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Today, we partially prove this theorem. 
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Let R be a Dedekind domain, and let R, sorry, I be any ideal in the ring; then, I can be 

uniquely written as a product of prime ideals. I will not give you the complete proof of 

this, because, that requires a… It is not very difficult, but it requires some efforts. So, 

and I want you to make that effort on your own. So, instead, what I will do is, I will give 

a partial proof, and leave the rest to you. So, the key property that we are going to make 

use of is the following. This is the property I am going to make use of. I will not prove 

this property, and it is a very interesting statement; says that, ‘if you have any ideal I in a 

Dedekind domain, and there exists another ideal J in the ring, such that, I times J is a 

principal ideal. 

So, let us assume this to be true, and proceed with proof. One very interesting 

consequence of this is the following. In fact, I will show you two consequences. First one 

is, cancellation; there is 2 products, I I 1 and I I 2 are equal, and these are, of course, all 

three are ideals; then, I 1 equals I 2. Essentially, it says that, I can cancel I from both 



sides of the equation; works out exactly the same way as we can cancel numbers. This is 

not at all obvious, but, we, by using the property above we can make sure of that; how? 

Well, if you have I I 1 equals I I 2, and corresponding to ideal I, we have an ideal J, such 

that, I times J is a principal ideal. So, I I 1 equals I I 2 implies, J I I 1 equals J I I 2. This 

implies, J I is principal ideal a I 1 equals principal ideal a I 2. And, this implies, I 1 

equals to I 2, because, you can easily cancel principal ideal multiplication. Why? Take 

any element b of I 1; then, a b of I 1 is in, a times I 2, ok. 

Let us see that; let me write it in a different thing. Correct? Now, a Dedekind domain has 

the property that, it is an integral domain, which is that, a times c is zero, then either a is 

zero, or c is zero. In this case, a is surely not zero. This is, of course, follows from this 

fact, and so, b minus b prime is zero. So, this shows that, b prime, whatever is in I 1 is in 

I 2; b was in I 2, and b is in, sorry; b was in I 1, and b, therefore, is in I 2 also. and (Refer 

Time: 06:34). So, that is the first interesting consequence.  
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The second one is that, if I is contained in I dash, then, if ideal I is contained in ideal I 

dash, then I, actually, can be written as a product of I dash with another ideal J dash. The 

converse of this is always (Refer Time: 07:23); we have seen that; that, if I is the product 

of two ideals, then, I is contained in both the ideals. In fact, I is contained in the 

intersection of these two ideals. This, we solve all the time. This shows the converse set. 

In case, I are with Dedekind domain, then, containment is sufficient to imply that, I can 



be factorized as I dash (Refer Time: 07:49). How does this work? So, let us start with this 

that, we have I times J is a principal ideal; no. In fact, let us, we should use the J 

corresponding to I dash. So, I dash times J is the principal ideal. So, let now, this requires 

some explanation, but, before that, let me see if this is working out, yes. I think it has. 

So, I dash J is a principal ideal, generated by a non-defining J dash, to be I times J 

divided by a; and I need to explain that. See, I is contained in I dash, which is I dash 

times J is a principal, equals principal ideal, generated by a. This is another way of 

saying that, all elements of I dash J are multiples of a. So, since I is contained in I dash, 

all elements of I J are also multiples of a. And, one by a, simply means that, they just 

divide all those elements by a. So, the elements in here are multiples of a. So, just cancel 

out, or take out a from this, and you get elements of I J divided by a. I am not saying that, 

these are invert, a is invertible; I am simply saying that if a times b is in I J, then b is in J 

dash. 

So, this is defined as set of all b s, such that, a b is in I J. And, since we know that, every 

element of I J is of the form a time b, so, this definition makes sense. J dash is an ideal; 

because, if b 1 and b 2 are in J dash, then b 1 plus b 2 b 1 b 2 in J dash means, a b 1, a b 2 

is in I J. This implies that, there is in, I J is an ideal; a b 1, plus b 2 is in I J. And, this 

implies that, b 1 plus b 2 is in J dash. And, similarly, if you have b is in J dash, then, a b 

is in I J, implies some, any times c a b is also in I J, this being the, I J being an ideal; this 

implies that c b is in J dash. So, that shows that. So, J dash is an ideal of R. And now, let 

us look at what is I dash times J dash. What is this equal to? Is it I dash times 1 by a I J? 

