular Momentum in Quantum Mechanics: half-odd-integer and integer quantum numbers: SU(2) & SO(3) |
Link |
Special Topics in Atomic Physics |
Lecture 9 - Angular Momentum in Quantum Mechanics: Addition Theorem for Spherical Harmonics - Coupling of Angular Momenta |
Link |
Special Topics in Atomic Physics |
Lecture 10 - Angular Momentum in Quantum Mechanics Dimensionality of the Direct-Product (Composite) Vector Space CGC recursion relations |
Link |
Special Topics in Atomic Physics |
Lecture 11 - Angular Momentum in Quantum Mechanics CGC matrix, Wigner D Rotation Matrix, Irreducible Tensor Operators |
Link |
Special Topics in Atomic Physics |
Lecture 12 - Angular Momentum in Quantum Mechanics - more on ITO, and the Wigner-Eckart Theorem |
Link |
Special Topics in Atomic Physics |
Lecture 13 - Angular Momentum in Quantum Mechanics Wigner-Eckart Theorem - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 14 - Relativistic Quantum Mechanics of the Hydrogen Atom - 1 |
Link |
Special Topics in Atomic Physics |
Lecture 15 - Relativistic Quantum Mechanics of the Hydrogen Atom - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 16 - Relativistic Quantum Mechanics of the Hydrogen Atom - PAULI Equation - Foldy - Wouthysen Transformations - 1 |
Link |
Special Topics in Atomic Physics |
Lecture 17 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 18 - Relativistic Quantum Mechanics of the Hydrogen Atom - Foldy - Wouthysen Transformations - 3 |
Link |
Special Topics in Atomic Physics |
Lecture 19 - Relativistic Quantum Mechanics of the Hydrogen Atom - Spherical Symmetry of the Coulomb Potential |
Link |
Special Topics in Atomic Physics |
Lecture 20 - Hartree-Fock Self-Consistent Field formalism - 1 |
Link |
Special Topics in Atomic Physics |
Lecture 21 - Hartree-Fock Self-Consistent Field formalism - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 22 - Hartree-Fock Self-Consistent Field formalism - 3 |
Link |
Special Topics in Atomic Physics |
Lecture 23 - Hartree-Fock Self-Consistent Field formalism - 4 |
Link |
Special Topics in Atomic Physics |
Lecture 24 - Hartree-Fock Self-Consistent Field formalism - 5 |
Link |
Special Topics in Atomic Physics |
Lecture 25 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM |
Link |
Special Topics in Atomic Physics |
Lecture 26 - Perturbative treatment of relativistic effects… Schrodinger's and Dirac QM |
Link |
Special Topics in Atomic Physics |
Lecture 27 - Probing the atom - Collisions and Spectroscopy - boundary conditions - 1 |
Link |
Special Topics in Atomic Physics |
Lecture 28 - Atomic Probes - Collisions and Spectroscopy - boundary conditions - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 29 - Atomic Probes - Collisions and Spectroscopy - Scattering phase shifts and boundary conditions |
Link |
Special Topics in Atomic Physics |
Lecture 30 - Atomic Probes - Time reversal symmetry - applications in atomic collisions and photoionization processes |
Link |
Special Topics in Atomic Physics |
Lecture 31 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 1 |
Link |
Special Topics in Atomic Physics |
Lecture 32 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 2 |
Link |
Special Topics in Atomic Physics |
Lecture 33 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 3 |
Link |
Special Topics in Atomic Physics |
Lecture 34 - Atomic Photoionization cross sections, angular distributions of photoelectrons - 4 |
Link |
Special Topics in Atomic Physics |
Lecture 35 - Atomic Photoionization cross sections, angular distributions of photoelectrons Cooper Zare Formula |
Link |
Special Topics in Atomic Physics |
Lecture 36 - Stark- Zeeman Spectroscopy - Stark effect |
Link |
Special Topics in Atomic Physics |
Lecture 37 - Stark- Zeeman Spectroscopy - Stark effect on n=2 excited state of the H atom Zeeman effect |
Link |
Special Topics in Atomic Physics |
Lecture 38 - Stark- Zeeman Spectroscopy - Normal, Anomalous Zeeman effect; Paschen- Back effect |
Link |
Special Topics in Atomic Physics |
Lecture 39 - Stark- Zeeman Spectroscopy - Anomalous Zeeman effect |
Link |
Special Topics in Atomic Physics |
Lecture 40 - Zeeman effect Fine structure, Hyperfine structure - Elemental, rudimentary introduction to Laser Cooling, BEC, Atomic Clock / Attosecond metrology |
Link |
Classical Field Theory |
Lecture 1 - What is Classical Field Theory? |
Link |
Classical Field Theory |
Lecture 2 - Symmetries and Invariances - I |
Link |
Classical Field Theory |
Lecture 3 - Symmetries and Invariances - II |
Link |
Classical Field Theory |
Lecture 4 - Group Theory in Physics - I |
Link |
Classical Field Theory |
Lecture 5 - Group Theory in Physics - II |
Link |
Classical Field Theory |
Lecture 6 - Finite Groups - I |
Link |
Classical Field Theory |
Lecture 7 - Finite Groups - II |
Link |
Classical Field Theory |
Lecture 8 - Basics of CFT - I |
Link |
Classical Field Theory |
Lecture 9 - Basics of CFT - II |
Link |
Classical Field Theory |
Lecture 10 - Basics of CFT - III |
Link |
Classical Field Theory |
Lecture 11 - Green Functions - I |
Link |
Classical Field Theory |
Lecture 12 - Green Functions - II |
Link |
Classical Field Theory |
Lecture 13 - Noether's Theorem - I |
Link |
Classical Field Theory |
Lecture 14 - Noether's Theorem - II |
Link |
Classical Field Theory |
Lecture 15 - Kink Soliton |
Link |
Classical Field Theory |
Lecture 16 - Hidden Symmetry |
Link |
Classical Field Theory |
Lecture 17 - Local Symmetries |
Link |
Classical Field Theory |
Lecture 18 - The Abelian Higgs model |
Link |
Classical Field Theory |
Lecture 19 - Lie Algebras - I |
Link |
Classical Field Theory |
Lecture 20 - Lie Algebras - II |
Link |
Classical Field Theory |
Lecture 21 - Magnetic Vortices - I |
Link |
Classical Field Theory |
Lecture 22 - Magnetic Vortices - II |
Link |
Classical Field Theory |
Lecture 23 - Non-abelian gauge theories - I |
Link |
Classical Field Theory |
Lecture 24 - Non-abelian gauge theories - II |
Link |
Classical Field Theory |
Lecture 25 - Irreps of Lie algebras - I |
Link |
Classical Field Theory |
Lecture 26 - Irreps of Lie algebras - II |
Link |
Classical Field Theory |
Lecture 27 - The Standard Model - I |
Link |
Classical Field Theory |
Lecture 28 - The Standard Model - II |
Link |
Classical Field Theory |
Lecture 29 - Irreps of the Lorentz/Poincare algebras |
Link |
Classical Field Theory |
Lecture 30 - The Dirac mononpole |
Link |
Classical Field Theory |
Lecture 31 - The 't Hooft-Polaykov monopole |
Link |
Classical Field Theory |
Lecture 32 - Revisiting Derrick’s Theorem |
Link |
Classical Field Theory |
Lecture 33 - The Julia-Zee dyon |
Link |
Classical Field Theory |
Lecture 34 - Instantons - I |
Link |
Classical Field Theory |
Lecture 35 - Instantons - II |
Link |
Classical Field Theory |
Lecture 36 - Instantons - III |
Link |
Classical Field Theory |
Lecture 37 - Instantons - IV |
Link |
Classical Field Theory |
Lecture 38 - Dualities |
Link |
Classical Field Theory |
Lecture 39 - Geometrization of Field Theory |
Link |
Topics in Nonlinear Dynamics |
Lecture 1 - Overview |
Link |
Topics in Nonlinear Dynamics |
Lecture 2 - Critical points of a dynamical system |
Link |
Topics in Nonlinear Dynamics |
Lecture 3 - Two-dimensional flows |
Link |
Topics in Nonlinear Dynamics |
Lecture 4 - Stable and unstable manifolds |
Link |
Topics in Nonlinear Dynamics |
Lecture 5 - Hamiltonian dynamics - Part I |
Link |
Topics in Nonlinear Dynamics |
Lecture 6 - Hamiltonian dynamics - Part II |
Link |
Topics in Nonlinear Dynamics |
Lecture 7 - Hamiltonian dynamics - Part III |
Link |
Topics in Nonlinear Dynamics |
Lecture 8 - Hamiltonian dynamics - Part IV |
Link |
Topics in Nonlinear Dynamics |
Lecture 9 - Hamiltonian dynamics - Part V |
Link |
Topics in Nonlinear Dynamics |
Lecture 10 - Elementary bifurcations |
Link |
Topics in Nonlinear Dynamics |
Lecture 11 - Limit cycles |
Link |
Topics in Nonlinear Dynamics |
Lecture 12 - Poincar´e index |
Link |
Topics in Nonlinear Dynamics |
Lecture 13 - Illustrative examples |
Link |
Topics in Nonlinear Dynamics |
Lecture 14 - Quiz 1. Questions and answers |
Link |
Topics in Nonlinear Dynamics |
Lecture 15 - Bead on a rotating hoop |
Link |
Topics in Nonlinear Dynamics |
Lecture 16 - Types of dynamical behaviour |
Link |
Topics in Nonlinear Dynamics |
Lecture 17 - Discrete time dynamics - Part I |
Link |
Topics in Nonlinear Dynamics |
Lecture 18 - Discrete time dynamics - Part II |
Link |
Topics in Nonlinear Dynamics |
Lecture 19 - Discrete time dynamics - Part III |
Link |
Topics in Nonlinear Dynamics |
Lecture 20 - Discrete time dynamics - Part IV |
Link |
Topics in Nonlinear Dynamics |
Lecture 21 - Coarse-grained dynamics in phase space - Part I |
Link |
Topics in Nonlinear Dynamics |
Lecture 22 - Coarse-grained dynamics in phase space - Part II & Stochastic dynamics - Part I |
Link |
Topics in Nonlinear Dynamics |
Lecture 23 - Stochastic dynamics - Part II |
Link |
Topics in Nonlinear Dynamics |
Lecture 24 - Stochastic dynamics - Part III |
Link |
Topics in Nonlinear Dynamics |
Lecture 25 - Coarse-grained dynamics in phase space - Part IV & Stochastic dynamics - Part IV |
Link |
Topics in Nonlinear Dynamics |
Lecture 26 - Discrete time dynamics - Part V |
Link |
Topics in Nonlinear Dynamics |
Lecture 27 - Quiz 2. Questions and answers |
Link |
Topics in Nonlinear Dynamics |
Lecture 28 - Stochastic dynamics - Part V |
Link |
Topics in Nonlinear Dynamics |
Lecture 29 - Stochastic dynamics - Part VI |
Link |
Condensed Matter Physics |
Lecture 1 - Principles of Condensed Matter Physics |
Link |
Condensed Matter Physics |
Lecture 2 - Symmetry in Perfect Solids |
Link |
Condensed Matter Physics |
Lecture 3 - Symmetry in Perfect Solids (Continued...) |
Link |
Condensed Matter Physics |
Lecture 4 - Symmetry in Perfect Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 5 - Diffraction Methods For Crystal Structures |
Link |
Condensed Matter Physics |
Lecture 6 - Diffraction Methods For Crystal Structures (Continued...) |
Link |
Condensed Matter Physics |
Lecture 7 - Diffraction Methods For Crystal Structures - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 8 - Physical Properties of Crystals |
Link |
Condensed Matter Physics |
Lecture 9 - Physical Properties of Crystals (Continued...) |
Link |
Condensed Matter Physics |
Lecture 10 - Physical Properties of Crystals - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 11 - Cohesion in Solids |
Link |
Condensed Matter Physics |
Lecture 12 - Cohesion in Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 13 - The Free Electron Theory of Metals |
Link |
Condensed Matter Physics |
Lecture 14 - The Free Electron Theory of Metals - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 15 - The Free Electron Theory of Metals - Electrical Conductivity |
Link |
Condensed Matter Physics |
Lecture 16 - The Free Electron Theory of Metals - Electrical Conductivity - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 17 - Thermal Conductivity of Metals |
Link |
Condensed Matter Physics |
Lecture 18 - Thermal Conductivity of Metals - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 19 - The Concept of Phonons |
Link |
Condensed Matter Physics |
Lecture 20 - Debye Theory of Specific Heat, Lattice Vibrations |
Link |
Condensed Matter Physics |
Lecture 21 - Debye Theory of Specific Heat, Lattice Vibrations - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 22 - Lattice Vibrations (Continued) Phonon thermal conductivity |
Link |
Condensed Matter Physics |
Lecture 23 - Lattice Vibrations (Continued) Phonon Thermal Conductivity - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 24 - Anharmonicity and Thermal Expansion |
Link |
Condensed Matter Physics |
Lecture 25 - Dielectric (Insulating) Solids |
Link |
Condensed Matter Physics |
Lecture 26 - Dispersion and Absorption of Electromagnetic Waves in Dielectric Media, Ferro-and Antiferroelectrics |
Link |
Condensed Matter Physics |
Lecture 27 - Optical Properties of Metals; Ionic Polarization in Alkali Halides; Piezoelectricity |
Link |
Condensed Matter Physics |
Lecture 28 - Dielectric Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 29 - Dia - and Paramagnetism |
Link |
Condensed Matter Physics |
Lecture 30 - Paramagnetism of Transition Metal and Rare Earth Ions |
Link |
Condensed Matter Physics |
Lecture 31 - Quenching of Orbital Angular Momentum; Ferromagnetism |
Link |
Condensed Matter Physics |
Lecture 32 - Exchange Interactions, Magnetic Order, Neutron Diffraction |
Link |
Condensed Matter Physics |
Lecture 33 - Hysteresis and Magnetic Domains; Spin Waves and Magnons |
Link |
Condensed Matter Physics |
Lecture 34 - Magnetic Resonance |
Link |
Condensed Matter Physics |
Lecture 35 - Magnetism and Magnetic Resonance - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 36 - Magnetism - Worked Examples (Continued...) |
Link |
Condensed Matter Physics |
Lecture 37 - Pauli Paramagnetism and Landau Diamagnetism |
Link |
Condensed Matter Physics |
Lecture 38 - Band Magnetism; Itinerant Electrons; Stoner Model |
Link |
Condensed Matter Physics |
Lecture 39 - Superconductivity - Perfect Electrical Conductivity and Perfect Diamagnetism |
Link |
Condensed Matter Physics |
Lecture 40 - Type I and Type II Superconductors |
Link |
Condensed Matter Physics |
Lecture 41 - Ginsburg - Landau Theory, Flux Quantization |
Link |
Condensed Matter Physics |
Lecture 42 - Cooper Pairs |
Link |
Condensed Matter Physics |
Lecture 43 - Microscopic (BCS) Theory of Superconductivity |
Link |
Condensed Matter Physics |
Lecture 44 - BCS Theory (Continued...): Josephson Tunneling: Quantum Interference |
Link |
Condensed Matter Physics |
Lecture 45 - Josephson Effect (Continued...); High Temperature Superconductors |
Link |
Condensed Matter Physics |
Lecture 46 - Superconductors - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 47 - Energy Bands in Solids |
Link |
Condensed Matter Physics |
Lecture 48 - Electron Dynamics in a Periodic Solid |
Link |
Condensed Matter Physics |
Lecture 49 - Semiconductors |
Link |
Condensed Matter Physics |
Lecture 50 - Semiconductors (Continued...) |
Link |
Condensed Matter Physics |
Lecture 51 - Semiconductors - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 52 - Defects in Solids - Point Defects |
Link |
Condensed Matter Physics |
Lecture 53 - Point Defects in Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 54 - Defects in Solids - Line and Surface Defects |
Link |
Condensed Matter Physics |
Lecture 55 - Dislocations in Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 56 - Quantum Fluids and Quantum Solids |
Link |
Condensed Matter Physics |
Lecture 57 - Quantum Liquids and Quantum Solids - Worked Examples |
Link |
Condensed Matter Physics |
Lecture 58 - Epilogue |
Link |
Quantum Field Theory |
Lecture 1 - Introduction |
Link |
Quantum Field Theory |
Lecture 2 - Introduction to Classical Field Theory |
Link |
Quantum Field Theory |
Lecture 3 - Quantization of Real Scalar Field - I |
Link |
Quantum Field Theory |
Lecture 4 - Quantization of Real Scalar Field - II |
Link |
Quantum Field Theory |
Lecture 5 - Quantization of Real Scalar Field - III |
Link |
Quantum Field Theory |
Lecture 6 - Quantization of Real Scalar Field - IV |
Link |
Quantum Field Theory |
Lecture 7 - Quantization of Complex Scalar Field |
Link |
Quantum Field Theory |
Lecture 8 - Interacting Field Theory - I |
Link |
Quantum Field Theory |
Lecture 9 - Interacting Field Theory - II |
Link |
Quantum Field Theory |
Lecture 10 - Interacting Field Theory - III |
Link |
Quantum Field Theory |
Lecture 11 - Interacting Field Theory - IV |
Link |
Quantum Field Theory |
Lecture 12 - Interacting Field Theory - V |
Link |
Quantum Field Theory |
Lecture 13 - Interacting Field Theory - VI |
Link |
Quantum Field Theory |
Lecture 14 - Interacting Field Theory - VII |
Link |
Quantum Field Theory |
Lecture 15 - Quantuzation of Electromagnetic Field - I |
Link |
Quantum Field Theory |
Lecture 16 - Quantuzation of Electromagnetic Field - II |
Link |
Quantum Field Theory |
Lecture 17 - Fermion Quantization - I |
Link |
Quantum Field Theory |
Lecture 18 - Fermion Quantization - II |
Link |
Quantum Field Theory |
Lecture 19 - Fermion Quantization - III |
Link |
Quantum Field Theory |
Lecture 20 - Fermion Quantization - IV |
Link |
Quantum Field Theory |
Lecture 21 - Fermion Quantization - V |
Link |
Quantum Field Theory |
Lecture 22 - Fermion Quantization - VI |
Link |
Quantum Field Theory |
Lecture 23 - The S-Matrix Expansion in QED - I |
Link |
Quantum Field Theory |
Lecture 24 - The S-Matrix Expansion in QED - II |
Link |
Quantum Field Theory |
Lecture 25 - Feynman Rules in QED - I |
Link |
Quantum Field Theory |
Lecture 26 - Feynman Rules in QED - II |
Link |
Quantum Field Theory |
Lecture 27 - Compton Scattering - I |
Link |
Quantum Field Theory |
Lecture 28 - Compton Scattering - II |
Link |
Quantum Field Theory |
Lecture 29 - Compton Scattering - III |
Link |
Quantum Field Theory |
Lecture 30 - Moller Scattering - I |
Link |
Quantum Field Theory |
Lecture 31 - Moller Scattering - II |
Link |
Quantum Field Theory |
Lecture 32 - Vertex Correction - I |
Link |
Quantum Field Theory |
Lecture 33 - Vertex Correction - II |
Link |
Quantum Field Theory |
Lecture 34 - Vertex Correction - III |
Link |
Quantum Field Theory |
Lecture 35 - Vertex Correction - IV |
Link |
Quantum Field Theory |
Lecture 36 - Electron Selfenergy |
Link |
Quantum Field Theory |
Lecture 37 - Photon Selfenergy - I |
Link |
Quantum Field Theory |
Lecture 38 - Photon Selfenergy - II |
Link |
Quantum Mechanics I |
Lecture 1 - Quantum Mechanics – An Introduction |
Link |
Quantum Mechanics I |
Lecture 2 - Linear Vector Spaces - I |
Link |
Quantum Mechanics I |
Lecture 3 - Linear Vector Spaces - II: The two-level atom |
Link |
Quantum Mechanics I |
Lecture 4 - Linear Vector Spaces - III: The three-level atom |
Link |
Quantum Mechanics I |
Lecture 5 - Postulates of Quantum Mechanics - I |
Link |
Quantum Mechanics I |
Lecture 6 - Postulates of Quantum Mechanics - II |
Link |
Quantum Mechanics I |
Lecture 7 - The Uncertainty Principle |
Link |
Quantum Mechanics I |
Lecture 8 - The Linear Harmonic Oscillator |
Link |
Quantum Mechanics I |
Lecture 9 - Introducing Quantum Optics |
Link |
Quantum Mechanics I |
Lecture 10 - An Interesting Quantum Superposition: The Coherent State |
Link |
Quantum Mechanics I |
Lecture 11 - The Displacement and Squeezing Operators |
Link |
Quantum Mechanics I |
Lecture 12 - Exercises in Finite Dimensional Linear Vector Spaces |
Link |
Quantum Mechanics I |
Lecture 13 - Exercises on Angular Momentum Operators and their algebra |
Link |
Quantum Mechanics I |
Lecture 14 - Exercises on Quantum Expectation Values |
Link |
Quantum Mechanics I |
Lecture 15 - Composite Systems |
Link |
Quantum Mechanics I |
Lecture 16 - The Quantum Beam Splitter |
Link |
Quantum Mechanics I |
Lecture 17 - Addition of Angular Momenta - I |
Link |
Quantum Mechanics I |
Lecture 18 - Addition of Angular Momenta - II |
Link |
Quantum Mechanics I |
Lecture 19 - Addition of Angular Momenta - III |
Link |
Quantum Mechanics I |
Lecture 20 - Infinite Dimensional Linear Vector Spaces |
Link |
Quantum Mechanics I |
Lecture 21 - Square-Integrable Functions |
Link |
Quantum Mechanics I |
Lecture 22 - Ingredients of Wave Mechanics |
Link |
Quantum Mechanics I |
Lecture 23 - The Schrodinger equation |
Link |
Quantum Mechanics I |
Lecture 24 - Wave Mechanics of the Simple Harmonic Oscillator |
Link |
Quantum Mechanics I |
Lecture 25 - One-Dimensional Square Well Potential: The Bound State Problem |
Link |
Quantum Mechanics I |
Lecture 26 - The Square Well and the Square Potential Barrier |
Link |
Quantum Mechanics I |
Lecture 27 - The Particle in a one-dimensional Box |
Link |
Quantum Mechanics I |
Lecture 28 - A Charged Particle in a Uniform Magnetic Field |
Link |
Quantum Mechanics I |
Lecture 29 - The Wavefunction: Its Single-valuedness and its Phase |
Link |
Quantum Mechanics I |
Lecture 30 - The Central Potential |
Link |
Quantum Mechanics I |
Lecture 31 - The Spherical Harmonics |
Link |
Quantum Mechanics I |
Lecture 32 - Central Potential: The Radial Equation |
Link |
Quantum Mechanics I |
Lecture 33 - Illustrative Exercises - I |
Link |
Quantum Mechanics I |
Lecture 34 - Illustrative Exercises - II |
Link |
Quantum Mechanics I |
Lecture 35 - Ehrenfest's Theorem |
Link |
Quantum Mechanics I |
Lecture 36 - Perturbation Theory - I |
Link |
Quantum Mechanics I |
Lecture 37 - Perturbation Theory - II |
Link |
Quantum Mechanics I |
Lecture 38 - Perturbation Theory - III |
Link |
Quantum Mechanics I |
Lecture 39 - Perturbation Theory - IV |
Link |
Quantum Mechanics I |
Lecture 40 - Time-dependent Hamiltonians |
Link |
Quantum Mechanics I |
Lecture 41 - The Jaynes-Cummings model |
Link |
Special Topics in Classical Mechanics |
Lecture 1 - Course Overview |
Link |
Special Topics in Classical Mechanics |
Lecture 2 - Equations of Motion (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 3 - Equations of Motion (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 4 - Equations of Motion (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 5 - Equations of Motion (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 6 - Equations of Motion (v) |
Link |
Special Topics in Classical Mechanics |
