
Modern Algebra 
Prof. Manindra Agrawal 

Department of Computer Science and Engineering 
Indian Institute of Technology, Kanpur 

 
Lecture - 11 

Rings: Special Ideals 
 

(Refer Slide Time: 00:19) 

 

So, did anyone work this out, this place we got stuck yesterday? 

Student: We have worked out it (Refer Time: 00:22). 

What? Is that possible to write principle ideal 2 as a factor of 2, is what you can prove 

that? 



(Refer Slide Time: 00:39) 

 

Then that is contrary to what I can show, so let us see who is right. 

Student: Equation is somewhat wrong, last equation. 

That is wrong, that is clearly wrong that you showed last time and that cannot be, how 

about this? 

Student: (Refer Time: 00:59). 

Is this true? 

Student: (Refer Time: 01:08). 

Let us see that I think this should be true. So, we have to show inclusions two ways. 

Firstly, any element of this, which is in fact, we can go back to yesterday’s calculation 

and make use of it. We have an arbitrary element which is here of course this is not quite 

what we would have. So, let us see just do it fresh today. So, an element here which is 2 

alpha plus 1 plus square root of minus 5 beta times 2 gamma plus 1 minus square root of 



minus 5 delta that is a general element of this product.  

Of course, there are some solves of what each product each term of the sum has this 

wrong. And if you multiply this out is equals 4 alpha gamma plus 2 alpha delta 1 minus 

square root of minus 5 plus 2 beta gamma 1 plus square root of minus 5 plus this would 

be 6 beta delta. And this is in principle ideal 2 because each term if you see is a multiple 

of 2 and also belongs to (Refer Time: 03:01) that is it now specifically each of it is 2 

times some element of the ring so that is it. 

Student: (Refer Time: 03:10). 

Well, ring is z square root of minus 5 so that is one way it is clear. How about the other 

way like I said last time it is enough to show that 2 belong to this product. Do 2 belong to 

this product? 

Student: (Refer Time: 03:36). 

Just multiply 1 plus square root of minus 5 is 2. So, this sum of products is an element of 

this product ideal, because this is an element of the first ideal, this is an element of the 

second ideal, this is an element of the first ideal, this is an element of second ideal. And 

in the product ideal the elements are finite sums of pair wise product and this is 6 and 

this is 4 then difference is 2. So, therefore, the answer to this question is yes. So, the 

proof that you worked out there it is not factorisable there is a problem in that proof I 

guess. 

Similarly, the principle ideal 3 factors as in a very similar way in this question, and you 

can see almost identically the connection or why this is happening. If you take a generic 

element of this product, which will be of the same kind expect that instead of 2 will have 

3. And you multiply this out instead of four 4, we have 9, 3, 3and this 6 will remain.  

So, in all of this multiple of 3, so this any element of this belongs to the principle ideal 

generated by 3; and conversely, I can generate 3 in this basically the same thing 3 into 3 



minus this, this product is 3, so that is it. So, that also shows that the principle ideal of 3 

also factors so that is the factorization of 2 and 3. And if recall, we had this equation, so 

let us see the right hand side of this equation, how about 1 plus square root of minus 5 

and 1 minus square root of minus 5. 
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1 plus square root of minus 5, I will claim factors as yes, it is again look at the general 

element of this. What is that, go back to the same picture, in the general event there will 

be 2 here and 3 here 1 plus square root of minus 5 1 plus square root of minus 5. When 

you multiply them out 2 times 3 would be 6, all other terms will be multiples of 1 plus 

square root of minus 5, and 6 is a is 1 plus square root of minus 5 times 1 minus square 

root of minus 5, this 6 is also multiple of 1 plus square root of minus. So, this therefore, 

contained in this principle ideal that adversely is 1 plus square root of minus 5 contained 

in this. 

Student: (Refer Time: 07:36). 

Yes, why? 

Student: 3 into 5 (Refer Time: 07:40). 



3 into. 

Student: 1 plus 2 square root of minus 2 into (Refer Time: 07:51). 

Wait a minute. Now we have to show an element of a here times an element of a here, 

and may be some finite sums of such elements is equal to 1 plus square root of minus 5. 

So, what is that equation you are saying? 

Student: 2 into 1 plus square root of minus 5 (Refer Time: 08:10). 

1 plus square root of minus 5 equals 3 into. 

Student: (Refer Time: 08:18). 