Is this? Just rearranging, because this is commutative multiplication, I dash J, by 

definition is, yes, what is 1 by a times principal ideal a? This has all multiples of a. Sorry, 

is R itself; or, this is just one, principal ideal 1. And, any ideal times principal ideal 1 is 

just I; because this shows that, I factors as I dash J dash. Two very interesting properties 

follow by that result, and we will make use of both of these. 
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Ok. So, now, let us consider I and R; it is an arbitrary ideal in the Dedekind domain. 

First, I will show that, I is a product of prime ideals. Let us assume, for the sake of 

contradiction that it is not. In fact, I will say that, let. Let us collect all ideals of R, which 

are not products of prime ideals. Let this collection be (Refer Time: 14:05) as M. I am 

going to show that, this collection is empty; and, that will prove the (Refer Time: 14:12). 

Well, since our assumption is that, it is, M is not a, I is not a product of prime ideals, 

then, M is not empty; theoretically, because I is in M. 

Now, consider a maximal element in M; that is, start with I; see if this collection M has 

an ideal, which is a super set of ideals; and, keep taking larger and larger sets, containing 

the previous ideals; larger and larger ideals. And, by the fact that the ring is (Refer Time: 

14:55), one of the consequence of that is that, any such chain of increasing ideals is 

going to be finite; because, you can realize that quickly, because, all ideals are finitely 

generated. When you look at an increasing chain of ideals, you are basically saying that, 

you are increasing the number of generators, essentially, one by one. And, since there are 

only finitely many generators in the ideal, total, any ideal is only finitely generated. So, 

there will not be many, or only a finitely many ideals in this chain. That is a bit of a 

intuitive proof, not a formal proof, but we can formalize it along these lines.  

So, consider an increasing chain of ideals, which starts with I contained in I 1 contained 

in I 2, I l; and, I l being the maximal in this chain. So, any ideal that strictly contains I l is 



outside. Now, I l cannot be, it is not a maximal ideal of R; I l is maximal in the chain. 

There is, there is no ideal bigger than I l in this chain, but if you look at the ideal I l, it is 

not a maximal ideal in the ring R; because of the property we proved that, every maximal 

ideal is prime. So, if an ideal is a prime ideal, then, of course, it can be written as a 

product of prime ideals. So, I l cannot be maximal. So, let us say, let J be a maximal 

ideal, containing I l; fine. So, J contains I l. Now, invoke the property number two, which 

we just showed; that means, and I l can be written as J times some J dash, where J dash 

and J both, of course, J contains I l; J dash will also contain I l. Yes, can J dash be equal 

to I l? Then, one times I l equals J times I l, J dash being equal to I l; and, I l equal to J 

dash I l, this implies… All J s are non-trivial, of course; why, because of the cancellation. 

Of course, so, yes. J as a maximal ideal, by definition is non-trivial; in the sense, it is not 

equal to the full ideal; then, by cancellation, J equal to 1 not possible. Therefore, J dash is 

not equal to I l. 

(Refer Slide Time: 19:02) 

 

So, I l is strictly contained in J dash, and I l equals J times J dash. Now, J is a prime ideal 

in itself; J dash is a strictly larger ideal than I l. So, it is not in M, which means, J dash 

can be written as a product of prime ideals; which means, I l can also be written as a 

product of prime ideals; all the prime ideals of J dash times J, which is a prime ideal. It is 

a clever proof.  

 And, this is a contradiction. So, that is the proof of the lemma, which shows that, every 



ideal can be written as a product of prime ideals. And now, we need to show that, this 

expression is unique. And, that is also, now, will follow pretty simply; which is, let us 

say, I 1, I 2, dot, dot, dot, I k be equal to J 1, J 2, J l for. So, let us consider two products 

of prime ideals which are equal. This implies that, I 1 contain this product. So, I 1 is a 

prime ideal, and it contains product of prime ideals. What would this imply? I claim, this 

implies that, I 1 equals one of these J i s. Suppose, J t is not a subset of I 1, for 1, less 

than equal t, less than equal to l. This implies that, there exists a t in J t minus I 1 I should 

use the correct symbol here. 

So, if J t is not in I 1, then, there is an element of J t which is not in I 1. But, this product, 

a 1, a 2 to a t is in I 1. Now, I 1 is a prime ideal. What is the property of prime ideal? By 

definition, an ideal is a prime, if whenever, a b is in the ideal, one of a or b is in the ideal. 