Lecture 7 - Oscillators, Resonances, Waves (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 8 - Oscillators, Resonances, Waves (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 9 - Oscillators, Resonances, Waves (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 10 - Oscillators, Resonances, Waves (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 11 - Polar Coordinates (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 12 - Polar Coordinates (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 13 - Dynamical Symmetry in the Kepler Problem (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 14 - Dynamical Symmetry in the Kepler Problem (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 15 - Real Effects of Pseudo-Forces (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 16 - Real Effects of Pseudo-Forces (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 17 - Real Effects of Pseudo-Forces (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 18 - Real Effects of Pseudo-Forces (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 19 - Special Theory of Relativity (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 20 - Special Theory of Relativity (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 21 - Special Theory of Relativity (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 22 - Special Theory of Relativity (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 23 - Potentials Gradients Fields (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 24 - Potentials Gradients Fields (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 25 - Potentials Gradients Fields (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 26 - Gauss Law Eq of continuity (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 27 - Gauss Law Eq of continuity (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 28 - Gauss Law Eq of continuity (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 29 - Fluid Flow Bernoulli Principle (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 30 - Fluid Flow Bernoulli Principle (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 31 - Classical Electrodynamics (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 32 - Classical Electrodynamics (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 33 - Classical Electrodynamics (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 34 - Classical Electrodynamics (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 35 - Chaotic Dynamical Systems (i) |
Link |
Special Topics in Classical Mechanics |
Lecture 36 - Chaotic Dynamical Systems (ii) |
Link |
Special Topics in Classical Mechanics |
Lecture 37 - Chaotic Dynamical Systems (iii) |
Link |
Special Topics in Classical Mechanics |
Lecture 38 - Chaotic Dynamical Systems (iv) |
Link |
Special Topics in Classical Mechanics |
Lecture 39 - Chaotic Dynamical Systems (v) |
Link |
Special Topics in Classical Mechanics |
Lecture 40 - The Scope and Limitations of Classical Mechanics |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 1 - Introduction to the STiTACS course |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 2 - Quantum Theory of collisions |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 3 - Quantum Theory of collisions: optical Theorem |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 4 - Quantum Theory of collisions: Optical Theorem (Continued...) |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 5 - Quantum Theory of collisions: Differential scattering cross section |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 6 - Quantum Theory of collisions: Differential scattering cross section, Partial wave analysis |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 7 - Quantum Theory of collisions: Optical Theorem Unitarity of the Scattering Operator |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 8 - Quantum Theory of collisions: Reciprocity Theorem, Phase shift analysis |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 9 - Quantum Theory of collisions: More on Phase shift analysis |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 10 - Quantum Theory of collisions: resonant condition in the l th partial wave. |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 11 - Quantum Theory of collisions: Levinsons theorem |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 12 - Quantum Theory of collisions: Levinsons theorem (Continued...) |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 13 - Many body theory, electron correlations |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 14 - Second Quantization Creation, Destruction and Number operators |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 15 - Many-particle Hamiltonian & Schrodinger Equation in 2nd Quantization |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 16 - Many-electron problem in quantum mechanics |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 17 - Hartree-Fock Self-Consistent-Field |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 18 - Exchange, Statistical, Fermi-Dirac correlations |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 19 - Limitations of the Hartree-Fock Self-Consistent-Field formalism |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 20 - Many-Body formalism, II Quantization |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 21 - Density fluctuations in an electron gas |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 22 - Bohm-Pines approach to Random Phase Approximation |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 23 - Bohm-Pines approach to Random Phase Approximation (Continued...) |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 24 - Bohm-Pines approach to Random Phase Approximation (Continued...) |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 25 - Schrodinger, Heisenberg and Dirac pictures of QM |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 26 - Dysons chronological operator |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 27 - Gell-Mann-Low Theorem |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 28 - Reyleigh-Schrodinger perturbation methods and adiabatic switching |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 29 - Feynman Diagrams |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 30 - I Order Feynman Diagrams |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 31 - II and higher order Feynman Diagrams |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 32 - Linear response of electron correlations |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 33 - Lippman Schwinger equation of potential scattering |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 34 - Born Approximation |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 35 - Coulomb scattering |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 36 - Scattering of partial waves |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 37 - Scattering at high energy |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 38 - Resonances in Quantum Collisions |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 39 - Breit-Wigner Resonances |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 40 - Fano parameterization of Breit-Wigner formula |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 41 - Discrete state embedded in the continuum |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 42 - Resonance life times |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 43 - Wigner-Eisenbud formalism of time-delay in scattering |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 44 - Photoionization and Photoelectron Angular Distributions |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 45 - Ionization and Excitation of Atoms by Fast Charged Particles |
Link |
Special, Select Topics in the Theory of Atomic Collisions and Spectroscopy |
Lecture 46 - Photo-absorption by Free and Confined Atoms and Ions: Recent Developments |
Link |
Selected Topics in Mathematical Physics |
Lecture 1 - Analytic functions of a complex variable - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 2 - Analytic functions of a complex variable - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 3 - Calculus of residues - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 4 - Calculus of residues - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 5 - Calculus of residues - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 6 - Calculus of residues - Part IV |
Link |
Selected Topics in Mathematical Physics |
Lecture 7 - Linear response; dispersion relations - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 8 - Linear response; dispersion relations - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 9 - Analytic continuation and the gamma function - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 10 - Analytic continuation and the gamma function - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 11 - Möbius transformations - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 12 - Möbius transformations - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 13 - Möbius transformations - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 14 - Multivalued functions; integral representations - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 15 - Multivalued functions; integral representations - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 16 - Multivalued functions; integral representations - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 17 - Multivalued functions; integral representations - Part IV |
Link |
Selected Topics in Mathematical Physics |
Lecture 18 - Laplace transforms - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 19 - Laplace transforms - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 20 - Fourier transforms - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 21 - Fourier transforms - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 22 - Fourier transforms - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 23 - Fundamental Green function forΔ2 - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 24 - Fundamental Green function forΔ2 - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 25 - The diffusion equation - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 26 - The diffusion equation - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 27 - The diffusion equation - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 28 - The diffusion equation - Part IV |
Link |
Selected Topics in Mathematical Physics |
Lecture 29 - Green function for (Δ2 + k2); nonrelativistic scattering - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 30 - Green function for (Δ2 + k2); nonrelativistic scattering - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 31 - Green function for (Δ2 + k2); nonrelativistic scattering - Part III |
Link |
Selected Topics in Mathematical Physics |
Lecture 32 - The wave equation - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 33 - The wave equation - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 34 - The rotation group and all that - Part I |
Link |
Selected Topics in Mathematical Physics |
Lecture 35 - The rotation group and all that - Part II |
Link |
Selected Topics in Mathematical Physics |
Lecture 36 - The rotation group and all that - Part III |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 1 - Energy Sources |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 2 - Nuclear Power Production Cycle |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 3 - Basic Physics of Nuclear Fission |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 4 - Basic Physics of Nuclear Fission (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 5 - Nuclear Reactors |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 6 - Reactors Generation |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 7 - Radiation Sources and Protection |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 8 - Biological Effects of Radiation |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 9 - Safety Principles |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 10 - Safety Principles (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 11 - Safety Approach |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 12 - Risk and Probabilistic safety analysis (PSA) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 13 - History of Events in Nuclear Power Plants and Radiation facilities |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 14 - Other Events |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 15 - Validation and Dynamic Analysis |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 16 - Validation and Dynamic Analysis (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 17 - Quality Assurance |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 18 - Siting of Nuclear Plants |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 19 - Siting of Nuclear Plants (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 20 - Engineered Safety Systems |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 21 - Engineered Safety Systems (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 22 - Assessment of Radiological Consequences of Incidents |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 23 - Safety Regulation in India |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 24 - Safety Regulation in India (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 25 - Safety Regulation in India (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 26 - Safety Practices in Indian NPPs |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 27 - Safety Practices in Indian NPPs (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 28 - Safety Practices in Indian NPPs (Continued...) |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 29 - Passive Safety |
Link |
Nuclear Reactors and Safety - An Introduction |
Lecture 30 - Passive Safety (Continued...) |
Link |
Physical Applications of Stochastic Processes |
Lecture 1 - Discrete probability distributions - Part 1 |
Link |
Physical Applications of Stochastic Processes |
Lecture 2 - Discrete probability distributions - Part 2 |
Link |
Physical Applications of Stochastic Processes |
Lecture 3 - Continuous random variables |
Link |
Physical Applications of Stochastic Processes |
Lecture 4 - Central Limit Theorem |
Link |
Physical Applications of Stochastic Processes |
Lecture 5 - Stable distributions |
Link |
Physical Applications of Stochastic Processes |
Lecture 6 - Stochastic processes |
Link |
Physical Applications of Stochastic Processes |
Lecture 7 - Markov processes - Part 1 |
Link |
Physical Applications of Stochastic Processes |
Lecture 8 - Markov processes - Part 2 |
Link |
Physical Applications of Stochastic Processes |
Lecture 9 - Markov processes - Part 3 |
Link |
Physical Applications of Stochastic Processes |
Lecture 10 - Birth-and-death processes |
Link |
Physical Applications of Stochastic Processes |
Lecture 11 - Continuous Markov processes |
Link |
Physical Applications of Stochastic Processes |
Lecture 12 - Langevin dynamics - Part 1 |
Link |
Physical Applications of Stochastic Processes |
Lecture 13 - Langevin dynamics - Part 2 |
Link |
Physical Applications of Stochastic Processes |
Lecture 14 - Langevin dynamics - Part 3 |
Link |
Physical Applications of Stochastic Processes |
Lecture 15 - Langevin dynamics - Part 4 |
Link |
Physical Applications of Stochastic Processes |
Lecture 16 - Ito and Fokker-Planck equations for di?usion processes |
Link |
Physical Applications of Stochastic Processes |
Lecture 17 - Level-crossing statistics of a continuous random process |
Link |
Physical Applications of Stochastic Processes |
Lecture 18 - Diffusion of a charged particle in a magnetic field |
Link |
Physical Applications of Stochastic Processes |
Lecture 19 - Power spectrum of noise |
Link |
Physical Applications of Stochastic Processes |
Lecture 20 - Elements of linear response theory |
Link |
Physical Applications of Stochastic Processes |
Lecture 21 - Random pulse sequences |
Link |
Physical Applications of Stochastic Processes |
Lecture 22 - Dichotomous di?usion |
Link |
Physical Applications of Stochastic Processes |
Lecture 23 - First passage time (Part 1) |
Link |
Physical Applications of Stochastic Processes |
Lecture 24 - First passage time (Part 2) |
Link |
Physical Applications of Stochastic Processes |
Lecture 25 - First passage and recurrence in Markov chains |
Link |
Physical Applications of Stochastic Processes |
Lecture 26 - Recurrent and transient random walks |
Link |
Physical Applications of Stochastic Processes |
Lecture 27 - Non-Markovian random walks |
Link |
Physical Applications of Stochastic Processes |
Lecture 28 - Statistical aspects of deterministic dynamics (Part 1) |
Link |
Physical Applications of Stochastic Processes |
Lecture 29 - Statistical aspects of deterministic dynamics (Part 2) |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 1 - The Nature of Physical Laws |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 2 - Fundamental Constants and Dimensional Analysis |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 3 - Dimensional analysis and scaling |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 4 - sketching Elementary Functions |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 5 - The fundamental forces of nature |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 6 - Scalars, Victors and All That |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 7 - Plane Polar Coordinates |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 8 - Vectors In a Plane, Scalars and Pseudoscalars |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 9 - Kinematics In a Plane |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 10 - Vectors in 3-Dimensional Space |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 11 - Vectors in 3-Dimensional space (Continued...) |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 12 - The Finite Rotation Formula, Polar Coordinates in 3-dimensions |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 13 - Cylindrical and Spherical polar coordinates |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 14 - Motion in a circle - Acceleration |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 15 - Newtons laws of motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 16 - Conservation Laws and Newtons Equations |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 17 - Conservation of Angular Momentum |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 18 - Two-Body Scattering |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 19 - Two-Body Collision Kinematics |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 20 - Conservative Forces - The Concept of a Potential |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 21 - Central Potential and Central Force |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 22 - The 2-Body Central Force Problem |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 23 - Keplers Laws of Planetary Motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 24 - Non-Inertial Forces (Pseudo-forces) |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 25 - More on the Kepler problem; Satellite motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 26 - Linear Elasticity of Solids |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 27 - Simple Harmonic Motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 28 - Some Physical Examples of Simple Harmonic Motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 29 - More on Simple Harmonic Motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 30 - Damped Simple Harmonic Motion |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 31 - Wave Motion - Travelling and Standing Waves |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 32 - Wave Motion - Wave Equation, General Solution |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 33 - Fluid Dynamics - Hydrostatic Equilibrium |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 34 - Fluid Dynamics - Equation of Continuity |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 35 - Fluid Flow - Bernoullis Principle |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 36 - Circulation and Vorticity |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 37 - What is Thermodynamics? |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 38 - The Classical Ideal Gas |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 39 - The Laws of Thermodynamics |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 40 - Specific Heat of an Ideal Gas |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 41 - Van der Waals Equation |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 42 - Phase Transitions |
Link |
NOC:Mechanics, Heat Oscillations and Waves |