Minus 2 into 1 plus, yes, so that is an element. This is an element here and this is an 

element here, so this times this minus this times this, and 1 minus square root of minus 5 

in a very similar way will factor as and now you we can explain this seemingly different 

factorizations. Because these when you look at these in terms of principle ideals they will 

factor as non-principle ideals and I have not discussed it. In fact, we are still yet to decide 

on the definition of what if prime ideal is, but whatever that definition these are prime 

ideals as it turns out I will not show that I will leave it for you to work out. And then 2 

into 3 is this two ideals time these two ideals and 1 plus square root of minus 5 into 1 

minus square root of minus 5 is these are ideals times these ideal both the product are 

same. 

Student: (Refer Time: 09:51). 

2 comma 1 plus square root of minus 5, so this is a prime ideal, this is a prime ideal, this 

is a prime ideal, this all these four are prime ideals. And now you see that you can write 

the reason why we get distinct this equality that I 2 times 3 is 1 plus square root of 5 

minus time 1 minus square root of minus 5 is that just a rearrangement of this prime ideal 

factorization. So that is an example of how this unique factorization property gets 



restored once we look at the ideals. 

Student: (Refer Time: 10:44). 

So, if you see this equation in the ring does not admit unique factorization 2, 3, 1 plus 

square root of minus 5, 1 minus square root of minus 5, they are all irreducible elements 

in this ring so you cannot be factored further, but there are 2 different ways of factorizing 

the number 6. So, unique factorization property in this sense does not hold in the ring. 

Now when instead of looking at these as numbers if you look at these as principle ideals 

then we have unique factorization property again. As principle ideals this is the principle 

ideal 6 is same as principle ideal 2 times principle ideal 3. Similarly, it is same as 

principle ideal 1 plus square root of minus 5 times 1 minus square root of minus 5. Now 

moving to the ideal world allows us to further factor these principle ideals into prime 

ideals which is what happening here, here and here and more over here as this, this, this, 

this. 

And now in terms of these principle ideals being factored as prime ideals, the unique 

factorization property is restored, so that was an original motivation why the ideals were 

defined. I can say Kumar who was the mathematician who identified the problem and 

then tried to resolve it by defining ideal numbers, which were some hypothetical 

numbers, which helped resolve this reinstate the unique factorization property.  

And then later on Dedekind said these ideal numbers instead of forcing them in if we just 

look at ideals just by changing the view like I said earlier that do not look at a number as 

a number itself or if look at a number or view the number as all multiples of that that are. 

In terms of now notation of thermology we have defined look at the principle ideals 

corresponding to that number. And then this unique factorization properties brought in 

throughout these ideal numbers of (Refer Time: 13:32) are at least in this case are these 

prime ideals. So, their presence brings about the unique factorization. So, this resolves 

this example, but we are still have not looked at the general case. 
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But before we look at the general case, we still have to resolve that certain amount of 

confusion about the definition of what a prime ideal is. I gave two definitions last time. 

Did you think about this? The first one is quite natural. The second one seems strange, 

but let me suggest to you why this is also a possible definition of a prime ideal. We 

defined ideals as at least principle ideals as multiples of numbers.  

So, in case of ring of integers, if you look at a principle ideal, all ideals there are 

principles, look at a prime number, look at the principle ideal of that prime number 

which are all multiples of that prime number that ideal is a prime ideal in this second 

definition sense. Because there is if there is an ideal which contains this so let us look at 

number 7 look at all multiples of number 7 that is a principle ideal if there is any ideal 

that contains all multiples of 7 what could that be? 

Student: (Refer Time: 15:21). 

It has to be ideal principle ideal 7 or principle ideal 1, cannot be anything else because 7 

is a prime so that is this definition this is second one, that is if you have a there is no 

ideal between a prime ideal and the whole ring. So, it does make sense the second one 

also. So, any comments about or thoughts about these two possible definitions are they 



equivalent? 

Student: (Refer Time: 15:56). 

Sorry. 

Student: Could not prove that equivalent. 

Could not prove that equivalent actually, they are not equivalent in general; in fact, this 

factorization of ideals itself gets messy if the rings are not of certain kinds you know 

somewhat nice kind. And similarly this I may or rather I should say that if the rings are 

not nicely behaved or not of a particular kind, then these two definition become different, 

even factorization of ideal itself is kind of not very nice.  