So, if this product a 1 to a t is in the ideal, one of a, not a t, it is a l, one of a t s must be in 

I l. And, that shows that, whichever, I mean, this assumption that none of the J t s are 

contained in I 1 was wrong. So, what we have managed to show after this is that, if a 

prime ideal I 1 contains a product of prime ideals, then, this prime ideal is actually 

contains one of those prime ideals itself; not just a product, but one of the prime ideals. 
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Now, J t is also a prime ideal; I 1 is a prime ideal, and J t is contained in I 1. Now, we use 

another property of Dedekind domains, which is that, those conditions that I listed for 

Dedekind domains imply that, every prime ideal is maximal. In fact, the three definition 



of prime ideals that I gave, I think I mentioned this last time; the three definitions of the 

prime ideal I gave earlier, all of the three coincide for Dedekind domains. So, every 

prime ideal in particular is maximal. J t is a prime ideal, and which is contained in ideal I 

1, which is also a prime ideal. So, J t has to be maximal; I 1 also have to be maximal; 

which means J t is equal to I 1. And now, go back to the product. So, we have… Now, 

from this reasoning, what we learn is that, I 1 occur on the right hand side also. And now, 

I can renumber, or rearrange the right hand side, so that, J t is J 1. Now, use the 

cancellation property. This implies that I 2 to I k is equal to J 2 to J l, and repeat. So, you 

just keep canceling the identical ideals from both sides, and eventually, we get that, 

firstly, l equals k, and J t equals I t because. So, this gives you a flavor of the arguments 

that one can use, working with this abstract ideals. The key thing, I mean, I showed you 

the entire proof except this key lemma, because, where was that, for every ideal I, there 

is an ideal J, such that I J is a principal ideal. This really provides the heart of the proof, 

and proof of this is a little tricky, but, completely elementary; that is, you can follow it 

from the conceptual output. So, try to think about it. 

Any questions on this? This is probably the longest proof I have done in this course, and 

quite abstract also. This seems like, this manipulation of symbols without much intuition; 

if you think about it, you will find, there is a clear intuition there. Basically, when one is 

trying to use the, you know, you just, cancellation is a very powerful tool of ideals, 

which you can use to, use to prove the uniqueness. And, the containment being 

equivalent to factorization, we use to show that, there exists a prime factorization of 

every ideal. Any questions? So, this is a story of the development by Kumar, and then, 

Dedekind. So, after... So, you know, significant amount of effort, which I just outlined 

earlier, they were able to restore this unique factorization property, for, of course, a 

limited class of rings. And, if you recall, this entire thing originated from that Fermat’s 

last theorem that, and the proof of Fermat’s last theorem used unique factorization 

implicitly, which broke down in a, that particular ring. And, but now that we have 

restored unique factorization, we can try going back to the proof, and see how it works 

out. Unfortunately, that proof now breaks down. Because, that proof used, I mean, it does 

not work when you are using ideals; it only works when you are using numbers, (Refer 

Time: 29:59).  

So, of course, when the attempts continued, to prove Fermat’s last theorem for another 



100 plus years. But, what we got in place of proof was this notion of ideals. Now, they 

have certain utility in terms of what I just showed, but it has turned out that, they have 

far more reaching utility, than just this. So, let us discuss that aspect of ideals. And for 

that, I will again go back to the group theory we developed. We had this notion of 

subgroups, in groups, and then, we defined the notion of quotienting a group with a 

subgroup, which corresponded with a homomorphism between groups. And, you have, 

there is a nice correspondence between quotienting a group with a subgroup and the 

homomorphism from that group to another group. And, we established something very 

similar for rings, and we will see that, the ideals play the role of subgroups. 
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So, let us first work, or define, the notation of a homomorphism for rings. So the notion 

of homomorphism generalizes very naturally into rings. In groups, we have one 

operation, and homomorphism preserved that operation. And in rings, we have two 

operations. So, we want homomorphism to preserve both the operations. So, if we say 

phi of a 1 plus a 2 is phi of a 1 plus phi of a 2 and phi of a 1 times a 2 equals to phi of a 1 

times phi of a 2. All such mappings are homomorphisms. And the, further, if phi is a 1 1 

onto map, then, phi is an isomorphism; that is, again, exactly the same as for groups. 

And, the notion of isomorphism allows us to deduce which rings are identical; if two 

rings are isomorphic, then, essentially, they are the same ring, ok.  

Now, some properties of homomorphisms, for rings. Firstly, you should expect that, 



since it has preserved two operations, then, it should satisfy more properties, than the 

properties of homomorphisms for groups. And, that is certainly true. For example, what 

is homomorphism of zero? If phi is a homomorphism, what is phi of zero? This is always 

zero. Why? Yes, it follows, because, phi of zero is phi of zero plus zero, which is phi of 

zero, plus phi of zero. And then, you can cancel one of them, and then, deduce phi of 

zero itself. Phi of 1 is 1; second property, phi 1 of a 1 dot a 2 equals? 