Lecture 43 - Summary |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 1 - Recapitulation of equilibrium statistical mechanics |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 2 - The Langevin model (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 3 - The Langevin model (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 4 - The Langevin model (Part 3) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 5 - The Langevin model (Part 4) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 6 - Linear response theory (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 7 - Linear response theory (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 8 - Linear response (Part 3) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 9 - Linear response(Part 4) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 10 - Linear response (Part 5) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 11 - Linear response (Part 6) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 12 - Linear response theory (Part 7) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 13 - Quiz 1 - Questions and answers |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 14 - Linear response theory (Part 8) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 15 - Linear response theory (Part 9) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 16 - The dynamic mobility |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 17 - Fokker-Planck equations (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 18 - Fokker-Planck equations (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 19 - Fokker-Planck equations (Part 3) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 20 - The generalized Langevin equation (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 21 - The generalized Langevin equation (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 22 - Diffusion in a magnetic field |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 23 - The Boltzmann equation for a dilute gas (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 24 - The Boltzmann equation for a dilute gas (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 25 - The Boltzmann equation for a dilute gas (Part 3) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 26 - The Boltzmann equation for a dilute gas (Part 4) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 27 - The Boltzmann equation for a dilute gas (Part 5) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 28 - Quiz 2 - Questions and answers |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 29 - Critical phenomena (Part 1) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 30 - Critical phenomena (Part 2) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 31 - Critical phenomena (Part 3) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 32 - Critical phenomena (Part 4) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 33 - Critical phenomena (Part 5) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 34 - Critical phenomena (Part 6) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 35 - Critical phenomena (Part 7) |
Link |
Nonequilibrium Statistical Mechanics |
Lecture 36 - The Wiener process (standard Brownian motion) |
Link |
NOC:Statistical Mechanics |
Lecture 1 - Discrete Probability |
Link |
NOC:Statistical Mechanics |
Lecture 2 - Continous Probability |
Link |
NOC:Statistical Mechanics |
Lecture 3 - Characteristic Function |
Link |
NOC:Statistical Mechanics |
Lecture 4 - Gausssian Distribution |
Link |
NOC:Statistical Mechanics |
Lecture 5 - Binomial Distribution |
Link |
NOC:Statistical Mechanics |
Lecture 6 - Poisson Distribution |
Link |
NOC:Statistical Mechanics |
Lecture 7 - Central Limit Theorem |
Link |
NOC:Statistical Mechanics |
Lecture 8 - Many Random Variables |
Link |
NOC:Statistical Mechanics |
Lecture 9 - Entropy and Probability |
Link |
NOC:Statistical Mechanics |
Lecture 10 - Entropy Maximization |
Link |
NOC:Statistical Mechanics |
Lecture 11 - Transformation of Random Variables |
Link |
NOC:Statistical Mechanics |
Lecture 12 - Tutorial |
Link |
NOC:Statistical Mechanics |
Lecture 13 - Mathematical Preliminaries - 1 |
Link |
NOC:Statistical Mechanics |
Lecture 14 - Microcanonical Ensemble |
Link |
NOC:Statistical Mechanics |
Lecture 15 - Two Level System (Microcanonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 16 - Classical Ideal Gas (Microcanonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 17 - Entropy of Mixing |
Link |
NOC:Statistical Mechanics |
Lecture 18 - Canonical Ensemble |
Link |
NOC:Statistical Mechanics |
Lecture 19 - Two Level System (Canonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 20 - Classical Ideal Gas (Canonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 21 - Gibbs Canonical Ensemble |
Link |
NOC:Statistical Mechanics |
Lecture 22 - Classical Ideal Gas (Gibbs Canonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 23 - N Spins in a Uniform Magnetic Field |
Link |
NOC:Statistical Mechanics |
Lecture 24 - Grand Canonical Ensemble |
Link |
NOC:Statistical Mechanics |
Lecture 25 - Ideal Gas (Grand Canonical Ensemble) |
Link |
NOC:Statistical Mechanics |
Lecture 26 - N Non - Interacting Spins in Constant Magnetic Field |
Link |
NOC:Statistical Mechanics |
Lecture 27 - Qunatum Statistical Mechanics |
Link |
NOC:Statistical Mechanics |
Lecture 28 - Statistics of Fermions and Bosons |
Link |
NOC:Statistical Mechanics |
Lecture 29 - Quantum to Classical Correspondance |
Link |
NOC:Statistical Mechanics |
Lecture 30 - Vibrations of Solid (Low Temperature) |
Link |
NOC:Statistical Mechanics |
Lecture 31 - Vibrations of Solid (Continuation) |
Link |
NOC:Statistical Mechanics |
Lecture 32 - Free Electrons(Fermi Gas) in a Metal |
Link |
NOC:Statistical Mechanics |
Lecture 33 - Free Electrons(Fermi Gas) in a Metal (Continuation) |
Link |
NOC:Statistical Mechanics |
Lecture 34 - Problem solving demo - Part 1 |
Link |
NOC:Statistical Mechanics |
Lecture 35 - Problem solving demo - Part 2 |
Link |
NOC:Computational Physics |
Lecture 1 - Introduction to Fortran - Part 1 |
Link |
NOC:Computational Physics |
Lecture 2 - Introduction to Fortran - Part 2 |
Link |
NOC:Computational Physics |
Lecture 3 - Introduction to Fortran - Part 3 |
Link |
NOC:Computational Physics |
Lecture 4 - Introduction to Fortran - Part 4 |
Link |
NOC:Computational Physics |
Lecture 5 - Introduction to Fortran - Part 5 |
Link |
NOC:Computational Physics |
Lecture 6 - Numerical Integration - Part 1 |
Link |
NOC:Computational Physics |
Lecture 7 - Numerical Integration - Part 2 |
Link |
NOC:Computational Physics |
Lecture 8 - Numerical Integration - Part 3 |
Link |
NOC:Computational Physics |
Lecture 9 - Numerical Integration - Part 4 |
Link |
NOC:Computational Physics |
Lecture 10 - Numerical Integration - Part 5 |
Link |
NOC:Computational Physics |
Lecture 11 - Numerical Integration - Part 6 |
Link |
NOC:Computational Physics |
Lecture 12 - Numerical Integration - Part 7 |
Link |
NOC:Computational Physics |
Lecture 13 - Numerical Integration - Part 8 |
Link |
NOC:Computational Physics |
Lecture 14 - Numerical Integration - Part 9 |
Link |
NOC:Computational Physics |
Lecture 15 - Numerical Integration - Part 10 |
Link |
NOC:Computational Physics |
Lecture 16 - Monte Carlo Simulation Introduction - Part 1 |
Link |
NOC:Computational Physics |
Lecture 17 - Monte Carlo Simulation Introduction - Part 2 |
Link |
NOC:Computational Physics |
Lecture 18 - Implementing the Ising model on computer |
Link |
NOC:Computational Physics |
Lecture 19 - Periodic Boundary conditions and the Metropolis scheme |
Link |
NOC:Computational Physics |
Lecture 20 - Testing the simulation and relaxation to equilibrium, finte size effects |
Link |
NOC:Computational Physics |
Lecture 21 - Monte Carlo Simulation Analysis - Part 1 |
Link |
NOC:Computational Physics |
Lecture 22 - Monte Carlo Simulation Analysis - Part 2 |
Link |
NOC:Computational Physics |
Lecture 23 - Monte Carlo Simulation Analysis: Thermodynamic Quantities - Part 1 |
Link |
NOC:Computational Physics |
Lecture 24 - Monte Carlo Simulation Analysis: Thermodynamic Quantities - Part 2 |
Link |
NOC:Computational Physics |
Lecture 25 - Calculating T_c using Binders cumulant; Principle of detailed balance |
Link |
NOC:Computational Physics |
Lecture 26 - Differential Equations Euler and Runge Kutta - Part 1 |
Link |
NOC:Computational Physics |
Lecture 27 - Differential Equations Euler and Runge Kutta - Part 2 |
Link |
NOC:Computational Physics |
Lecture 28 - Differential Coupled Equation Non Linear Equation - Part 1 |
Link |
NOC:Computational Physics |
Lecture 29 - Differential Coupled Equation Non Linear Equation - Part 2 |
Link |
NOC:Computational Physics |
Lecture 30 - Coupled Differential Equation Visualisation and Making Movie |
Link |
NOC:Computational Physics |
Lecture 31 - Differential Equations With Specified Boundary Conditions - Part 1 |
Link |
NOC:Computational Physics |
Lecture 32 - Differential Equations With Specified Boundary Conditions - Part 2 |
Link |
NOC:Computational Physics |
Lecture 33 - Partial Differential equations - 1 |
Link |
NOC:Computational Physics |
Lecture 34 - Partial Differential equations - 2 |
Link |
NOC:Computational Physics |
Lecture 35 - Partial Differential equations - 3 |
Link |
NOC:Computational Physics |
Lecture 36 - Differential Equation for Quantum Mechanical Problems: Numerov Algorithm - 1 |
Link |
NOC:Computational Physics |
Lecture 37 - Differential Equation for Quantum Mechanical Problems: Numerov Algorithm - 2 |
Link |
NOC:Computational Physics |
Lecture 38 - Differential Equation for Quantum Mechanical Problems: Numerov Algorithm - 3 |
Link |
NOC:Computational Physics |
Lecture 39 - Differential Equation for Quantum Mechanical Problems: Numerov Algorithm - 4 |
Link |
NOC:Computational Physics |
Lecture 40 - Differential Equation for Quantum Mechanical Problems: Numerov Algorithm - 5 |
Link |
NOC:Computational Physics |
Lecture 41 - Differential Equation for Quantum Mechanical Problems: Variational principle - 1 |
Link |
NOC:Computational Physics |
Lecture 42 - Differential Equation for Quantum Mechanical Problems: Variational principle - 2 |
Link |
NOC:Computational Physics |
Lecture 43 - Differential Equation for Quantum Mechanical Problems: Variational principle - 3 |
Link |
NOC:Computational Physics |
Lecture 44 - Differential Equation for Quantum Mechanical Problems: Variational principle - 4 |
Link |
NOC:Computational Physics |
Lecture 45 - Differential Equation for Quantum Mechanical Problems: Variational principle - 5 |
Link |
NOC:Computational Physics |
Lecture 46 - Molecular Dynamics Introduction - Part 1 |
Link |
NOC:Computational Physics |
Lecture 47 - Molecular Dynamics Introduction - Part 2 |
Link |
NOC:Computational Physics |
Lecture 48 - Molecular Dynamics Details and Algorithm - Part 1 |
Link |
NOC:Computational Physics |
Lecture 49 - Molecular Dynamics Details and Algorithm - Part 2 |
Link |
NOC:Computational Physics |
Lecture 50 - Molecular Dynamics Details and Algorithm - Part 3 |
Link |
NOC:Computational Physics |
Lecture 51 - Molecular Dynamics Analysis - Part 1 |
Link |
NOC:Computational Physics |
Lecture 52 - Molecular Dynamics Analysis - Part 2 |
Link |
NOC:Computational Physics |
Lecture 53 - Molecular Dynamics Neighbours Lists - Part 1 |
Link |
NOC:Computational Physics |
Lecture 54 - Molecular Dynamics Neighbours Lists - Part 2 |
Link |
NOC:Computational Physics |
Lecture 55 - Molecular Dynamics: Calculation Of Themodynamics Quantities |
Link |
NOC:Computational Physics |
Lecture 56 - Molecular Dynamics Diffusion Constant Calculation - Part 1 |
Link |
NOC:Computational Physics |
Lecture 57 - Molecular Dynamics Diffusion Constant Calculation - Part 2 |
Link |
NOC:Computational Physics |
Lecture 58 - Molecular Dynamics Diffusion Constant Calculation - Part 3 |
Link |
NOC:Waves and Oscillations |
Lecture 1 - Simple Harmonic Motion |
Link |
NOC:Waves and Oscillations |
Lecture 2 - Superposition of Oscillations : Beats |
Link |
NOC:Waves and Oscillations |
Lecture 3 - Superposition of Oscillations : Beats |
Link |
NOC:Waves and Oscillations |
Lecture 4 - Superposition of Oscillations : Lissajous Figures |
Link |
NOC:Waves and Oscillations |
Lecture 5 - Simple Harmonic Motion : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 6 - Damped oscillator - Part 1 |
Link |
NOC:Waves and Oscillations |
Lecture 7 - Damped oscillator - Part 2 |
Link |
NOC:Waves and Oscillations |
Lecture 8 - Damped oscillator and Q-factor |
Link |
NOC:Waves and Oscillations |
Lecture 9 - Damped oscillator : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 10 - Forced oscillator - Part 1 |
Link |
NOC:Waves and Oscillations |
Lecture 11 - Forced oscillator - Part 2 |
Link |
NOC:Waves and Oscillations |
Lecture 12 - Resonances |
Link |
NOC:Waves and Oscillations |
Lecture 13 - Q-factor of forced oscillator |
Link |
NOC:Waves and Oscillations |
Lecture 14 - Applications of forced oscillator |
Link |
NOC:Waves and Oscillations |
Lecture 15 - Forced Oscillator : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 16 - Coupled Oscillations - Part 1 |
Link |
NOC:Waves and Oscillations |
Lecture 17 - Coupled Oscillations - Part 2 |
Link |
NOC:Waves and Oscillations |
Lecture 18 - Solving for normal modes |
Link |
NOC:Waves and Oscillations |
Lecture 19 - Coupled oscillations - More examples |
Link |
NOC:Waves and Oscillations |
Lecture 20 - Coupled oscillator : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 21 - Coupled Oscillations of Loaded String |
Link |
NOC:Waves and Oscillations |
Lecture 22 - Solutions for Loaded String |
Link |
NOC:Waves and Oscillations |
Lecture 23 - Oscillations of Loaded String |
Link |
NOC:Waves and Oscillations |
Lecture 24 - Continuum Limit of Loaded String |
Link |
NOC:Waves and Oscillations |
Lecture 25 - Wave equation and its solutions |
Link |
NOC:Waves and Oscillations |
Lecture 26 - Wave equation - impedance and velocities |
Link |
NOC:Waves and Oscillations |
Lecture 27 - Standing waves |
Link |
NOC:Waves and Oscillations |
Lecture 28 - Transverse waves in periodic structures |
Link |
NOC:Waves and Oscillations |
Lecture 29 - Wave equation : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 30 - Reflection and transmission of waves |
Link |
NOC:Waves and Oscillations |
Lecture 31 - Impedance matching |
Link |
NOC:Waves and Oscillations |
Lecture 32 - Energy of vibrating string |
Link |
NOC:Waves and Oscillations |
Lecture 33 - Dispersion of waves |
Link |
NOC:Waves and Oscillations |
Lecture 34 - Bandwidth theorem and problems |
Link |
NOC:Waves and Oscillations |
Lecture 35 - Longitudnal Waves and Speed of Sound |
Link |
NOC:Waves and Oscillations |
Lecture 36 - Longitudnal Standing Waves |
Link |
NOC:Waves and Oscillations |
Lecture 37 - Sound Intensity |
Link |
NOC:Waves and Oscillations |
Lecture 38 - Longitudnal Waves: Problems |
Link |
NOC:Waves and Oscillations |
Lecture 39 - Fourier Series - Part 1 |
Link |
NOC:Waves and Oscillations |
Lecture 40 - Fourier Series - Part 2 |
Link |
NOC:Waves and Oscillations |
Lecture 41 - Fourier Series and Energy of Vibrating String |
Link |
NOC:Waves and Oscillations |
Lecture 42 - Frequency Spectrum and Fourier Transforms |
Link |
NOC:Waves and Oscillations |
Lecture 43 - Fourier Series : Problems |
Link |
NOC:Waves and Oscillations |
Lecture 44 - Waves in Optical Systems |
Link |
NOC:Waves and Oscillations |
Lecture 45 - Waves in Optical Systems: Applying Fermat's Principle |
Link |
NOC:Waves and Oscillations |
Lecture 46 - Waves in Optical Systems: Thin Lens |
Link |
NOC:Waves and Oscillations |
Lecture 47 - Waves in Optical Systems: Matrix Method |
Link |
NOC:Waves and Oscillations |
Lecture 48 - Waves in Optical Systems: Problems |
Link |
NOC:Waves and Oscillations |
Lecture 49 - Interference: Part 1 |
Link |
NOC:Waves and Oscillations |
Lecture 50 - Interference: Newton's rings |
Link |
NOC:Waves and Oscillations |
Lecture 51 - Michelson and Fabry-Perot Interferometers |
Link |
NOC:Waves and Oscillations |
Lecture 52 - Young's Double Slit Experiment |
Link |
NOC:Waves and Oscillations |
Lecture 53 - Diffraction |
Link |
NOC:Waves and Oscillations |
Lecture 54 - Beyond Linear Oscillators: Non-linear Pendulum |
Link |
NOC:Waves and Oscillations |
Lecture 55 - Beyond Linear Oscillators: Forced Oscillator |
Link |
NOC:Waves and Oscillations |
Lecture 56 - Beyond Linear Oscillators: Chaotic Oscillator |
Link |
NOC:Waves and Oscillations |
Lecture 57 - Beyond Linear Waves: Solitary Waves |
Link |
NOC:Waves and Oscillations |
Lecture 58 - Waves in Quantum Mechanics and Summary |
Link |
NOC:Physics through Computational Thinking |
Lecture 1 - Introduction to Mathematica, Wolfram language and Wolfram Cloud |
Link |
NOC:Physics through Computational Thinking |
Lecture 2 - Technical Prelim 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 3 - Plotting Simple Functions |
Link |
NOC:Physics through Computational Thinking |
Lecture 4 - Function Behaviour near Extrema |
Link |
NOC:Physics through Computational Thinking |
Lecture 5 - Radicals and Logarithms |
Link |
NOC:Physics through Computational Thinking |
Lecture 6 - Properties of Functions |
Link |
NOC:Physics through Computational Thinking |
Lecture 7 - Vector Fields, Vector and Streamline Plots and Contour Plots |
Link |
NOC:Physics through Computational Thinking |
Lecture 8 - Introduction to Non-dimesionalisation |
Link |
NOC:Physics through Computational Thinking |
Lecture 9 - Non-dimensionalization and visual thinking |
Link |
NOC:Physics through Computational Thinking |
Lecture 10 - Non-dimensionalisation and Parametric Plot |
Link |
NOC:Physics through Computational Thinking |
Lecture 11 - Technical Prelim 2: Loops |
Link |
NOC:Physics through Computational Thinking |
Lecture 12 - Introduction to Simple Harmonic Oscillator |
Link |
NOC:Physics through Computational Thinking |
Lecture 13 - Simple Harmonic Oscillator with a spring mass system |
Link |
NOC:Physics through Computational Thinking |
Lecture 14 - More Examples of Simple Harmonic Oscillator |
Link |
NOC:Physics through Computational Thinking |
Lecture 15 - Anharmonic Oscillator |
Link |
NOC:Physics through Computational Thinking |
Lecture 16 - Introduction to Data Analysis - 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 17 - Introduction to Data Analysis - 2 |
Link |
NOC:Physics through Computational Thinking |
Lecture 18 - Curve fitting |
Link |
NOC:Physics through Computational Thinking |
Lecture 19 - Linear superposition of oscillations |
Link |
NOC:Physics through Computational Thinking |
Lecture 20 - Technical Prelim 3: Introduction to Calculus Tools |
Link |
NOC:Physics through Computational Thinking |
Lecture 21 - Damped Harminic Oscillator: LCR Circuit |
Link |
NOC:Physics through Computational Thinking |
Lecture 22 - Solving Initial Value Problem with Mathemtica |
Link |
NOC:Physics through Computational Thinking |
Lecture 23 - Damped Harmonic Oscillator: Spring-mass System with Friction |
Link |
NOC:Physics through Computational Thinking |
Lecture 24 - Technical Prelim 4: Manipulation of Lists using @, @@, /@ operators |
Link |
NOC:Physics through Computational Thinking |
Lecture 25 - Introduction to Euler's Method for Solving Differential Equation |
Link |
NOC:Physics through Computational Thinking |
Lecture 26 - Technical Prelim 5: Writing Custom Functions |
Link |
NOC:Physics through Computational Thinking |
Lecture 27 - Writing Euler's Method as a custom function |
Link |
NOC:Physics through Computational Thinking |
Lecture 28 - Mean Global Error in Euler's method and Application of Euler's method to damped oscillator |
Link |
NOC:Physics through Computational Thinking |
Lecture 29 - Improved Euler (RK2) and RK4 Methods for solving ODEs |
Link |
NOC:Physics through Computational Thinking |
Lecture 30 - Driven oscillations |
Link |
NOC:Physics through Computational Thinking |
Lecture 31 - Driven oscillations using the Improved Euler method |
Link |
NOC:Physics through Computational Thinking |
Lecture 32 - Falling Bodies |
Link |
NOC:Physics through Computational Thinking |
Lecture 33 - Escape velocity |
Link |
NOC:Physics through Computational Thinking |
Lecture 34 - Driven oscillations: Variations |
Link |
NOC:Physics through Computational Thinking |
Lecture 35 - Linear systems: Insights from the phase space picture - 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 36 - Linear systems: Insights from the phase space picture - 2 |
Link |
NOC:Physics through Computational Thinking |
Lecture 37 - Linearization - 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 38 - Linearization - 2 |
Link |
NOC:Physics through Computational Thinking |
Lecture 39 - The Monte Carlo Method - 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 40 - The Monte Carlo Method - 2 |
Link |
NOC:Physics through Computational Thinking |
Lecture 41 - The Monte Carlo Method - 3 |
Link |
NOC:Physics through Computational Thinking |
Lecture 42 - The Monte Carlo Method - 4 |
Link |
NOC:Physics through Computational Thinking |
Lecture 43 - The Monte Carlo Method - 5 |
Link |
NOC:Physics through Computational Thinking |
Lecture 44 - Random Walks - 1 |
Link |
NOC:Physics through Computational Thinking |
Lecture 45 - Random Walks - 2 |
Link |
NOC:Physics through Computational Thinking |
Lecture 46 - Random Walks - 3 |
Link |
NOC:Physics through Computational Thinking |
Lecture 47 - Random Walks - 4 |
Link |
NOC:Physics through Computational Thinking |
Lecture 48 - Random Walks - 5 |
Link |
NOC:Physics through Computational Thinking |
Lecture 49 - Random Walks - 6 |
Link |
NOC:Physics through Computational Thinking |
Lecture 50 - Random Walks - 7 |
Link |
NOC:Electromagnetism |
Lecture 1 - Vector algebra |
Link |
NOC:Electromagnetism |
Lecture 2 - Vector algebra in component form |
Link |
NOC:Electromagnetism |
Lecture 3 - Vector triple products |
Link |
NOC:Electromagnetism |
Lecture 4 - Vector differential calculus: Gradient |
Link |
NOC:Electromagnetism |
Lecture 5 - Divergence |
Link |
NOC:Electromagnetism |
Lecture 6 - Curl |
Link |
NOC:Electromagnetism |
Lecture 7 - Tutorial on differential vector calculus |
Link |
NOC:Electromagnetism |
Lecture 8 - More problems on vector differential calculus |
Link |
NOC:Electromagnetism |
Lecture 9 - Vector integral calculus: Line integral |
Link |
NOC:Electromagnetism |
Lecture 10 - Surface integral |
Link |
NOC:Electromagnetism |
Lecture 11 - Volume integral |
Link |
NOC:Electromagnetism |
Lecture 12 - Fundamental theorems of vector calculus: The gradient theorem |
Link |
NOC:Electromagnetism |
Lecture 13 - The divergence theorem (Gauss's theorem) |
Link |
NOC:Electromagnetism |
Lecture 14 - The curl theorem (Stokes' theorem) |
Link |
NOC:Electromagnetism |
Lecture 15 - Curvilinear coordinates: Cartesian vs. Polar |
Link |
NOC:Electromagnetism |
Lecture 16 - Generic curvilinear coordinate systems: Unit vectors and components |
Link |
NOC:Electromagnetism |
Lecture 17 - Differential vector calculus in curvilinear coordinate systems |