So, we would see from prime ideal they are such basic concepts when we would like a 

definition that is universal, it holds for all rings, and then it can be done in a nice enough 

way. Since factorization is of ideals is not very nice for certain rings, we will not use this 

factorization definition of prime ideals, so that brings us to the second definition. The 

second definition also becomes restricted for certain rings, certain types of rings; we will 

see examples of this later not now. For now, you just have to believe me. So, we cannot 

use the first definition we would not want to use second definition, so which definition 

do we use, we use a third definition. 
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This is a new way of stating the definition ideal I is a prime ideal if for every a b in the 

ring, if the product a b is in the ideal then either a is the ideal or b is in the ideal. Now 

again if you go back to the definition of or the setting of ring of integers, this is also very 

sensible definition.  

Look at a principle ideal generated by a prime number, and we are saying that if two 

numbers a, b where the product of two number a and b is in that principle ideal then 

either a or b is in that principle ideal which is equivalent to the fact that if a product is 

divisible by prime number then one of the two elements in the product must be divisible 

by a prime number so that is one of the fundamental properties of prime number. And 

this definition captures that property, so hence this can be also used as a reasonably good 

definition of the prime ideal, and this is the one that we used across all the rings. 

Now, it turns out that for certain types of rings, all the three definitions are equivalent. I 

will not show it, but I will just kind of highlight a bit, but the second definition that I had 

earlier given that is still interesting enough or it can be generally defined for all rings. So, 

I will give it a different name not call those prime ideals, but call them with a different 

name. Same definition expect the name I give to such ideals is not the different, these are 

called maximum ideals.  



And there is let me just shows one connection that can be proven very easily for all rings, 

which is that every maximal ideal is prime ideal. And this is good to know because this 

tells us that the our definition of prime ideals is a more general one then the initial one 

that I given that you know (Refer Time: 22:04) more ideals, so why they are very 

maximal ideal prime 

Well, suppose I is maximal, and we want to show that I is prime. So, consider a, b this 

product in I. Now let us create two ideals I 1 being principle ideal of a plus I, I 2 being 

principle ideal of b plus I, both are ideals. Both contain the ideal I, and since I is 

maximal, what is it mean? It means that they are either equal to I or they are equal to R. 

If any of them is suppose if this equal to I, what does it mean that a is an I, and if there is 

a case and we have already done.  

On the other hand, if a plus I equals R, then we have alpha a plus beta is 1, R contains 1 

and this some of ideal is R, so there would be alpha in the ring R, beta in the ideal I such 

that alpha I plus beta is one. Multiply this equation with b; now this implies that b is an 

ideal, because beta is in I, so beta is in I; a b is in I by assumption, so alpha a b is in I 

therefore, b is in I, as a pretty straight-forward proof showing that every maximal ideal 

must be prime. 

(Refer Slide Time: 25:01) 

 



Now let us come to this situation, where the definition that I gave see eventually I want 

right now the target is to be able express uniquely every ideal as a product of prime 

ideals. And I have been saying that this only holds for certain types of rings, and the 

types of rings were to this holds is the are the once where all, but at least these 

definitions go insight for the prime ideals. So, let us define those settings. And in order to 

define those settings, if you recall going back to the our discussion on groups, we were 

able to express certain types of groups as a sum of copies of set Z n plus some finite 

number.  

What was the limitation or what was the condition impose on those groups? Finitely 

generated, see if you go back to your that result about groups the structure of groups, 

there are theorems stating that every finitely generated group can be expressed as sum of 

copies of Z plus a finite part of it a finite group part of it which further can be expressed 

as sum of Z p to the alphas, so that structure theorem only was true for finitely generated 

groups not for other kinds of groups. And I have been saying it is this structure theorem 

for rings that I have been aiming for only hold for certain types of rings and returns out 

that finitely generated rings is an not rings only finite generation is an important 

component of that restrictions. 

So, for rings, how do we say that now how do we connect this notion of finite generation 

with rings, with groups we had seen? What is the simplest finitely generated group the 

one with just one generator, and then you all powers of that generator generate that 

group, so in case of the group in finites, so finite it is a cyclic otherwise it is a just a copy 

of Z. So, what could be analogues notion of rings, a finitely generated ring let say a ring 

with one generator? 

Student: Principle (Refer Time: 28:23). 