Student: (Refer Time: 35:59). 

Let us see that. What you are saying is that, phi of 1 dot a is phi of 1 dot phi of a. And, 

this implies, phi of a times phi of 1 minus 1 is zero. Is this is what you are saying? 

Student: So, phi of 1 dot a is equal to phi of a. 

Phi of 1 dot a is equal to phi of a, yes. 

Student: So, we have phi members (Refer Time: 36:53). 

Yes. So, that is what, I am taking the right hand side to the left, and writing that in this 

fashion. Now, does it imply that phi of 1 is 1? 

Student: can zero one (Refer Time: 37:11). 

For integral 1, yes: very right. If ring is a integral domain, then, one of them must be 

zero. So, either phi of a is zero, for all a s. So, that is the homomorphism; that is a trivial 

homomorphism; every element is mapped to zero; or, phi of 1 is zero. Even if it is not an 

integral domain, if for any element a, it is mapped by phi, to a unit of the ring R 2, then 

also, we can say that, phi of 1 is 1. Recall the definition of a unit. Unit was an element, 

which is, which has an inverse within the ring. So, we will so, for most of the rings, phi 

of 1 is 1; rings, and map; it is a, it is fine. So, we will stick to this assumption that, for 

homomorphism, phi of 1 is 1, because, that just simplifies certain things. 
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How about phi of a unit? What happens to this, when a is a unit of R 2, is phi of a is also 

a unit of R 2? 

Student: (Refer Time: 39:00). 

Phi, we assume phi of minus 1, yes; yes, why? 

Student: (Refer Time: 39:10) inverse of a b is 1. 

a b is 1, yes. 

Student:. So, phi of a b is 

So, phi of 1 is, phi of a b; so, 1 is so, yes, which is phi of a times phi of b, and that shows 

that, phi of a is also a unit. So, this is a nice property, which follows just by, you know, 

the fact that, phi of a is 1 is 1. Now, consider kernel. Again, exactly as defined as for 

groups; consider all elements of the ring R 1, which are sent to zero. (Refer Time: 40:14) 

This was same as, same definition as. Actually, here, we can define it in probably two 

different ways. So, if there are two units, or two identity elements, send phi of everything 

to zero, or send all those a s which are sent to 1. But, defining it for zero makes a lot 

more sense, as you will see. What can we say about kernel of phi. There, kernel of phi 

for groups was a subgroup. Here, it is an ideal. Why? See, if phi of a 1 plus a 2 is phi of a 

1 plus phi of a 2, if phi of a 1 and phi of a 2 both are zero, then, that is all; phi of a 1 plus 



a 2 is also zero; phi of b times a, is phi of b, times phi of a; then, if phi of a is zero, then, 

this is phi of b times zero. So, that implies that the kernel is an ideal f the ring R 1. And, 

what does the kernel do, or rather, what does the map phi do? It takes the ideal I, or ideal 

kernel of I within R 1, and sends precisely that ideal to zero; other elements, it does not 

set to zero. So, this is again, defining that notation of quotienting, in a very natural way. 

And again, we can look at the equivalence classes that are created by phi within R 1. 

And, what are those equivalence classes like? Use the relation R which is… say that, a 

and b are related, if phi of a equals phi of b. And, if you look at the set R, or, you will 

have the equivalence classes; one would be the kernel. 

Let us give a name to the kernel. Let I naught be kernel phi; then, there will be an I 

naught, one equivalence class; other equivalence classes would be of the kind… Every 

equivalence class can be written in this form that, sum c plus I naught, which means, this 

has elements of the form c plus a, whenever a is in I naught. And, you can see that easily; 

phi of c plus a, is phi c plus phi a; phi a is zero. So, it is same as phi c. And, whenever phi 

c is equal to phi d, then, phi c minus d is zero. And, therefore, this R is precisely the 

equivalence class (Refer Time: 44:43), ok. 

Now, once you get these equivalence classes, let us again continue with our analogy with 

groups, and try to define a quotient ring. If you recall, the quotient groups, we defined by 

taking these equivalence classes, and defining a group operation on these equivalence 

classes. And, we showed that, that is a quotient group. Can we do the same here? Let me 

stop here, and leave this for the next class. You think it over. It is very natural, we can 

define the quotient class very easily; but I want you to give it some thought, and we will 

continue tomorrow.  