Link |
NOC:Electromagnetism |
Lecture 18 - Special curvilinear coordinate systems: Cylindrical and spherical |
Link |
NOC:Electromagnetism |
Lecture 19 - Vector calculus in spherical coordinate system |
Link |
NOC:Electromagnetism |
Lecture 20 - Vector calculus in cylindrical coordinate system |
Link |
NOC:Electromagnetism |
Lecture 21 - Introduction to Dirac delta function |
Link |
NOC:Electromagnetism |
Lecture 22 - Tutorial on vector calculus and curvilinear coordinates |
Link |
NOC:Electromagnetism |
Lecture 23 - Introduction to electrostatics |
Link |
NOC:Electromagnetism |
Lecture 24 - Continuous charge distribution: Line charge |
Link |
NOC:Electromagnetism |
Lecture 25 - Electric field due to a line charge distribution |
Link |
NOC:Electromagnetism |
Lecture 26 - Electric field lines, Flux, Gauss law |
Link |
NOC:Electromagnetism |
Lecture 27 - Application of Gauss law with cylindrical symmetry |
Link |
NOC:Electromagnetism |
Lecture 28 - Application of Gauss law on a flat 2D surface |
Link |
NOC:Electromagnetism |
Lecture 29 - Tutorial on Dirac delta function and electrostatics |
Link |
NOC:Electromagnetism |
Lecture 30 - Tutorial on electrostatics |
Link |
NOC:Electromagnetism |
Lecture 31 - The curl of an electric field |
Link |
NOC:Electromagnetism |
Lecture 32 - Scalar potential |
Link |
NOC:Electromagnetism |
Lecture 33 - Calculation of electric potential from different approaches |
Link |
NOC:Electromagnetism |
Lecture 34 - Boundary conditions on electric field and potential |
Link |
NOC:Electromagnetism |
Lecture 35 - Work and energy of an assembly of point charges |
Link |
NOC:Electromagnetism |
Lecture 36 - General idea of energy in electrostatics |
Link |
NOC:Electromagnetism |
Lecture 37 - Electrostatics with conductors |
Link |
NOC:Electromagnetism |
Lecture 38 - Capacitors |
Link |
NOC:Electromagnetism |
Lecture 39 - Laplace equation |
Link |
NOC:Electromagnetism |
Lecture 40 - Boundary conditions and the uniqueness theorems |
Link |
NOC:Electromagnetism |
Lecture 41 - The method of images |
Link |
NOC:Electromagnetism |
Lecture 42 - Induced charge |
Link |
NOC:Electromagnetism |
Lecture 43 - Force and energy |
Link |
NOC:Electromagnetism |
Lecture 44 - Another example of the method of images |
Link |
NOC:Electromagnetism |
Lecture 45 - Electric dipoles |
Link |
NOC:Electromagnetism |
Lecture 46 - Multipole expansion, continuous charge distriution, and assembly of point charges |
Link |
NOC:Electromagnetism |
Lecture 47 - Electric field due to a dipole |
Link |
NOC:Electromagnetism |
Lecture 48 - Introduction to electric polarization in matter |
Link |
NOC:Electromagnetism |
Lecture 49 - Electric polarization and bound charges |
Link |
NOC:Electromagnetism |
Lecture 50 - Electric displacement vector and Gauss law |
Link |
NOC:Electromagnetism |
Lecture 51 - Boundary conditions on the displacement vector and linear dielectric materials |
Link |
NOC:Electromagnetism |
Lecture 52 - Parallel plate capacitors |
Link |
NOC:Electromagnetism |
Lecture 53 - Energy in dielectric materials |
Link |
NOC:Electromagnetism |
Lecture 54 - Force on dielectric materials |
Link |
NOC:Electromagnetism |
Lecture 55 - Motion of a charged particle in electromagnetic field |
Link |
NOC:Electromagnetism |
Lecture 56 - Work done by a magnetic field |
Link |
NOC:Electromagnetism |
Lecture 57 - Electric current |
Link |
NOC:Electromagnetism |
Lecture 58 - Surface and volume current |
Link |
NOC:Electromagnetism |
Lecture 59 - Biot Savart law |
Link |
NOC:Electromagnetism |
Lecture 60 - Biot Savart law with surface and volume currents |
Link |
NOC:Electromagnetism |
Lecture 61 - A tutorial on currents and magnetic field |
Link |
NOC:Electromagnetism |
Lecture 62 - Straight line current: Curl of the magnetic field |
Link |
NOC:Electromagnetism |
Lecture 63 - Divergence and curl of a generic magnetic field |
Link |
NOC:Electromagnetism |
Lecture 64 - Ampere's law in integral form and its applications |
Link |
NOC:Electromagnetism |
Lecture 65 - Magnetic field in a long solenoid |
Link |
NOC:Electromagnetism |
Lecture 66 - A comparison between electrostatics nad magnetostatics |
Link |
NOC:Electromagnetism |
Lecture 67 - Magnetic vector potential |
Link |
NOC:Electromagnetism |
Lecture 68 - Tutorial on magnetic fields |
Link |
NOC:Electromagnetism |
Lecture 69 - Calculation of vector potential |
Link |
NOC:Electromagnetism |
Lecture 70 - Boundary conditions on magnetic field |
Link |
NOC:Electromagnetism |
Lecture 71 - Magnetic dipole |
Link |
NOC:Electromagnetism |
Lecture 72 - Multipole expansion of the vector potential |
Link |
NOC:Electromagnetism |
Lecture 73 - Magnetism, force and torque on magnetic dipole |
Link |
NOC:Electromagnetism |
Lecture 74 - Fringing magnetic field |
Link |
NOC:Electromagnetism |
Lecture 75 - Magnetization |
Link |
NOC:Electromagnetism |
Lecture 76 - A tutorial on the magnetic dipole moment |
Link |
NOC:Electromagnetism |
Lecture 77 - Ampere's law in magnetized materials |
Link |
NOC:Electromagnetism |
Lecture 78 - Electrodynamics |
Link |
NOC:Electromagnetism |
Lecture 79 - Electromagnetic induction |
Link |
NOC:Electromagnetism |
Lecture 80 - Laws of electromagnetism so far |
Link |
NOC:Electromagnetism |
Lecture 81 - Maxwell's correction to electromagnetism |
Link |
NOC:Electromagnetism |
Lecture 82 - Fictitious discussion about symmetry |
Link |
NOC:Electromagnetism |
Lecture 83 - Maxwell's equations in matter and the boundary conditions |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 1 - Introduction. Symmetries of space and time |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 2 - Generalized coordinates and degrees of freedom |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 3 - Virtual Work |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 4 - Virtual Work (rigid body) |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 5 - d'Alembert Principle |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 6 - Euler Lagrange Equation for a holonomic system |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 7 - Euler Lagrange Equations. Examples |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 8 - Euler Lagrange Equations. Examples (Continued...) |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 9 - Properties of Lagrangian |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 10 - Kinetic term in generalized coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 11 - Cyclic coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 12 - Conservation laws - Conservation of Energy |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 13 - Energy Function, Jacobi's Integral |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 14 - Momemtum conservation |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 15 - Matrices and all that |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 16 - Matrices, Forms, and all that |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 17 - Principal axis transformation |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 18 - Small Oscilaltions |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 19 - Oscillations, Normal Coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 20 - Oscillations, Triatomic molecule |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 21 - Triatomic molecule normal coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 22 - Coupled pendulums, normal modes |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 23 - Coupled pendulums, Beats |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 24 - Oscillations, General solution |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 25 - Forced oscillations |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 26 - Damped oscillations |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 27 - Forced Damped oscillations |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 28 - one dimensional systems |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 29 - Two-body problem |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 30 - Two-body problem, Kepler's second law |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 31 - Two-body problem, Kepler problem |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 32 - Two-body problem, Conic Sections in Polar Coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 33 - Two-body problem, Ellipse in polar coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 34 - Orbits in Kepler Problem |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 35 - Apsidal distances, eccentricity of orbits |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 36 - Kepler's Third law; Laplace-Runge-Lenz vector |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 37 - Rigid Body, degrees of freedom |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 38 - Rigid Body, Transfromation matrix |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 39 - Rigid Body, Euler Angles |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 40 - Parameterization using Euler Angles |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 41 - Rigid Body, Euler's Theorem |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 42 - General motion of a rigid body |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 43 - Moment of Inertia Tensor |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 44 - Principal Moments |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 45 - Langrangian of a rigid body |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 46 - Motion of a free symmetric top |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 47 - Angular velocity using Euler angles |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 48 - Lagrangian of a heavy symmetric top |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 49 - First integrals of a heavy symmetric top |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 50 - Nutation and Precission of a heavy symmetric top |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 51 - Sleeping Top |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 52 - Rotating Frames. Euler Equations |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 53 - Calculus of Variations: Functionals |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 54 - Method of Lagrange Multipliers |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 55 - Calculus of Variations: Condition for extremum |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 56 - Calculus of Variations: Several variables |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 57 - Cartesian Tensors |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 58 - Hamiltonian Mechanics: Hamilton's equations of motion |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 59 - Hamiltonian Mechanics: Liouville's theorem |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 60 - Hamiltonian Mechanics: Poisson Bracket |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 61 - Hamiltonian Mechanics: Canonical Coordinates |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 62 - Hamiltonian Mechanics: Generating Function of Canonical Transformations |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 63 - Hamiltonian Mechanics: Generating functions of the 4 kinds |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 64 - Examples of Generating Functions |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 65 - Harmonic Oscillator (Canonical Transformations) |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 66 - Invariance of Poisson Brackets |
Link |
NOC:Introduction to Classical Mechanics |
Lecture 67 - Normal modes of triatomic molecule using Mathematica |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 1 - Introduction to the course |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 2 - Continuum hypothesis, distribution function and stress-viscosity relation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 3 - Continuum hypothesis, distribution function and stress-viscosity relation - Recap |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 4 - Fluid Kinematics |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 5 - Fluid Kinematics - Recap |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 6 - Conservation laws: Mass conservation and incomprehensibility |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 7 - Conservation laws: Momentum conservation and Euler equation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 8 - Conservation laws - Recap |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 9 - Potential flows |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 10 - Bernoulli constant, its applications and voracity equation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 11 - Recap - Potential flows, Bernoulli constant and its applications |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 12 - Voracity dynamics -- Kelvin's voracity theorem and Magus effect |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 13 - Navier-Stokes equation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 14 - Navier-Stokes equation (Continued....) and energy equation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 15 - Energy equation in a conservative form |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 16 - Boundary conditions in Navier-Stokes equation, d'Alembert's paradox |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 17 - Poiseuille flow, deriving viscosity from microscopics |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 18 - Dimensionless numbers -- Mach number, Reynolds number |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 19 - DimDimensionless numbers (Continued...) -- plasma beta, magnetic Reynolds number, Alfven Mach number, Prandl numberensionless numbers -- Mach number, Reynolds number |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 20 - Reynolds number and dynamic similarity |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 21 - Reynolds number recap, Low Re flows, and drag on a sphere (Stokes law) |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 22 - High Re flows -- turbulent drag law, vortex shedding and drag crisis |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 23 - Lift on a body, introduction to compressible flows |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 24 - Compressible flows -- derivation of sound speed and dispersion relation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 25 - Subsonic and supersonic flows |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 26 - Propagation of sonic information, shock tube problem and piston problem |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 27 - Criterion for neglect of compressibility, method of characteristics |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 28 - Shock thickness |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 29 - Shock thickness recap, shock jump conditions |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 30 - Shock jump conditions (Continued...), transonic 1D flows, converging/diverging channels |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 31 - Coverging/diverging channels, de Laval nozzle and its application to astrophysical jets |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 32 - Spherically symmetric transonic flows |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 33 - Spherically symmetric transonic flows (Continued...) |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 34 - Solar wind : Parker's solution |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 35 - Solar wind : Modifications in Parker's solution |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 36 - Spherical accretion onto a compact object : Eddington luminosity and accretion rate |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 37 - Spherical accretion onto a compact object : Solutions for flow properties |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 38 - Spherical accretion (Continued...), disk accretion--Roche lobe overflow |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 39 - Disk accretion : Mass conservation and vertical hydrostatic equilibrium |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 40 - Disk accretion : Removal of angular momentum, Shakura-Sunyaev viscosity parameter |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 41 - Disk accretion : Viscous dissipation and the energy equation, two-temperature criterion |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 42 - Particle acceleration in astrophysical settings : Shocks and non-thermal energy distribution |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 43 - Particle acceleration in astrophysical settings : Diffusive shock acceleration |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 44 - Spherical blast waves : Bomb explosion and supernova explosion |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 45 - Spherical blast waves : Sedov-Taylor solution |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 46 - Spherical blast waves : Sedov-Taylor solution (Continued....) |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 47 - Magnetohydrodynamics (MHD) : Introduction |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 48 - Magnetohydrodynamics (MHD) : The induction equation |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 49 - Magnetohydrodynamics (MHD) : Currents in MHD, momentum equation and magnetic stress tensor |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 50 - Magnetohydrodynamics (MHD) : Magnetic stresses and magnetic buoyancy |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 51 - Magnetohydrodynamics (MHD) : Plasma beta, force-free fields and potential configurations |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 52 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 53 - Magnetohydrodynamics (MHD) : Magnetic flux-freezing (Continued....), magnetic dynamos |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 54 - Magnetohydrodynamics (MHD) : Dynamo theory |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 55 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 56 - Magnetohydrodynamics (MHD) : Waves in MHD - Alfven waves and magnetosonic waves |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 57 - Magnetohydrodynamics (MHD) : Waves in MHD - Magnetosonic waves |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 58 - Magnetohydrodynamics (MHD) : Shocks in MHD |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 59 - Magnetohydrodynamics (MHD) : Shocks in MHD - Shock jump conditions |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 60 - Non-ideal MHD : Introduction to magnetic reconnection |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 61 - Non-ideal MHD : Magnetic reconnection - The Sweet-Parker model |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 62 - Non-ideal MHD : Magnetic reconnection - The Petscheck model |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 63 - Sun's atmosphere : Solar corona and the coronal heating problem |
Link |
NOC:Fluid Dynamics for Astrophysics |
Lecture 64 - Solar eruptions : Coronal Mass Ejections (CMEs) and solar flares |
Link |
NOC:Quantum Transport |
Lecture 1 - Introduction |
Link |
NOC:Quantum Transport |
Lecture 2 - Classical and Semi-classical Transport: Overview |
Link |
NOC:Quantum Transport |
Lecture 3 - Quantum Transport Regimes |
Link |
NOC:Quantum Transport |
Lecture 4 - Band-bending and Metal semiconductor Interfaces |
Link |
NOC:Quantum Transport |
Lecture 5 - Semiconductor Heterostructures |
Link |
NOC:Quantum Transport |
Lecture 6 - 2DEG and Electrostatic Gating |
Link |
NOC:Quantum Transport |
Lecture 7 - Device Fabrication - Photolithography |
Link |
NOC:Quantum Transport |
Lecture 8 - Device Fabrication - Electron-beam Lithography |
Link |
NOC:Quantum Transport |
Lecture 9 - Quantum hall Effect - Overview |
Link |
NOC:Quantum Transport |
Lecture 10 - Quantum Hall Effect: Quantization of electron orbitals, Landau levels and Flux quantization |
Link |
NOC:Quantum Transport |
Lecture 11 - Quantum Hall Effect: Lanau level, filling factor and Shubnikov-de-Haas effect |
Link |
NOC:Quantum Transport |
Lecture 12 - Quantum Hall Effect: Edge states and Resistance Quantization |
Link |
NOC:Quantum Transport |
Lecture 13 - Weak Localization |
Link |
NOC:Quantum Transport |
Lecture 14 - Aharonov-Bohm Effect |
Link |
NOC:Quantum Transport |
Lecture 15 - Ballistic 1D transport-Quantum Point contacts |
Link |
NOC:Quantum Transport |
Lecture 16 - Ballistic 1D transport-Current from transmission |
Link |
NOC:Quantum Transport |
Lecture 17 - Ballistic 1D transport-Where is the power dissipation? |
Link |
NOC:Quantum Transport |
Lecture 18 - 0D Transport - Single Electron Tunneling |
Link |
NOC:Quantum Transport |
Lecture 19 - Single Electron Transistors, Coulomb Blockade |
Link |
NOC:Quantum Transport |
Lecture 20 - Quantum Dots, Shell filling, Artificial Atoms |
Link |
NOC:Quantum Transport |
Lecture 21 - Transport on Double Quantum Dots - I |
Link |
NOC:Quantum Transport |
Lecture 22 - Transport on Double Quantum Dots - II |
Link |
NOC:Quantum Transport |
Lecture 23 - Superconductivity-Introduction |
Link |
NOC:Quantum Transport |
Lecture 24 - Superconducting tunnel junctions-Josephson effect - 1 |
Link |
NOC:Quantum Transport |
Lecture 25 - Superconducting tunnel junctions-Josephson effect - 2 |
Link |
NOC:Quantum Transport |
Lecture 26 - Charge sensing with quantum point contacts |
Link |
NOC:Quantum Transport |
Lecture 27 - Charge sengin with single electron transistors |
Link |
NOC:Quantum Transport |
Lecture 28 - Real-time charge sensing |
Link |