 A principle ideal, a principle ideal like yes that is seems like a natural thing, principle 

ideal there is just one generator right, all multiples of one element are make the principle 

ideal. But then every ring has one generator only, because every ring is equal to whatever 

the ring that we are talking about is equal to principle ideal of one. So, we cannot limit 

our attention to saying that a ring is finitely generated or not.  



Well, in all rings in this sense are finitely generated it was very simplest as possible once. 

So, what we will have to do and this is slight relief of imagination that instead of looking 

at whether rings are finitely generated, we look at whether ideals are all finitely 

generated. A principle ideal is surely finitely generated it is just a single generated by a 

single element not all ideals are finitely are principles we have seen that. 
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In fact, if you look at this ideal, this is not principle by it is sum of two principle ideals. 

In fact, this was just a short hand to write this. So, this ideal is also finitely generated. So, 

in general, we can say an ideal we say is finitely generated, if it can be written as a sum 

of finitely only principle ideals and that is a very natural definition. And then we say a 

ring is a ring is called a noetherian ring, if all its ideals are finitely generated.  

Now the name noetherian is as often the case is named after the mathematician, who first 

studied these kinds of rings. The unique part of this name is that it is a woman Emmy 

Noether, she was one of the earliest woman mathematicians known at least probably 

amongst the prominent mathematician, and she was probably the earliest woman 

mathematician. So examples of Noetherian rings, you have seen examples of many ring 

yes, yes, go through them. 



Student: Integers. 

Integers surely noetherian right, all ideals are principle, so they are the extreme example 

of noetherian rings. How about these extensions? 

Student: (Refer Time: 33:05). 

Z square root of d 1 comma root d will generate everything, but what we need to show is 

that every ideal is finitely generated. Every element of this is of the form an integer plus 

an integer times square root of d. So, if an ideal has two generators of this kind then by 

taking appropriate differences, we will get in that ideal an integer and one element being 

pure integer and other element being an integers times square root of d.  

And now individually on these you can apply this property of z. So, there are two 

integers - pure integers in that ideal, and then their gcd will also be in the ideal. So, there 

will be a unique minimum integer in that ideal; and every integer in that ideal will be 

written as a multiple of this. Similarly, if d s times square root of d, and then with you 

know just put all these arguments together, you will find that any ideal in this ring can 

have at most two generators. 

How about this Z x, this will behave exactly the same way as this. See this square root of 

d is so 1 and x are the two natural components right, yes even not even 1 and x, it is let 

say if you have an ideal so elements of these are polynomials, if you have an ideal with 

two polynomials inside that ideal the gcd of those polynomial will also be in that ideal.  

Of course, taking gcd, we have to be a little careful, because we have coefficient are 

integers, so we have to show that there is an integral, I mean all of like coefficients are 

integers, but you can work this out. I will leave this small exercise to you, and you can 

work this out and find that this will also have maximum two generators I believe. I am 

not sure, it may also have there is every ideal here may also be principle. This is you 

need to just check this out so either one or two, no more than two generators are needed 

for this, so that is you know very interesting. 



How about any other example of a ring that you know of we are reading out non-

commutative rings, we are just focusing on commutative rings; in fact, lot of examples 

exists which have this property that this rings are noetherian. So, instead of giving more 

example of this let me give you an example of a non-noetherian ring. And this example is 

also of quite bit of interest, because we will develop on this subsequently. 

So, let us define an interval let say minus 1 to 1. We are considering continuous 

mappings from the interval minus 1 to 1 to real numbers collect all continuous mappings 

in the set f. I will define arithmetic on this set and claim that under that arithmetic, it 

forms a ring. What is the arithmetic, very simple, addition take two mappings and define 

the sum of those two mappings as a new mapping.  

Will that be continuous, yes, that will be continuous, what is this is also commutative and 

associative this of summation. How about the identity of this operation, the zero map 

which maps everything to zero plus the identity of this operation. Then inverse, if you 

have mapped g then minus g is the inverse map because g plus minus g this map will 

map the entire interval to zero. So, this forms a group under addition commutative (Refer 

Time: 39:33) addition 

Now, you defined multiplication of mapping also. So, g 1 times g 2 is also a continuous 

map from the same interval. The identity of multiplication exists which is the map, which 

sends everything to all ones, this is commutative, and it is associative. So, it is and then 

distributive property of multiplication also for addition. All this follows on trivially 

essential so that means, f is a ring under addition and multiplication, multiplication of 

maps. Now I claim that this ring is not noetherian and to prove that what would I need to 

do I would need to show an ideal in this ring which is not finitely generated. Let us do 

that. 
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Consider ideal I of f defined as I contains all mappings g, g is in F, so I contains all the 

maps, which are continuous on the interval minus 1 to 1, and g of x is 0 on certain 

interval around the number 0 around the origin. So, essentially you have this is the 

origin, this is minus 1, this is plus 1. And your maps any map which is of this kind 

whether it is 0, and this part and then it is continuous whichever way everywhere else 

that is fine.  