NOC:Quantum Transport |
Lecture 29 - Quantum Electrical Metrology - I |
Link |
NOC:Quantum Transport |
Lecture 30 - Quantum Electrical Metrology - II |
Link |
NOC:Quantum Transport |
Lecture 31 - Qubits - Overview |
Link |
NOC:Quantum Transport |
Lecture 32 - Superconducting qubits |
Link |
NOC:Quantum Transport |
Lecture 33 - Quantum dot qubits |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 1 - Introduction to Thermodynamics |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 2 - Laws of Thermodynamics |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 3 - Second Law of Thermodynamics and Heat Engines |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 4 - Entropy, Clausius Inequality, Thermodynamic Processes and Systems |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 5 - Extensivity of Entropy and Internal Energy, Gibbs Duhem relation |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 6 - Exact and Inexact differentials, Legendre Transformation |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 7 - Free Energy in Thermodynamics |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 8 - Maxwell's relations - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 9 - Maxwell's relations - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 10 - Maxwell's relations - Part III |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 11 - Response Functions and manipulating Partial Derivatives |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 12 - Working With Thermodynamics |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 13 - Joule Expansion and Joule Thomson Effect |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 14 - Stability of Thermodynamic Potentials |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 15 - Consequences of Stability of Thermodynamic Potentials |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 16 - Conditions of Equilibrium and Gibbs Phase Rule |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 17 - Introduction to Probability |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 18 - Discrete and Continuous Distributions |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 19 - Central Limit Theorem and Statistical Entropy |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 20 - Classical Probability Density and Liouville Equation |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 21 - Classical Probability Density, Ergodicity and Microcanonical Ensemble |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 22 - Microcanonical Ensemble |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 23 - Examples of Microcanonical Ensemble - Two Level System |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 24 - Examples of Microcanonical Ensemble - Magnetic System and Ideal Gas - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 25 - Examples of Microcanonical Ensemble - Magnetic System and Ideal Gas - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 26 - Examples of Microcanonical Ensemble - Ultra-Relativistic Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 27 - Microcanonical Ultrarelativistic Gas and Quantum Solid |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 28 - Microcanonical Excluded Volume |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 29 - Canonical Ensemble |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 30 - Canonical Ensemble Paramagnet |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 31 - Canonical Ensemble Ideal Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 32 - Canonical Ensemble Einstein Solid |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 33 - Grand Canonical Ensemble |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 34 - Grand Canonical Ensemble Ideal Gas - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 35 - Grand Canonical Ensemble Ideal Gas - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 36 - MicroCanonical to Canonical - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 37 - MicroCanonical to Canonical - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 38 - Interacting System - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 39 - Interacting System - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 40 - Van-Der Waals Equation of State |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 41 - Quantum Statistical Mechanics Density Matrix |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 42 - Density Matrix in different Ensembles |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 43 - Free Particle Quantum Canonical Partition Function Free |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 44 - Single Particle Quantum Partition Function Harmonic Oscillator - Part I |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 45 - Single Particle Quantum Partition Function Harmonic Oscillator - Part II |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 46 - Wigner Transformation |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 47 - N-Particle partition function |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 48 - Canonical Formulation of Ideal Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 49 - Grand Canonical Formulation of Ideal Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 50 - High Temperature Expansion |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 51 - Degenerate Fermi Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 52 - Ideal Fermi Gas close to T=0, Chemical Potential and Specific Heat |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 53 - Relativistic Fermi Gas at T=0 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 54 - Ideal Bose Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 55 - Bose-Einstein Condensation |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 56 - Pressure of an Ideal Bose Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 57 - Specific Heat of an Ideal Bose Gas - Part 1 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 58 - Specific Heat of an Ideal Bose Gas - Part 2 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 59 - Bose-Einstein Condensation in a Harmonically Trapped Bose Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 60 - Specific Heat of a Harmonically Trapped Bose Gas |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 61 - General Treatment of a Bose gas - Part 1 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 62 - General Treatment of a Bose gas - Part 2 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 63 - Discontinuity in the Specific Heat of a Bose Gas - Part 1 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 64 - Discontinuity in the Specific Heat of a Bose Gas - Part 2 |
Link |
NOC:Statistical Mechanics (2021) |
Lecture 65 - Ultra Relativistic Bose Gas Stefan Boltzmann Law |
Link |
NOC:Solid State Physics (2021) |
Lecture 1 - What is solid? |
Link |
NOC:Solid State Physics (2021) |
Lecture 2 - Bravais lattice |
Link |
NOC:Solid State Physics (2021) |
Lecture 3 - Indexing of crystal planes |
Link |
NOC:Solid State Physics (2021) |
Lecture 4 - Simple crystal structures |
Link |
NOC:Solid State Physics (2021) |
Lecture 5 - Diffraction of waves by crystals |
Link |
NOC:Solid State Physics (2021) |
Lecture 6 - Fourier analysis of diffraction |
Link |
NOC:Solid State Physics (2021) |
Lecture 7 - Diffraction condition |
Link |
NOC:Solid State Physics (2021) |
Lecture 8 - Laue equations and Ewald construction |
Link |
NOC:Solid State Physics (2021) |
Lecture 9 - Introduction to Brillouin zone |
Link |
NOC:Solid State Physics (2021) |
Lecture 10 - Brillouin zones for bcc and fcc lattice |
Link |
NOC:Solid State Physics (2021) |
Lecture 11 - Fourier analysis of the basis and structure factor |
Link |
NOC:Solid State Physics (2021) |
Lecture 12 - Atomic form factor |
Link |
NOC:Solid State Physics (2021) |
Lecture 13 - Van der Waals attraction |
Link |
NOC:Solid State Physics (2021) |
Lecture 14 - Repulsive interaction |
Link |
NOC:Solid State Physics (2021) |
Lecture 15 - Equilibrium lattice constant and cohesive energy |
Link |
NOC:Solid State Physics (2021) |
Lecture 16 - Ionic crystals |
Link |
NOC:Solid State Physics (2021) |
Lecture 17 - Evaluation of the Madelungconstant |
Link |
NOC:Solid State Physics (2021) |
Lecture 18 - Covalent crystals: Linearcombination of atomic orbitals |
Link |
NOC:Solid State Physics (2021) |
Lecture 19 - Electron tunneling in covalentbonds |
Link |
NOC:Solid State Physics (2021) |
Lecture 20 - Metallic bonds |
Link |
NOC:Solid State Physics (2021) |
Lecture 21 - The Drude theory of metals |
Link |
NOC:Solid State Physics (2021) |
Lecture 22 - Hall effect and magnetoresistance |
Link |
NOC:Solid State Physics (2021) |
Lecture 23 - AC electrical conductivity |
Link |
NOC:Solid State Physics (2021) |
Lecture 24 - Thermal conductivity |
Link |
NOC:Solid State Physics (2021) |
Lecture 25 - Introduction to Sommerfeld theory - I |
Link |
NOC:Solid State Physics (2021) |
Lecture 26 - Introduction to Sommerfeld theory - II |
Link |
NOC:Solid State Physics (2021) |
Lecture 27 - Electronic states at finite temperature |
Link |
NOC:Solid State Physics (2021) |
Lecture 28 - Fermi-Dirac distribution |
Link |
NOC:Solid State Physics (2021) |
Lecture 29 - Thermal properties of the free electron gas |
Link |
NOC:Solid State Physics (2021) |
Lecture 30 - The Sommerfeld theory for conduction in metals |
Link |
NOC:Solid State Physics (2021) |
Lecture 31 - Thermal conductivity |
Link |
NOC:Solid State Physics (2021) |
Lecture 32 - One dimensional chain of atoms |
Link |
NOC:Solid State Physics (2021) |
Lecture 33 - One dimensional chain of atoms |
Link |
NOC:Solid State Physics (2021) |
Lecture 34 - Periodic boundary condition |
Link |
NOC:Solid State Physics (2021) |
Lecture 35 - Energy levels in periodic array of quantum wells |
Link |
NOC:Solid State Physics (2021) |
Lecture 36 - Tunneling of electrons |
Link |
NOC:Solid State Physics (2021) |
Lecture 37 - Reflection and transmission amplitudes and coefficients |
Link |
NOC:Solid State Physics (2021) |
Lecture 38 - Transfer matrix for a rectangular barrier |
Link |
NOC:Solid State Physics (2021) |
Lecture 39 - Electron tunneling through a periodic potential |
Link |
NOC:Solid State Physics (2021) |
Lecture 40 - The tight-binding approximation |
Link |
NOC:Solid State Physics (2021) |
Lecture 41 - Tridiagonal matrices and continued fraction |
Link |
NOC:Solid State Physics (2021) |
Lecture 42 - Plane-wave basis for nearly free electrons |
Link |
NOC:Solid State Physics (2021) |
Lecture 43 - Nearly free electron approximation |
Link |
NOC:Solid State Physics (2021) |
Lecture 44 - Dynamical aspects of electrons in band theory |
Link |
NOC:Solid State Physics (2021) |
Lecture 45 - Semiconductor crystals |
Link |
NOC:Solid State Physics (2021) |
Lecture 46 - Effective mass |
Link |
NOC:Solid State Physics (2021) |
Lecture 47 - Carrier concentration |
Link |
NOC:Solid State Physics (2021) |
Lecture 48 - Mobility, impurity conductivity, and Fermi surface |
Link |
NOC:Solid State Physics (2021) |
Lecture 49 - Vibration of crystals with monatomic basis |
Link |
NOC:Solid State Physics (2021) |
Lecture 50 - Analyzing the dispersion relation |
Link |
NOC:Solid State Physics (2021) |
Lecture 51 - Phonons with diatomic basis |
Link |
NOC:Solid State Physics (2021) |
Lecture 52 - Quantization of elastic waves |
Link |
NOC:Solid State Physics (2021) |
Lecture 53 - Phonon heat capacity |
Link |
NOC:Solid State Physics (2021) |
Lecture 54 - Phonon density of states |
Link |
NOC:Solid State Physics (2021) |
Lecture 55 - Introduction to diamagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 56 - Issues with the classical theory of diamagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 57 - Quantum theory of diamagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 58 - The quantum theory of paramagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 59 - Rare earth atoms, Hund's rule |
Link |
NOC:Solid State Physics (2021) |
Lecture 60 - Crystal field splitting |
Link |
NOC:Solid State Physics (2021) |
Lecture 61 - Quenching of orbital angular momentum |
Link |
NOC:Solid State Physics (2021) |
Lecture 62 - Paramagnetic susceptibility of conduction electrons |
Link |
NOC:Solid State Physics (2021) |
Lecture 63 - Ferromagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 64 - Antiferromagnetism and ferrimagnetism |
Link |
NOC:Solid State Physics (2021) |
Lecture 65 - Introduction to superconductivity |
Link |
NOC:Solid State Physics (2021) |
Lecture 66 - Thermodynamics of superconducting transition,London equation |
Link |
NOC:Solid State Physics (2021) |
Lecture 67 - BCS theory of superconductivity |
Link |
NOC:Solid State Physics (2021) |
Lecture 68 - Flux quantization in a superconducting ring |
Link |
NOC:Solid State Physics (2021) |
Lecture 69 - Single particle tunneling and Josephson effect |
Link |
NOC:Solid State Physics (2021) |
Lecture 70 - AC Josephson effect and microscopic quantum interference |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 1 - Quantum Filed Theory |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 2 - Quantizing Schrodinger Field |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 3 - Quantizing Schrodinger Field (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 4 - Symmetry and normalization of the states |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 5 - A multiparticle system of Bosons |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 6 - Klein-Gordon Equation |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 7 - Quantization of Klein-Gordon Theory |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 8 - Quantization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 9 - Quantization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 10 - Quantization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 11 - Quantization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 12 - Qunatization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 13 - Quantization of Klein-Gordon Theory (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 14 - Feynman propagator - 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 15 - Feynman propagator - 3 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 16 - Symmetries |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 17 - Lorentz transformations |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 18 - Lorentz transformations (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 19 - Lorentz Group |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 20 - Groups and Generators |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 21 - SU(3) Generators |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 22 - Representation of groups. Poincare group |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 23 - Poincare Algebra |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 24 - Symmetries in Classical Field Theories |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 25 - Symmetries (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 26 - Symmetries (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 27 - Symmetries (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 28 - Noether's theorem: The Proof |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 29 - Noether's theorem (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 30 - Momentum in KG Theory |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 31 - Noether Currents corresponding to Lorentz symmetry |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 32 - Conserved currents and charges due to Lorentz symmetry |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 33 - Conserved charges as symmetry generators |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 34 - Consequences of symmetry |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 35 - A boring world: Scattering in a free theory |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 36 - Phi-4 Theory |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 37 - Phi-4 Theory: Manipulating the ground state |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 38 - Phi-4 Theory: Interaction picture - 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 39 - Phi-4 Theory: Interaction picture - 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 40 - Phi-4 Theory: Interaction picture (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 41 - Phi-4 Theory: Interaction picture (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 42 - Wick's Theorem |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 43 - Wick's Theorem (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 44 - Feynman Diagrams |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 45 - Feynman Diagrams (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 46 - Momentum space Feynman rules for G(x1,..xN) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 47 - Feynman rules for G(p1,p2,,,,pN) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 48 - Feynman rules for G(p1,p2,,,,pN) (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 49 - Cancellation of Bubble diagrams |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 50 - Examples of Feynman Diagrams |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) |
Lecture 51 - Survery |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 1 - Scattering Matrix |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 2 - Scattering Matrix (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 3 - Scattering Matrix (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 4 - Creating single particle states - 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 5 - Creating single particle states - 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 6 - Annihilating single particle states |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 7 - Creating Multiparticle States |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 8 - LSZ reduction |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 9 - LSZ reduction (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 10 - S matrix |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 11 - S matrix (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 12 - S matrix (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 13 - Pole and residue of the propagator |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 14 - Kallen-Lehmann spectral representation |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 15 - Kallen-Lehmann spectral representation (Continued...) |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 16 - High Energy Experiment Setup - 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 17 - High Energy Experiment Setup - 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 18 - Scattering cross-section |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 19 - Differential cross-section |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 20 - 2-2 scattering cross-section |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 21 - Loop diagrams - 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 22 - Wick rotated Green's functions |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 23 - UV divergences - Part 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 24 - UV divergences - Part 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 25 - UV divergences - Part 3 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 26 - Explicit evalutation of Feynman integrals |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 27 - Few more Feynman integrals |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 28 - UV Singularity structure in dimensional regularization |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 29 - Renormalization - Part 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 30 - Renormalization - Part 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 31 - Renormalization - Part 3 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 32 - Renormalization - Part 4 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 33 - Renormalization - Part 5 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 34 - Renormalization Group Equation - 1 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 35 - Renormalization Group Equation - 2 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 36 - Renormalization Group Equation - 3 |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 37 - Solution of Callan Symanzik Equation |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 38 - UV and IR fixed points and Asymptotic Freedom |
Link |
NOC:Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2 |
Lecture 39 - Behaviour near fixed point |
Link |
NOC:Radio Astronomy |
Lecture 1 - Introduction to Radio Astronomy |
Link |
NOC:Radio Astronomy |
Lecture 2 - Review of Electromagnetism - Part 1 |
Link |
NOC:Radio Astronomy |
Lecture 3 - Review of Electromagnetism - Part 2 |
Link |
NOC:Radio Astronomy |
Lecture 4 - Radio Astronomy - Tutorial 1 |
Link |
NOC:Radio Astronomy |
Lecture 5 - Milestones in Radio Astronomy |
Link |
NOC:Radio Astronomy |
Lecture 6 - Radio Astronomy Fundamentals - Part 1 |
Link |
NOC:Radio Astronomy |
Lecture 7 - Radio Astronomy Fundamentals - Part 2 |
Link |
NOC:Radio Astronomy |
Lecture 8 - Radiative Transfer - Tutorial 1 |
Link |
NOC:Radio Astronomy |
Lecture 9 - Fundamentals of Antenna |
Link |
NOC:Radio Astronomy |
Lecture 10 - Fundamental of Antenna Theory - Part 1 |
Link |
NOC:Radio Astronomy |
Lecture 11 - Fundamental of Antenna Theory - Part 2 |
Link |
NOC:Radio Astronomy |
Lecture 12 - Fundamental of Antenna Theory - Part 3 |
Link |
NOC:Radio Astronomy |
Lecture 13 - Signal Processing and Receivers |
Link |
NOC:Radio Astronomy |
Lecture 14 - Signal Proceeding and Receivers - Part 2 |
Link |
NOC:Radio Astronomy |
Lecture 15 - Radio Telescopes |
Link |
NOC:Radio Astronomy |
Lecture 16 - Single Dish Observations |
Link |
NOC:Radio Astronomy |
Lecture 17 - Demonstration of Antenna Design and Simulation - Part 1 |
Link |
NOC:Radio Astronomy |
Lecture 18 - Demonstration Of Antenna Design and Simulation - Part 2 |
Link |
NOC:Radio Astronomy |
Lecture 19 - What Have we Learnt so Far? - A Review |
Link |
NOC:Radio Astronomy |
Lecture 20 - Demonstration of Antenna Design and Simulation - Part 3 |
Link |
NOC:Radio Astronomy |
Lecture 21 - Co-ordinate System |
Link |
NOC:Radio Astronomy |
Lecture 22 - Radio Interferometers |
Link |
NOC:Radio Astronomy |
Lecture 23 - Example Questions |
Link |
NOC:Radio Astronomy |
Lecture 24 - Python Crash Course |
Link |
NOC:Radio Astronomy |
Lecture 25 - Few Concepts with the help of python as a computational tool |
Link |
NOC:Radio Astronomy |
Lecture 26 - Live session |
Link |
NOC:Radio Astronomy |
Lecture 27 - Example Questions |
Link |
NOC:Radio Astronomy |
Lecture 28 - Radio Interferometry and Aperture Synthesis |
Link |
NOC:Radio Astronomy |
Lecture 29 - Introduction to CASA |
Link |
NOC:Radio Astronomy |
Lecture 30 - Examples |
Link |
NOC:Radio Astronomy |
Lecture 31 |
Link |
NOC:Radio Astronomy |
Lecture 32 |
Link |
NOC:Radio Astronomy |
Lecture 33 - Revision |
Link |
NOC:Radio Astronomy |
Lecture 34 - Revision |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 1 - Axiomatic Approach to Quantum Mechanics - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 2 - Axiomatic Approach to Quantum Mechanics - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 3 - Linear Vector Space |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 4 - Linear Operators - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 5 - Linear Operators - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 6 - Qubits: Introduction |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 7 - Qubits: State Tomography |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 8 - Qubits: Density Operators - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 9 - Qubits: Density Operators - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 10 - Qubits: Unitary Transformation |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 11 - Qubits: Bloch Sphere |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 12 - Composite Systems: Pure States, Schmidt Decomposition, Operators Acting on Composite Systems - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 13 - Composite Systems: Pure States, Schmidt Decomposition, Operators Acting on Composite Systems - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 14 - Composite Systems: Density Operators |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 15 - Quantum Maps: Positive Maps |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 16 - Quantum Maps: Completely Positive Maps - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 17 - Quantum Maps: Completely Positive Maps - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 18 - Measurements: Introduction |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 19 - Measurements: POVM |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 20 - Measurements: Optical Scheme for POVM |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 21 - Measurements: State Discrimination |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 22 - Measurements: Weak Measurements |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 23 - Entanglement: Introduction |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 24 - Entanglement Measures |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 25 - EPR Paradox and Bohr’s Argument, Bohm’s Argument and Mermin’s Argument - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 26 - EPR Paradox and Bohr’s Argument, Bohm’s Argument and Mermin’s Argument - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 27 - Hidden Variable Theory, Bell model, Bell Inequality, Bell CHSH Inequality |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 28 - Open Quantum Systems: Introduction - Part 1 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 29 - Open Quantum Systems: Introduction - Part 2 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 30 - Open Quantum Systems: Introduction - Part 3 |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 31 - Open Quantum Systems: Optical Master Equation, Thermalization |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 32 - Open Quantum Systems: Solving Master Equaitons |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 33 - Open Quantum Systems: Quantum Trajectory Aproach |
Link |
NOC:Foundations of Quantum Theory: Non-Relativistic Approach |
Lecture 34 - Open Quanutm Systems: Decoherence |
Link |
NOC:Fiber Optics |
Lecture 1 - Introduction |
Link |
NOC:Fiber Optics |
Lecture 2 - Need for Optical Communication |
Link |
NOC:Fiber Optics |
Lecture 3 - Salient Features of Optical Fiber - I |
Link |
NOC:Fiber Optics |
Lecture 4 - Salient Features of Optical Fiber - II |
Link |
NOC:Fiber Optics |
Lecture 5 - Optical Fiber Fabrication |
Link |
NOC:Fiber Optics |
Lecture 6 - Transmission Characteristics - I |
Link |
NOC:Fiber Optics |
Lecture 7 - Transmission Characteristics - II |
Link |
NOC:Fiber Optics |
Lecture 8 - Transmission Characteristics - III |
Link |
NOC:Fiber Optics |
Lecture 9 - Propagation in Infinitely Extended Dielectric |
Link |
NOC:Fiber Optics |
Lecture 10 - EM Waves in Dielectrics |
Link |
NOC:Fiber Optics |
Lecture 11 - Electromagnetic Analysis of Waveguides - I |
Link |
NOC:Fiber Optics |
Lecture 12 - Electromagnetic Analysis of Waveguides - II |
Link |
NOC:Fiber Optics |
Lecture 13 - Electromagnetic Analysis of Waveguides - III |
Link |
NOC:Fiber Optics |
Lecture 14 - Electromagnetic Analysis of Waveguides - IV |
Link |
NOC:Fiber Optics |
Lecture 15 - Electromagnetic Analysis of Waveguides - V |
Link |
NOC:Fiber Optics |
Lecture 16 - Electromagnetic Analysis of Waveguides - VI |
Link |
NOC:Fiber Optics |
Lecture 17 - Electromagnetic Analysis of Waveguides - VII |
Link |
NOC:Fiber Optics |
Lecture 18 - Electromagnetic Analysis of Waveguides - VIII |
Link |
NOC:Fiber Optics |
Lecture 19 - Optical Fiber Waveguide - I |
Link |
NOC:Fiber Optics |
Lecture 20 - Optical Fiber Waveguide - II |
Link |
NOC:Fiber Optics |
Lecture 21 - Optical Fiber Waveguide - III |
Link |
NOC:Fiber Optics |
Lecture 22 - Optical Fiber Waveguide - IV |
Link |
NOC:Fiber Optics |
Lecture 23 - Optical Fiber Waveguide - V |
Link |
NOC:Fiber Optics |
Lecture 24 - Splice Loss |
Link |
NOC:Fiber Optics |
Lecture 25 - Waveguide Dispersion - I |
Link |
NOC:Fiber Optics |
Lecture 26 - Waveguide Dispersion - II |
Link |
NOC:Fiber Optics |
Lecture 27 - Recap: Propagation Characteristics |
Link |
NOC:Fiber Optics |
Lecture 28 - Optical Fiber Components and Devices - I |
Link |
NOC:Fiber Optics |
Lecture 29 - Optical Fiber Components and Devices - II |
Link |
NOC:Fiber Optics |
Lecture 30 - Optical Fiber Components and Devices - III |
Link |
NOC:Fiber Optics |
Lecture 31 - Optical Fiber Components and Devices - IV |
Link |
NOC:Fiber Optics |
Lecture 32 - Optical Fiber Components and Devices - V |
Link |
NOC:Fiber Optics |
Lecture 33 - Optical Sources and Detectors - I |
Link |
NOC:Fiber Optics |
Lecture 34 - Optical Sources and Detectors - II |
Link |
NOC:Fiber Optics |
Lecture 35 - Optical Sources and Detectors - III |
Link |
NOC:Fiber Optics |
Lecture 36 - Optical Sources and Detectors - IV |
Link |
NOC:Fiber Optics |
Lecture 37 - Optical Sources and Detectors - V |
Link |
NOC:Fiber Optics |
Lecture 38 - System Design Aspects |
Link |
NOC:Fiber Optics |
Lecture 39 - Optical Fiber Measurements |
Link |
NOC:Fiber Optics |
Lecture 40 - Summary and Recent Advances |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 1 - Energy and its Sources |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 2 - Introduction to Solar Energy |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 3 - Introduction of Quantum Mechanics in Solar Photovoltaics - I |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 4 - Introduction of Quantum Mechanics in Solar Photovoltaics - II |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 5 - Introduction of Quantum Mechanics in Solar Photovoltaics - III |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 6 - Band Theory |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 7 - Energy Band Diagram |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 8 - Charge Carrier Dynamics in Semiconductor |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 9 - P-N junction model and Diode working principle |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 10 - Current-Voltage Characteristics of Solar Cell |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 11 - Equivalent Circuits of Solar Cells, Fill Factor |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 12 - Fabrication Process of Semiconductor Grade Silicon |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 13 - Fabrication Process of Single crystalline Silicon |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 14 - Thin Film deposition Techniques |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 15 - Thin Film Solar Cells: Amorphous Silicon |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 16 - Photo Physics of Dye Sensitized Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 17 - Fabrication of Dye Sensitized Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 18 - Design of Novel dyes |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 19 - Design of Electrolytes |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 20 - Quantum Dot Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 21 - Fabrication of Organic Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 22 - Physics of Bulk Hetero Junction (BHJ) Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 23 - Photo Physics of Organic Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 24 - Morphology Optimization of Organic Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 25 - Perovskite Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 26 - Fabrication of Perovskite Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 27 - Photo Physics of Perovskite Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 28 - Stability in Perovskite Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 29 - Morphology Optimization of Perovskite Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 30 - Perovskite Single Crystal Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 31 - Photophysics in Perovskite Single Crystal Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 32 - Applicationss of Perovskite Single Crystal Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 33 - Organic Nano Particles Based Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 34 - Morphology Optimization in Organic Nanoparticle Based Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 35 - Multijunction Tandem Solar Cells |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 36 - Introduction to Characterization Techniques |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 37 - Vacuum Technology in Solar Photovoltaics |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 38 - Introduction of Pressure Gauges |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 39 - Electron Microscopy in Solar Photovoltaics |
Link |
NOC:Solar Photovoltaics Fundamentals, Technology and Applications |
Lecture 40 - Impedance Spectroscopy |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 1 - An Introduction to the Earth's Atmosphere and Source of Energy - The Sun |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 2 - Primary Source of Energy on the Earth - The Sun |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 3 - Evolution of the Earth's Atmosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 4 - Earth's Second Atmosphere and Rise of Oxygen |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 5 - Atmosphere of Other Planets in Solar System |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 6 - Structure of Earth's Atmosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 7 - Vertical Structure of Atmosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 8 - Characterization of Atmosphere Based on Electrical Properties |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 9 - Coupling of Solar Radiation with the Earth's Atmosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 10 - Forces and Their Classifications |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 11 - Forces - Gravitational Force |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 12 - Forces - Viscous Force |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 13 - Forces - Coriolis Force |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 14 - Coriolis Force and Curvature Effect |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 15 - Hydrostatic Equation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 16 - Hypsometric Equation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 17 - Atmospheric Thermodynamics |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 18 - Thermodynamics - Dry Air |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 19 - Thermodynamics - Moist Air |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 20 - Geopotential and Scale Height |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 21 - Specific Heats |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 22 - Air Parcel and Potential Temperature |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 23 - Moisture Parameters |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 24 - Saturation Mixing Ratio and Relative Humidity |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 25 - Pseudo-Adiabatic Processes |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 26 - Convection of Air |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 27 - Atmospheric Stability and Cloud Formation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 28 - Cloud Formation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 29 - Cloud Formation and Lifting |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 30 - Cloud Morphology |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 31 - Secondary Cloud Classification and Fog |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 32 - Atmospheric Stability |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 33 - Atmospheric Stability Conditions |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 34 - Stable Unstable and Neutral Atmosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 35 - Cloud Seeding and Precipitation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 36 - Measuring Precipitation |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 37 - Droplet Growth and Curvature Effect |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 38 - Droplet Growth and Solute Effect |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 39 - Radial Growth of Droplets by Diffusion |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 40 - Radial Growth of Droplets by Diffusion (Continued...) |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 41 - Ionospheric Layers and Photochemistry |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 42 - Ionization Processes |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 43 - Ionospheric Chemical Reactions and Layers |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 44 - Chapman's Theory of Layer Production |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 45 - Chapman's Theory of Layer Production (Continued...) |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 46 - Chapman's Alpha Layer |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 47 - Hydrogen in Ionosphere |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 48 - Debye's Shielding |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 49 - Debye's Shielding and Debye's Potential |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 50 - Debye's Potential (Continued...) |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 51 - Particle Motion in Uniform Electric Field |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 52 - Particle Motion in Uniform Magnetic Field |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 53 - Particle Motion in Uniform Magnetic Field and Guiding Center |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 54 - Particle Motion in Uniform Electric and Magnetic Fields |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 55 - Gradient Magnetic Field |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 56 - Gradient Drift and Curvature Drift |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 57 - Vacuum Drift and Planetary Ring Current |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 58 - Magnetic Mirroring |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 59 - Magnetic Mirroring and Loss Cone |
Link |
NOC:Introduction to Atmospheric and Space Sciences |
Lecture 60 - Airglow and Aurora |
Link |
NOC:Optical Sensors |
Lecture 1 - Introduction |
Link |
NOC:Optical Sensors |
Lecture 2 - Sensor Fabrication and Characterization |
Link |
NOC:Optical Sensors |
Lecture 3 - Basic Optics for Optical Sensing - I |
Link |
NOC:Optical Sensors |
Lecture 4 - Basic Optics for Optical Sensing - II |
Link |
NOC:Optical Sensors |
Lecture 5 - Basic Optics for Optical Sensing - III |
Link |
NOC:Optical Sensors |
Lecture 6 - Basic Optics for Optical Sensing - IV |
Link |
NOC:Optical Sensors |
Lecture 7 - Basic Optics for Optical Sensing - V |
Link |
NOC:Optical Sensors |
Lecture 8 - Basic Optics for Optical Sensing - VI |
Link |
NOC:Optical Sensors |
Lecture 9 - Basic Optics for Optical Sensing - VII |
Link |
NOC:Optical Sensors |
Lecture 10 - Plasmons - I |
Link |
NOC:Optical Sensors |
Lecture 11 - Plasmons - II |
Link |
NOC:Optical Sensors |
Lecture 12 - Plasmons - III |
Link |
NOC:Optical Sensors |
Lecture 13 - Plasmons - IV |
Link |
NOC:Optical Sensors |
Lecture 14 - Plasmons - V |
Link |
NOC:Optical Sensors |
Lecture 15 - Plasmons - VI |
Link |
NOC:Optical Sensors |
Lecture 16 - Multiple Optical Sensors of Different Mechanisms |
Link |
NOC:Optical Sensors |
Lecture 17 - Interference based Sensors |
Link |
NOC:Optical Sensors |
Lecture 18 - Interference, Diffraction and Optical Fiber Sensors |
Link |
NOC:Optical Sensors |
Lecture 19 - Review of Biomaterial Optics |
Link |
NOC:Optical Sensors |
Lecture 20 - Terahertz Based Detection and Circular Dichroism |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 1 - Atmospheric Forces and Dynamics - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 2 - Atmospheric Forces and Dynamics - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 3 - Total Derivative (Introduction) |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 4 - Total Derivative of a Vector in a Rotating Frame of Reference |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 5 - Momentum Equations and its Vectorial Form in Spherical Polar Coordinates - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 6 - Momentum Equations and its Vectorial Form in Spherical Polar Coordinates - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 7 - Momentum Equations and its Vectorial Form in Spherical Polar Coordinates - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 8 - Total Derivative and Lagrangian |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 9 - Continuity Equation: Eulerian |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 10 - Energy Equations - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 11 - Energy Equations - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 12 - Scaling analysis - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 13 - Scaling analysis - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 14 - Scaling Analysis of Governing Equations - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 15 - Scaling Analysis of Governing Equations - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 16 - Scaling Analysis - Part 3, A Tutorial |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 17 - Scaling Analysis - Part 4, A Tutorial |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 18 - Introduction of Atmospheric Waves - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 19 - Introduction of Atmospheric Waves - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 20 - Problems based on Total Derivative - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 21 - Problems based on Total Derivative - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 22 - Shallow Water Gravity Waves - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 23 - Shallow Water Gravity Waves - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 24 - Acoustic Waves |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 25 - Internal Gravity Waves - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 26 - Internal Gravity Waves - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 27 - Internal Gravity Waves - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 28 - Pressure as a vertical coordinate - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 29 - Pressure as a vertical coordinate - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 30 - Pressure as a vertical coordinate - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 31 - General circulation and global winds |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 32 - Introduction to different types of Fronts |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 33 - Geostrophic winds |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 34 - Natural coordinate and Inertial flows |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 35 - Cyclostrophic winds and Rossby number |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 36 - Gradient winds |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 37 - Thermal winds |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 38 - Problems on thermal winds |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 39 - Ionosphere introduction (Basics)- Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 40 - Ionosphere introduction (Different layers) - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 41 - Ionosphere introduction (Photochemistry) - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 42 - Ionosphere introduction (Recombination) - Part 4 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 43 - Composite F layer - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 44 - Composite F layer - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 45 - Composite F layer H/He ions - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 46 - The Sun - Earth Energetics and Aurora |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 47 - Airglows and Aurora |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 48 - Sun's magnetic field, Formation of Aurora, and Solar cycle |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 49 - Sun's internal structure, Prominences |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 50 - Solar wind - Magnetosphere interactions |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 51 - Solar wind interactions with different planets |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 52 - Solar wind properties and its interaction with different planets |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 53 - Static Model of Corona |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 54 - Parker's Theory of Solar Wind Acceleration - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 55 - Parker's Theory of Solar Wind Acceleration - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 56 - Parker's Theory of Solar Wind Acceleration - Part 3 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 57 - Parker's Theory of Solar Wind Acceleration - Part 4 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 58 - Introduction to Space Weather - Part 1 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 59 - Introduction to Space Weather - Part 2 |