There must be a non-trivial interval around origin on which this map must take the value 

0. There will be lot of such maps continuous this is a continuous map is an ideal. If g 1 in 

I, and g 2 in I, this implies that g 1 plus g 2 is an I because if there is a interval around 

origin on which g 1 vanishes and interval around I on which around origin of a g 2 

vanishes then intersection of those intervals on that g 1 plus g 2 will vanish so that is 

fine. Now g in I, and g prime in f implies g g prime in I, because if there is a interval on 

which g is 0, then g times g prime is also 0 on that interval it may be zero on a larger 

interval, but certainly 0 on that interval. So, I is an ideal certainly. 

Student: Should make the equivalent interval (Refer Time: 43:29). 

It could make the full interval trivial that is also possible, yes. 



Student: (Refer Time: 43:32). 

Let us make it one, good point, now I is an ideal of the ring F and this ideal is not finitely 

generated, why, well suppose I, I can write as g 1 g 2 plus g k or some g 1 to g k in f in 

fact g 1 to g k not only would be in f it would be each 1 of them would be in I also has to 

be by the very definition, then look at the there is an interval on which g 1 vanishes there 

is an interval on which g 1 g 2 vanishes there is an interval on each 1 of them vanish take 

the intersection of all those intervals and half it. 

Student: (Refer Time: 44:42). 

And cut it down by half or reduce it further basically. Now define a continuous map 

which is 0 only on that reduced interval and nonzero everywhere else. There will exist 

such a map in f and that map will be on I also, but this on this sum, the sum of these any 

mapping in this sum is going to be 0 on a larger interval around 0. Whereas, that in new 

map that I have defined will be 0 only on a smaller interval, so it is not possible. 
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So, these are the rings which will cause problems to us if you are looking for that 

structured theorem. So, we will not be able to prove any as nice as structured theorem 



about such rings, so for now we will let us just focus on noetherian rings, where is not 

unfortunately sufficient that will be we are able to prove that we rather noetherian rings 

are not sufficient for us to prove that structured theorem. We have to bring in some 

additional conditions. 

(Refer Slide Time: 47:45) 

 

So we say that ring R is a Dedekind domain if R is noetherian, two R is an integral 

domain I have not defined what integral domain is which I will do (Refer Time: 48:48), 

but unfortunately even these two are not sufficient, we have to push in one more 

condition which I do not even want to write down. So, you just keep in mind if some 

small technical condition which is almost always true, so it is not something very 

limiting or problematic.  

It is just that you know if I want to write down that condition fully I will have to define 

two more things, which I do not want to do, but I do want to define what integral 

domains are. So, we call a ring R integral domain, if whenever a product a times b is 0 in 

the ring then either a is 0 or b is 0, this is a very obvious looking condition. Of course, 

this should be true certainly is true for integers or numbers in general, but this is not true 

for all rings. In fact, go back to the ring I just defined above this one this is not true for 

this. Why? 



Student: In a noetherian (Refer Time: 50:54). 

That the product it vanishes everywhere, and that is a 0. So, again in non integral 

domains are very funny kind of a strange kind of a rings which are very interesting also, 

but not useful for. 

Student: Can be mean matrix also. 

Can be matrix also, very right. 

Student: (Refer Time: 51:32). 

Yes. 

Student: (Refer Time: 51:34). 

Yeah, that is right absolutely. So, while such rings are non-integral domains are 

interesting rings and we will come across some later, but as far as numbers and their 

factorization are concerned, we do not want them around, because that is cant really 

handle factorization there. So, that is why we bring in this condition also and then there 

is additional technical condition all put together the rings that satisfy them are called 

Dedekind domains and then we have the theorem for Dedekind domains. Now we can 

prove the theorem about Dedekind domains, which I will do next time. 