Link |
NOC:Advanced Atmospheric Physics |
Lecture 60 - Introduction to Space Weather - Part 3 |
Link |
NOC:Nuclear Astrophysics |
Lecture 1 - Historical Background, Observational Astronomy, Properties of Sun and of Stars |
Link |
NOC:Nuclear Astrophysics |
Lecture 2 - Properties of Galaxies and Universe |
Link |
NOC:Nuclear Astrophysics |
Lecture 3 - Background of elemental abundance curve |
Link |
NOC:Nuclear Astrophysics |
Lecture 4 - Evidences of Nucleosynthesis - I |
Link |
NOC:Nuclear Astrophysics |
Lecture 5 - Evidences of Nucleosynthesis - II |
Link |
NOC:Nuclear Astrophysics |
Lecture 6 - Evidences of Nucleosynthesis - III and Mass gaps |
Link |
NOC:Nuclear Astrophysics |
Lecture 7 - H-R Diagram |
Link |
NOC:Nuclear Astrophysics |
Lecture 8 - M-L relation, Hubble’s Law and Echo of Big Bang |
Link |
NOC:Nuclear Astrophysics |
Lecture 9 - Thermonuclear reactions and Reaction cross-section |
Link |
NOC:Nuclear Astrophysics |
Lecture 10 - Reaction rate |
Link |
NOC:Nuclear Astrophysics |
Lecture 11 - Reaction rate and Neutron induced reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 12 - Gamma induced reactions and Inverse reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 13 - Inverse reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 14 - Inverse reactions and Mean life time of a nuclei |
Link |
NOC:Nuclear Astrophysics |
Lecture 15 - Mean life time of a nuclei and Time dependent abundance evolution |
Link |
NOC:Nuclear Astrophysics |
Lecture 16 - Non-resonant charged particle induced reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 17 - Astrophysical S-factor and Non-resonant charged particle induced reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 18 - Gamow peak and Electron screening effect |
Link |
NOC:Nuclear Astrophysics |
Lecture 19 - Resonant reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 20 - Resonant reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 21 - Neutron induced non-resonant reactions |
Link |
NOC:Nuclear Astrophysics |
Lecture 22 - Burning stages of stars and Hydrogen burning |
Link |
NOC:Nuclear Astrophysics |
Lecture 23 - pp chain |
Link |
NOC:Nuclear Astrophysics |
Lecture 24 - pp chain and CN cycle |
Link |
NOC:Nuclear Astrophysics |
Lecture 25 - CNO cycle, Shell model and Gamma decay |
Link |
NOC:Nuclear Astrophysics |
Lecture 26 - Formation of 12C |
Link |
NOC:Nuclear Astrophysics |
Lecture 27 - Survival of 12C |
Link |
NOC:Nuclear Astrophysics |
Lecture 28 - Carbon, Neon, Oxygen and Silicon burning |
Link |
NOC:Nuclear Astrophysics |
Lecture 29 - Nucleosynthesis beyond Iron |
Link |
NOC:Nuclear Astrophysics |
Lecture 30 - s-, r- and p-process |
Link |
NOC:Nuclear Astrophysics |
Lecture 31 - Charged particle and Neutron beams |
Link |
NOC:Nuclear Astrophysics |
Lecture 32 - Accelerators and Targets |
Link |
NOC:Nuclear Astrophysics |
Lecture 33 - Backing materials and Target preparation |
Link |
NOC:Nuclear Astrophysics |
Lecture 34 - Contaminants and Radiation sources |
Link |
NOC:Nuclear Astrophysics |
Lecture 35 - Detectors - I |
Link |
NOC:Nuclear Astrophysics |
Lecture 36 - Detectors - II |
Link |
NOC:Nuclear Astrophysics |
Lecture 37 - Activity method |
Link |
NOC:Nuclear Astrophysics |
Lecture 38 - Kinematics - I |
Link |
NOC:Nuclear Astrophysics |
Lecture 39 - Kinematics - II |
Link |
NOC:Nuclear Astrophysics |
Lecture 40 - Time of flight method and Indirect methods |
Link |
NOC:Applied Optics |
Lecture 1 - Course Overview |
Link |
NOC:Applied Optics |
Lecture 2 - Introduction to Geometrical Optics |
Link |
NOC:Applied Optics |
Lecture 3 - Ray Theory, Fermat's Principle |
Link |
NOC:Applied Optics |
Lecture 4 - Refraction from Single Interface |
Link |
NOC:Applied Optics |
Lecture 5 - Refraction from double interface |
Link |
NOC:Applied Optics |
Lecture 6 - Matrix method in paraxial optics - I |
Link |
NOC:Applied Optics |
Lecture 7 - Matrix Method in Paraxial Optics - II |
Link |
NOC:Applied Optics |
Lecture 8 - Thick and Thin Lenses, Unit Planes |
Link |
NOC:Applied Optics |
Lecture 9 - Nodal Planes, System of Thin Lenses |
Link |
NOC:Applied Optics |
Lecture 10 - Problems on Geometrical Optics |
Link |
NOC:Applied Optics |
Lecture 11 - Concept of Wavefront, Huygens Principle - I |
Link |
NOC:Applied Optics |
Lecture 12 - Concept of Wavefront, Huygens Principle - II |
Link |
NOC:Applied Optics |
Lecture 13 - Superposition of Waves |
Link |
NOC:Applied Optics |
Lecture 14 - Introduction to Polarization, Linear and Circular Polarization |
Link |
NOC:Applied Optics |
Lecture 15 - Elliptical Polarization |
Link |
NOC:Applied Optics |
Lecture 16 - Interference of Light Waves, Interference of Polarized Light - I |
Link |
NOC:Applied Optics |
Lecture 17 - Interference of Light Waves, Interference of Polarized Light - II |
Link |
NOC:Applied Optics |
Lecture 18 - Young's Double Slit Experiment - I |
Link |
NOC:Applied Optics |
Lecture 19 - Young's Double Slit Experiment - II |
Link |
NOC:Applied Optics |
Lecture 20 - Interference with White Light, Displacement of Fringes, Fresnel's Biprism |
Link |
NOC:Applied Optics |
Lecture 21 - Interference by Division of Amplitude |
Link |
NOC:Applied Optics |
Lecture 22 - Thin Parallel Films, Wedge Shaped Films |
Link |
NOC:Applied Optics |
Lecture 23 - Newton's Rings |
Link |
NOC:Applied Optics |
Lecture 24 - Michelson Interferometer and Its Applications - I |
Link |
NOC:Applied Optics |
Lecture 25 - Michelson Interferometer and Its Applications - II |
Link |
NOC:Applied Optics |
Lecture 26 - Multiple Beam Interference |
Link |
NOC:Applied Optics |
Lecture 27 - Fabry-Perot Interferometer and Etalon - I |
Link |
NOC:Applied Optics |
Lecture 28 - Fabry-Perot Interferometer and Etalon - II |
Link |
NOC:Applied Optics |
Lecture 29 - Concept of Coherence - I |
Link |
NOC:Applied Optics |
Lecture 30 - Concept of Coherence - II |
Link |
NOC:Applied Optics |
Lecture 31 - Introduction to Diffraction |
Link |
NOC:Applied Optics |
Lecture 32 - Fraunhofer Diffraction |
Link |
NOC:Applied Optics |
Lecture 33 - Single Slit Diffraction |
Link |
NOC:Applied Optics |
Lecture 34 - Double Slit Diffraction |
Link |
NOC:Applied Optics |
Lecture 35 - Multiple Slit Diffraction |
Link |
NOC:Applied Optics |
Lecture 36 - Diffraction at a Rectangular Aperture |
Link |
NOC:Applied Optics |
Lecture 37 - Diffraction at a Circular Aperture |
Link |
NOC:Applied Optics |
Lecture 38 - Diffraction Grating |
Link |
NOC:Applied Optics |
Lecture 39 - Grating Spectrum and Resolving Power |
Link |
NOC:Applied Optics |
Lecture 40 - Fresnel Diffraction |
Link |
NOC:Applied Optics |
Lecture 41 - Fresnel Half Period Zones |
Link |
NOC:Applied Optics |
Lecture 42 - Vibration Curve |
Link |
NOC:Applied Optics |
Lecture 43 - Circular Obstacle, Zone Plates |
Link |
NOC:Applied Optics |
Lecture 44 - Rectangular Aperture |
Link |
NOC:Applied Optics |
Lecture 45 - Diffraction of a Plane Wave by a Long Narrow Slit |
Link |
NOC:Applied Optics |
Lecture 46 - Brewster's Law, Malus' Law |
Link |
NOC:Applied Optics |
Lecture 47 - Phenomenon of Double Refraction |
Link |
NOC:Applied Optics |
Lecture 48 - Normal and Oblique Incidence |
Link |
NOC:Applied Optics |
Lecture 49 - Production of Polarized Light |
Link |
NOC:Applied Optics |
Lecture 50 - Quarter and Half Wave Plates |
Link |
NOC:Applied Optics |
Lecture 51 - Analysis of Polarized Light and Optical Activity |
Link |
NOC:Applied Optics |
Lecture 52 - Plane Wave Propagation in Anisotropic Media - I |
Link |
NOC:Applied Optics |
Lecture 53 - Plane Wave Propagation in Anisotropic Media - II |
Link |
NOC:Applied Optics |
Lecture 54 - Antireflecting Coating |
Link |
NOC:Applied Optics |
Lecture 55 - Basic Concepts of Holography - I |
Link |
NOC:Applied Optics |
Lecture 56 - Basic Concepts of Holography - II |
Link |
NOC:Applied Optics |
Lecture 57 - Basic Concepts and Ray Optics Consideration of Optical Fiber |
Link |
NOC:Applied Optics |
Lecture 58 - Introduction to Lasers - I |
Link |
NOC:Applied Optics |
Lecture 59 - Introduction to Lasers - II |
Link |
NOC:Applied Optics |
Lecture 60 - Trifle |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 1 - Scalars vectors, and tensors - basic definitions |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 2 - Scalars, vectors and tensors - most general definition |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 3 - Elementary vector algebra - I (unit vector, dot product) |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 4 - Elementary vector algebra - II (cross product, triple product) |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 5 - Review of Newton’s laws of motion - tools for analysis |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 6 - Newton’s laws of motion - third and second law |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 7 - Newton’s laws of motion - first law |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 8 - Solving mechanics problems - how to draw free body diagram correctly |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 9 - Mechanical equilibrium (statics) using force and torque balance |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 10 - Mechanical equilibrium (statics) using force and torque balance - more examples |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 11 - Mechanical equilibrium of rope like structures, nature of tension force |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 12 - Massless, flexible suspension cable in mechanical equilibrium |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 13 - Massive flexible suspension cable in mechanical equilibrium |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 14 - Mechanical equilibrium of truss (framework) - nature of internal forces |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 15 - Mechanical equilibrium of truss (framework) - examples |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 16 - Mechanical equilibrium of truss - uniqueness of solution, beam with distributed load |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 17 - Mechanical equilibrium of truss - more on beam with distributed load |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 18 - Mechanical equilibrium - more examples, principle of virtual work, constrained motion |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 19 - Mechanical equilibrium: constraints, degrees of freedom, work done by constrained force |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 20 - d'Alembert - Lagrange principle of virtual work - statement and examples |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 21 - Equivalence of principles of force, torque balance and virtual work, stability analysis |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 22 - Mechanical equilibrium: stability analysis, energy diagram technique |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 23 - Friction between solids - Amonton-Coulomb laws, common misconceptions |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 24 - Friction between solids - worked out examples |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 25 - Friction between solid and fluid - drag force |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 26 - Friction examples - projectile motion with drag force, tying a rope |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 27 - Work-energy theorem in one dimension, importance of conservation laws |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 28 - Work-energy theorem in higher dimensions, conservative forces |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 29 - Momentum balance principle, critical review: projectile motion in real-life |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 30 - Projectile motion - effect of lift and thrust force by examples |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 31 - More on rocket motion - comparing effect of thrust in deep space and at lift off |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 32 - Collisions in daily life - application of energy and momentum balance principles |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 33 - Collision at micro-meter, atomic and sub-atomic scales - Brownian motion, Compton effect |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 34 - Concepts necessary for translation and rotation of rigid bodies - centre of mass |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 35 - Centre of mass of composite objects |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 36 - Concepts necessary for translation and rotation of rigid bodies - moment of inertia |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 37 - More on moment of inertia - 3D objects, composite objects, engineering applications |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 38 - Symmetry of mass distribution - product of inertia |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 39 - Determining the principal axes of rotation and moment of inertia about them |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 40 - Example of finding principal axes, introduction to rotation, the angular velocity vector |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 41 - Rotation of rigid bodies - the angular momentum vector |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 42 - Rotation of rigid bodies - torque |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 43 - Translation and rotation of rigid bodies - computing rules |
Link |
NOC:Newtonian Mechanics With Examples |
Lecture 44 - Translation and rotation of rigid bodies - examples (rolling, collision with rotation) |
Link |
NOC:Plasma Physics and Applications |
Lecture 1 - Introduction to Plasma - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 2 - Introduction to Plasma - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 3 - Plasma Oscillations |
Link |
NOC:Plasma Physics and Applications |
Lecture 4 - Debye Shielding |
Link |
NOC:Plasma Physics and Applications |
Lecture 5 - Debye Potential - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 6 - Debye Potential - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 7 - Debye Length and Plasma Criteria |
Link |
NOC:Plasma Physics and Applications |
Lecture 8 - More Aspects of Debye Shielding |
Link |
NOC:Plasma Physics and Applications |
Lecture 9 - Numerical Problems on Debye Shielding - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 10 - Plasma as a Gas and Distribution of Velocities |
Link |
NOC:Plasma Physics and Applications |
Lecture 11 - Numerical Problems on Debye Shielding - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 12 - Single-Particle Motion in Uniform Electric Field |
Link |
NOC:Plasma Physics and Applications |
Lecture 13 - Single-Particle Motion in Uniform Magnetic Field - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 14 - Single-Particle Motion in Uniform Magnetic Field - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 15 - Single-Particle Motion in Uniform Magnetic Field - III |
Link |
NOC:Plasma Physics and Applications |
Lecture 16 - Single-Particle Motion Under Uniform Magnetic field - IV |
Link |
NOC:Plasma Physics and Applications |
Lecture 17 - Motion in Perpendicular Electric and Magnetic fields - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 18 - Motion in Perpendicular Electric and Magnetic fields - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 19 - Gradient Drift |
Link |
NOC:Plasma Physics and Applications |
Lecture 20 - Gradient and Curvature Drifts |
Link |
NOC:Plasma Physics and Applications |
Lecture 21 - Vacuum Drift |
Link |
NOC:Plasma Physics and Applications |
Lecture 22 - Numerical Problems on Drifts |
Link |
NOC:Plasma Physics and Applications |
Lecture 23 - Magnetic Mirroring - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 24 - Magnetic Mirroring - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 25 - Magnetic Mirroring - III |
Link |
NOC:Plasma Physics and Applications |
Lecture 26 - Magnetic Mirroring - IV |
Link |
NOC:Plasma Physics and Applications |
Lecture 27 - Motion in Time Varying Magnetic Field - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 28 - Motion in Time Varying Magnetic Field - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 29 - Motion in Time Varying Electric field - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 30 - Motion in Time Varying Electric field - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 31 - Plasma as a Fluid: Equation of Continuity |
Link |
NOC:Plasma Physics and Applications |
Lecture 32 - Plasma as a Fluid: Fluid Equation - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 33 - Plasma as a Fluid: Fluid Equation - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 34 - Plasma as a fluid: Governing Equations |
Link |
NOC:Plasma Physics and Applications |
Lecture 35 - MHD Approximation - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 36 - MHD Approximation - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 37 - Plasma as a fluid: Electric and Magnetic Properties - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 38 - Plasma as a fluid: Electric and Magnetic Properties - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 39 - Plasma as a fluid: Fluid Drift - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 40 - Plasma as a fluid: Fluid Drift - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 41 - Magnetic Pressure |
Link |
NOC:Plasma Physics and Applications |
Lecture 42 - Wave in Plasma: Perturbation Theory |
Link |
NOC:Plasma Physics and Applications |
Lecture 43 - Wave in Plasma: Plasma Oscillation |
Link |
NOC:Plasma Physics and Applications |
Lecture 44 - Wave in Plasma: Dispersion Relation |
Link |
NOC:Plasma Physics and Applications |
Lecture 45 - Ion Acoustic Wave - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 46 - Ion Acoustic Wave - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 47 - Ion Acoustic Wave - III |
Link |
NOC:Plasma Physics and Applications |
Lecture 48 - Invalidity of Plasma Approximation - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 49 - Invalidity of Plasma Approximation - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 50 - Electromagnetic Waves in Plasma |
Link |
NOC:Plasma Physics and Applications |
Lecture 51 - Collisions and Diffusion in Plasma - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 52 - Collisions and Diffusion in Plasma - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 53 - Ambipolar Diffusion - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 54 - Ambipolar Diffusion - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 55 - Diffusion Equation |
Link |
NOC:Plasma Physics and Applications |
Lecture 56 - Diffusion in Presence of B - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 57 - Diffusion in Presence of B - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 58 - Instabilities in Plasma |
Link |
NOC:Plasma Physics and Applications |
Lecture 59 - Laser Produced Plasma and Pulsed Laser Deposited (PLD) Thin Film - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 60 - Laser Produced Plasma and Pulsed Laser Deposited (PLD) Thin Film - II |
Link |
NOC:Plasma Physics and Applications |
Lecture 61 - Surface Modification of Metallic Components by Plasma Nitriding - I |
Link |
NOC:Plasma Physics and Applications |
Lecture 62 - Surface Modification of Metallic Components by Plasma Nitriding - II |
Link |
Relativistic Quantum Mechanics |
Lecture 1 - Introduction, The Klein-Gordon equation |
Link |
Relativistic Quantum Mechanics |
Lecture 2 - Particles and antiparticles, Two component framework |
Link |
Relativistic Quantum Mechanics |
Lecture 3 - Coupling to electromagnetism, Solution of the Coulomb problem |
Link |
Relativistic Quantum Mechanics |
Lecture 4 - Bohr-Sommerfeld semiclassical solution of the Coulomb problem, The Dirac equation and the Clifford algebra |
Link |
Relativistic Quantum Mechanics |
Lecture 5 - Dirac matrices, Covariant form of the Dirac equation, Equations of motion, Spin, Free particle solutions |
Link |
Relativistic Quantum Mechanics |
Lecture 6 - Electromagnetic interactions, Gyromagnetic ratio |
Link |
Relativistic Quantum Mechanics |
Lecture 7 - The Hydrogen atom problem, Symmetries, Parity, Separation of variables |
Link |
Relativistic Quantum Mechanics |
Lecture 8 - The Frobenius method solution, Energy levels and wavefunctions |
Link |
Relativistic Quantum Mechanics |
Lecture 9 - Non-relativistic reduction, The Foldy-Wouthuysen transformation |
Link |
Relativistic Quantum Mechanics |
Lecture 10 - Interpretation of relativistic corrections, Reflection from a potential barrier |
Link |
Relativistic Quantum Mechanics |
Lecture 11 - The Klein paradox, Pair creation process and examples |
Link |
Relativistic Quantum Mechanics |
Lecture 12 - Zitterbewegung, Hole theory and antiparticles |
Link |
Relativistic Quantum Mechanics |
Lecture 13 - Charge conjugation symmetry, Chirality, Projection operators, The Weyl equation |
Link |
Relativistic Quantum Mechanics |
Lecture 14 - Weyl and Majorana representations of the Dirac equation, Unitary and antiunitary symmetries |
Link |
Relativistic Quantum Mechanics |
Lecture 15 - Time reversal symmetry, The PCT invariance |
Link |
Relativistic Quantum Mechanics |
Lecture 16 - Arrow of time and particle-antiparticle asymmetry, Band theory for graphene |
Link |
Relativistic Quantum Mechanics |
Lecture 17 - Dirac equation structure of low energy graphene states, Relativistic signatures in graphene properties |
Link |
Relativistic Quantum Mechanics |
Lecture 18 - Groups and symmetries, The Lorentz and Poincare groups |
Link |
Relativistic Quantum Mechanics |
Lecture 19 - Group representations, generators and algebra, Translations, rotations and boosts |
Link |
Relativistic Quantum Mechanics |
Lecture 20 - The spinor representation of SL(2,C), The spin-statistics theorem |
Link |
Relativistic Quantum Mechanics |
Lecture 21 - Finite dimensional representations of the Lorentz group, Euclidean and Galilean groups |
Link |
Relativistic Quantum Mechanics |
Lecture 22 - Classification of one particle states, The little group, Mass, spin and helicity |
Link |
Relativistic Quantum Mechanics |
Lecture 23 - Massive and massless one particle states |
Link |
Relativistic Quantum Mechanics |
Lecture 24 - P and T transformations, Lorentz covariance of spinors |
Link |
Relativistic Quantum Mechanics |
Lecture 25 - Lorentz group classification of Dirac operators, Orthogonality and completeness of Dirac spinors, Projection operators |
Link |
Relativistic Quantum Mechanics |
Lecture 26 - Propagator theory, Non-relativistic case and causality |
Link |
Relativistic Quantum Mechanics |
Lecture 27 - Relativistic case, Particle and antiparticle contributions, Feynman prescription and the propagator |
Link |
Relativistic Quantum Mechanics |
Lecture 28 - Interactions and formal perturbative theory, The S-matrix and Feynman diagrams |
Link |
Relativistic Quantum Mechanics |
Lecture 29 - Trace theorems for products of Dirac matrices |
Link |
Relativistic Quantum Mechanics |
Lecture 30 - Photons and the gauge symmetry |
Link |
Relativistic Quantum Mechanics |
Lecture 31 - Abelian local gauge symmetry, The covariant derivative and invariants |
Link |
Relativistic Quantum Mechanics |
Lecture 32 - Charge quantisation, Photon propagator, Current conservation and polarisations |
Link |
Relativistic Quantum Mechanics |
Lecture 33 - Feynman rules for Quantum Electrodynamics, Nature of perturbative expansion |
Link |
Relativistic Quantum Mechanics |
Lecture 34 - Dyson's analysis of the perturbation series, Singularities of the S-matrix, Elementary QED processes |
Link |
Relativistic Quantum Mechanics |
Lecture 35 - The T-matrix, Coulomb scattering |
Link |
Relativistic Quantum Mechanics |
Lecture 36 - Mott cross-section, Compton scattering |
Link |
Relativistic Quantum Mechanics |
Lecture 37 - Klein-Nishina result for cross-section |
Link |
Relativistic Quantum Mechanics |
Lecture 38 - Photon polarisation sums, Pair production through annihilation |
Link |
Relativistic Quantum Mechanics |
Lecture 39 - Unpolarised and polarised cross-sections |
Link |
Relativistic Quantum Mechanics |
Lecture 40 - Helicity properties, Bound state formation |
Link |
Relativistic Quantum Mechanics |
Lecture 41 - Bound state decay, Non-relativistic potentials |
Link |
Relativistic Quantum Mechanics |
Lecture 42 - Lagrangian formulation of QED, Divergences in Green's functions, Superficially divergent 1-loop diagrams and regularisation |
Link |
Relativistic Quantum Mechanics |
Lecture 43 - Infrared divergences due to massless particles, Renormalisation and finite physical results |
Link |
Relativistic Quantum Mechanics |
Lecture 44 - Symmetry constraints on Green's functions, Furry's theorem, Ward-Takahashi identity, Spontaneous breaking of gauge symmetry and superconductivity |
Link |
Relativistic Quantum Mechanics |
Lecture 45 - Status of QED, Organisation of perturbative expansion, Precision tests |
Link |
NOC:Control System Design |
Lecture 1 - Introduction |
Link |
NOC:Control System Design |
Lecture 2 - Linear Systems |
Link |
NOC:Control System Design |
Lecture 3 - Homogeneous linear time invariant ordinary differential equations |
Link |
NOC:Control System Design |
Lecture 4 - In-homogeneous linear time invariant ordinary differential equations |
Link |
NOC:Control System Design |
Lecture 5 - Fourier transforms - Part 1 |
Link |
NOC:Control System Design |
Lecture 6 - Fourier transforms - Part 2 |
Link |
NOC:Control System Design |
Lecture 7 - Laplace transforms - Part 1 |
Link |
NOC:Control System Design |
Lecture 8 - Laplace transforms - Part 2 |
Link |
NOC:Control System Design |
Lecture 9 - Introduction to feedback control - Part 1 |
Link |
NOC:Control System Design |
Lecture 10 - Introduction to feedback control - Part 2 |
Link |
NOC:Control System Design |
Lecture 11 - Nyquist stability theory - Part 1 |
Link |
NOC:Control System Design |
Lecture 12 - Nyquist stability theory - Part 2 |
Link |
NOC:Control System Design |
Lecture 13 - Nyquist stability theory - Part 3 |
Link |
NOC:Control System Design |
Lecture 14 - Bode plots |
Link |
NOC:Control System Design |
Lecture 15 - Steps for performing control design - Part 1 |
Link |
NOC:Control System Design |
Lecture 16 - Steps for performing control design - Part 2 |
Link |
NOC:Control System Design |
Lecture 17 - General controllers - Part 1 |
Link |
NOC:Control System Design |
Lecture 18 - General controllers - Part 2 |
Link |
NOC:Control System Design |
Lecture 19 - General controllers - Part 3 |
Link |
NOC:Control System Design |
Lecture 20 - Bode plot-based control design - Part 1 |
Link |
NOC:Control System Design |
Lecture 21 - Bode plot-based control design - Part 2 |
Link |
NOC:Control System Design |
Lecture 22 - Introduction to root-locus |
Link |
NOC:Control System Design |
Lecture 23 - Control system design using root-locus |
Link |
NOC:Control System Design |
Lecture 24 - Control of systems with some known parameters - Part 1 |
Link |
NOC:Control System Design |
Lecture 25 - Control of systems with some known parameters - Part 2 |
Link |
NOC:Control System Design |
Lecture 26 - Limitations of 1-degree of freedom control |
Link |
NOC:Control System Design |
Lecture 27 - Introduction to 2-degree of freedom control |
Link |
NOC:Control System Design |
Lecture 28 - 2-Degree of freedom robust control design for plants with gain uncertainty - Part 1 |
Link |
NOC:Control System Design |
Lecture 29 - 2-Degree of freedom robust control design for plants with uncertain gain - Part 2 |
Link |
NOC:Control System Design |
Lecture 30 - 2-Degree of freedom robust control design for plants with uncertain pole |
Link |
NOC:Control System Design |
Lecture 31 - 2-Degree of freedom robust control design for plants with multiple uncertainties in their structure |
Link |
NOC:Control System Design |
Lecture 32 - Issues connected with 2-Degree of freedom control design using root-locus |
Link |
NOC:Control System Design |
Lecture 33 - Introduction to Nichols plot |
Link |
NOC:Control System Design |
Lecture 34 - Feedback control design using Nichols plot |
Link |
NOC:Control System Design |
Lecture 35 - Robust control design using Quantitative feedback theory - Part 1 |
Link |
NOC:Control System Design |
Lecture 36 - Robust control design using Quantitative feedback theory - Part 2 |
Link |
NOC:Control System Design |
Lecture 37 - Tutorial on QFT Toolbox software - Part 1 |
Link |
NOC:Control System Design |
Lecture 38 - Tutorial on QFT Toolbox software - Part 2 |
Link |
NOC:Control System Design |
Lecture 39 - Tutorial on QFT Toolbox software - Part 3 |
Link |
NOC:Control System Design |
Lecture 40 - Fundamental properties of the loop gain - Part 1 |
Link |
NOC:Control System Design |
Lecture 41 - Fundamental properties of the loop gain - Part 2 |
Link |
NOC:Control System Design |
Lecture 42 - Ideal Bode Characteristic - Part 1 |
Link |
NOC:Control System Design |
Lecture 43 - Ideal Bode Characteristic - Part 2 |
Link |
NOC:Control System Design |
Lecture 44 - Introduction to nonminimum phase systems |
Link |
NOC:Control System Design |
Lecture 45 - Fundamental properties of nonminimum phase systems - Part 1 |
Link |
NOC:Control System Design |
Lecture 46 - Fundamental properties of nonminimum phase systems - Part 2 |
Link |
NOC:Control System Design |
Lecture 47 - Fundamental properties of unstable systems |
Link |
NOC:Control System Design |
Lecture 48 - Consequences of actuator bandwidth limitations while controlling unstable systems |
Link |
NOC:Control System Design |
Lecture 49 - Describing functions - Part 1 |
Link |
NOC:Control System Design |
Lecture 50 - Describing functions - Part 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 1 - Born-Oppenheimer approximation |
Link |
NOC:Bonds and Bands in Solids |
Lecture 2 - Self-consistent field (SCF) method |
Link |
NOC:Bonds and Bands in Solids |
Lecture 3 - Simple MO Theory of Hydrogen Molecule |
Link |
NOC:Bonds and Bands in Solids |
Lecture 4 - Bloch’s theorem |
Link |
NOC:Bonds and Bands in Solids |
Lecture 5 - Tight binding approximation |
Link |
NOC:Bonds and Bands in Solids |
Lecture 6 - Energy band theory - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 7 - Energy band theory - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 8 - Density of states |
Link |
NOC:Bonds and Bands in Solids |
Lecture 9 - Energy band theory - 3 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 10 - Energy band theory - 4 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 11 - Drude’s classical free electron model - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 12 - Drude’s classical free electron model - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 13 - Drude’s classical free electron model - 3 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 14 - Drude’s classical free electron model - 4 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 15 - Sommerfeld’s quantum free electron model |
Link |
NOC:Bonds and Bands in Solids |
Lecture 16 - Specific heat of Fermi gas |
Link |
NOC:Bonds and Bands in Solids |
Lecture 17 - Energy dispersion relation in a periodic potential - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 18 - Energy dispersion relation in a periodic potential - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 19 - Brief overview of space groups and constant energy surface in 2D |
Link |
NOC:Bonds and Bands in Solids |
Lecture 20 - Energy band and effective mass |
Link |
NOC:Bonds and Bands in Solids |
Lecture 21 - Effective mass |
Link |
NOC:Bonds and Bands in Solids |
Lecture 22 - k⋅p perturbation method |
Link |
NOC:Bonds and Bands in Solids |
Lecture 23 - Revisiting Bloch’s theorem and tight binding functions |
Link |
NOC:Bonds and Bands in Solids |
Lecture 24 - Symmetries in crystal Hamiltonian - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 25 - Symmetries in crystal Hamiltonian - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 26 - Tight binding method - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 27 - Tight binding method - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 28 - Tight binding method - 3 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 29 - Plane wave method |
Link |
NOC:Bonds and Bands in Solids |
Lecture 30 - Pseudo potential method |
Link |
NOC:Bonds and Bands in Solids |
Lecture 31 - Cellular method of energy band calculation |
Link |
NOC:Bonds and Bands in Solids |
Lecture 32 - Muffin tin potential and APW functions |
Link |
NOC:Bonds and Bands in Solids |
Lecture 33 - Augmented plane wave method of energy band calculation - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 34 - Augmented plane wave method of energy band calculation - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 35 - Green’s function method of energy band calculation - 1 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 36 - Green’s function method of energy band calculation - 2 |
Link |
NOC:Bonds and Bands in Solids |
Lecture 37 - Cyclotron resonance technique |
Link |
NOC:Bonds and Bands in Solids |
Lecture 38 - De Haas-van Alphen effect |
Link |
NOC:Bonds and Bands in Solids |
Lecture 39 - De Haas-van Alphen effect conclusion.Introduction to point impurity effect on band structure |
Link |
NOC:Bonds and Bands in Solids |
Lecture 40 - Point impurity in crystal |
Link |
NOC:Bonds and Bands in Solids |
Lecture 41 - Friedel Oscillations |
Link |
NOC:Bonds and Bands in Solids |
Lecture 42 - Lindhard dielectric constant |
Link |
NOC:Bonds and Bands in Solids |
Lecture 43 - Dielectric anomaly. Crystal momentum |
Link |
NOC:Bonds and Bands in Solids |
Lecture 44 - Spatial and time reversal symmetries in crystals |
Link |
NOC:Bonds and Bands in Solids |
Lecture 45 - Time reversal symmetry (Continued...) |
Link |
NOC:Bonds and Bands in Solids |
Lecture 46 - Spin orbit interaction |
Link |
NOC:Bonds and Bands in Solids |
Lecture 47 - Disordered solids and transport in disordered solids |
Link |
NOC:Bonds and Bands in Solids |
Lecture 48 - Optical properties of semiconductors |
Link |
NOC:Bonds and Bands in Solids |
Lecture 49 - Excitonic states in semiconductors |
Link |
NOC:Bonds and Bands in Solids |
Lecture 50 - Excitonic states in semiconductors (Continued...) |
Link |
NOC:Bonds and Bands in Solids |
Lecture 51 - Molecular orbital calculation - I |
Link |
NOC:Bonds and Bands in Solids |
Lecture 52 - Mott-Hubbard transition |
Link |
NOC:Bonds and Bands in Solids |
Lecture 53 - Hubbard model |
Link |
NOC:Bonds and Bands in Solids |
Lecture 54 - Electron repulsion and magnetic exchange |
Link |
NOC:Bonds and Bands in Solids |
Lecture 55 - Beyond on-site electron repulsions;Pariser-Parr-Pople model |
Link |
NOC:Bonds and Bands in Solids |
Lecture 56 - Electron-hole symmetry and Pairing theorem. Solitons |
Link |
NOC:Bonds and Bands in Solids |
Lecture 57 - Density waves in 1-d systems and Lattice vibrations - I |
Link |
NOC:Bonds and Bands in Solids |
Lecture 58 - Lattice vibrations - II |
Link |
NOC:Bonds and Bands in Solids |
Lecture 59 - Lattice vibrations - III |
Link |
NOC:Bonds and Bands in Solids |
Lecture 60 - Lattice vibrations - IV |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 1 - Introduction to NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 2 - NMR concepts and spin physics - I |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 3 - NMR concepts and spin physics - II |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 4 - Internal interaction parameters and chemical shifts |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 5 - Chemical shifts |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 6 - Scalar couplings |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 7 - Multiplicity patterns of coupled spins and analysis of 1H NMR spectrum |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 8 - Multiplicity pattern and analysis of NMR spectra - II |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 9 - Analysis of NMR spectra and their analysis |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 10 - Heteronuclear NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 11 - Introduction to Fourier series |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 12 - Complex form of Fourier series |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 13 - Fourier theorems |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 14 - Fourier transformation in NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 15 - Pople notation, construction of spin Hamiltonian |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 16 - Quantum mechanical analysis of AX spectra |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 17 - Quantum mechanical analysis of AB spin system |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 18 - Quantum mechanical analysis of coupled spin systems |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 19 - RF pulses and their phases |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 20 - Receiver phase and phase cycling |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 21 - Evolution of chemical shift |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 22 - Evolution of J couplings: polarization transfer |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 23 - selective saturation in homo and heteronuclear spin systems, coupled anddecoupled INEPT |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 24 - INEPT and DEPT |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 25 - Coherence transfer pathway |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 26 - Examples of coherence pathway selection |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 27 - Pulse field gradients - I |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 28 - Pulse field gradients - II |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 29 - Selective excitation, selective inversion |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 30 - Relaxation phenomenon |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 31 - T1 relaxation concepts and measurements |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 32 - Spectral density function and relaxation mechanisms |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 33 - T1 Relaxation mechanisms |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 34 - T1 Relaxation mechanisms and T2 relaxation |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 35 - Measurement of T1 and T2 |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 36 - Decoupling and NOE concepts |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 37 - DQ and ZQ relaxation pathways |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 38 - Positive and Negative NOE and spectral density functions |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 39 - NOE and correlation time |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 40 - Product operators |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 41 - Product operator analysis |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 42 - Productor operator analysis of pulse sequences |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 43 - Product operators for two J coupled spins |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 44 - Spin echo sequences |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 45 - Introduction to 2D NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 46 - 2D NMR concepts, 2D experiments |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 47 - 2D COSY experiment |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 48 - 2D COSY and its variants |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 49 - TOCSY Heteronuclear 2D experiments |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 50 - coupled and decoupled HSQC, HMBC, INADEQUATE, 2D Jresolved |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 51 - Introduction to multiple quantum NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 52 - DQ and ZQ of coupled spins |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 53 - MQ and relative signs of couplings |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 54 - MQ and spin system filtering |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 55 - Introduction to solid state NMR |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 56 - CSA and dipolar couplings |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 57 - Magic Angle Spinning |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 58 - WAHUHA and Cross Polarization |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 59 - Cross Polarization |
Link |
NOC:Advanced NMR Techniques in Solution and Solid-State |
Lecture 60 - CP at high speeds, Side band suppression, TOSS |