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Lecture – 16 

Properties of Fields 
 

Now, let us continue our discussion about fields. Last time we proved this so called 

fundamental theorem of algebra. In fact, there is another fundamental theorem of 

algebra, which basically depends on who calls which one the fundamental theorem, 

which I will discuss little later in this, in the lecture. But like we saw last time, that 

every field has this nice property that integrity polynomial will have (Refer Time: 

00:46). 

Now, the one immediate question is of the, given a degree D polynomial over a field F, 

it will have at most D roots. The question next, the next one would be exactly how 

many of those D roots are actually in the field. It is possible, that there are 0 roots in the 

field. For example, in the, you know, look at polynomial x square plus 1 over the reals. 

It can have at most two roots, but actually it has, inside the real it has no roots. So, the 

numbers of roots will be lying between 0 and D and that is a very important part of 

investigations about polynomials over field and that also gives us a way to create more 

fields or extended field. So, let us look at that. 



(Refer Slide Time: 02:03) 

 

So, let us say, you start with a field and we consider F bracket x. This is the ring of 

univariate polynomials over field F. This ring has some nice properties. It is, for 

example, F[x] is an integral domain every ideal of F[x] is principle. Moreover, the 

unique factorization property holds in F[x], but that here I am not saying, that F[x] is 

just a (Refer Time: 03:59) domain where the unique factorization or ideal holds, but 

element wise also, just like over Z, element-wise unique factorization property holds 

similarly here not only over ideals. So, in that sense, F[x] is very similar to the ring of 

integers. See, that every ideal is principle unique factorization property holds is an 

integral domain, which are all very nice properties of integers. 

The first one is quite clear, that is, (a, b) in F[x] and they are non-zero. Then, a x times 

b x, this polynomial will also not be 0. The reason is very simple. You take the highest 

degree term of a, highest degree term of b, their product will give the highest degree 

term of a times b and that coefficient will be non-zero. So, this is simply borrowing the 

fact, that F is an integral domain and therefore, F[x] will also be an integral domain, 

right. So, that takes care of the 1st property. 

The 2nd one, every ideal in F is principle. So, take an ideal of F[x] and take two 

elements of this ideal. Oh, not F[x], it is an, take two elements of the ideal. Now, we 



have this operation available in F[x] over polynomials, that is, which was taking GCD 

of the polynomials. Just like we can take GCD of the numbers, we can take GCD of the 

polynomials and that, let that be C and then C divides a x and b x both, right. Or in 

other words, in addition we can write C as some, let us say, alpha x a x plus beta x b x, 

right. So, this implies that c x is also in the ideal I. 

This equation is, essentially, just GCD algorithm that you give you this. So, C is in the 

ideal and both a and b are multiples of C, right. So, we can say, that a x b x are in the 

ideal generated by C. So, with these two properties we will, we are done because now 

you start within the ideal I, the smallest degree polynomial that is present in the ideal I. 

(Refer Slide Time: 09:06) 

 

Now, take any other polynomial of the ideal I. So, let us say, assume, that let us say, 

a(x) in I is the smallest degree. Then, what can we say about C? b is any other 

polynomial in the ideal I, C must have the same degree as a and C divides a. That 

means, C is just a constant multiple of a, right, which means, that b is in the ideal 

generated by, b is in the ideal generated by C and C is just a constant multiple of a. So, 

principle ideal of C is same as principle ideal of a. So, b is in the principle ideal of a 

and b was any arbitrary polynomial in the ideal I. So, this shows, I is simply the 

principle ideal generated by a. 



And the third one, the unit factorization, well, let us assume, that a 1 x times b 1 x 

equals a 2 x times b 2 x. So, the real two factorization of one polynomial and we want 

to show, that these are, before that I need to define the notion of irreducible polynomial, 

that is okay, but that is already defined. Remember, I had defined the notion of 

irreducible element of a ring, which generalizes the notion of a prime number in 

integers. Irreducible element was an element such that whenever you write it as a 

product of two elements, one of those two elements is a unit. 

So, suppose we can write a polynomial as a product of two irreducible elements, a 1, b 

1, a 2, b 2. (a 1, b 1) is one set of irreducible elements, (a 2, b 2) is another set of 

irreducible elements. So, now I want to show, that this is the same, that is, a 2 is equal 

to either a 1 or b 1 and similarly, b 2 either equal to a 1 or b 1. 

Consider GCD of a 1, a 2. What is this going to be? This is either, both a 1, a 2 are 

irreducible; either GCD would, whatever the GCD polynomial is, that divides both a 1 

and a 2. So, the, because they are irreducible, that GCD is either equal to a 2 or 1. So, if 

GCD is equal to a 2, that means, a 1 is equal to a 2 except a constant multiplier. So, that 

is fine. Then, of course, we can argue the same way about b 1, b 2 and we have done. 

On the other hand, if GCD equals a 2, we are done. If GCD equals 1, then, then 

consider GCD of b 1, a 2. This is the same thing. Again, this also will either be a 2 or 1. 

Student: a 2 will divide b 1. 

Yeah, see it is a 2. If it is a 2, then a 2 and b 1, since both are irreducible are just 

constant multiples of each other, that is again there, we have, will be done, right, 

otherwise if this GCD is also 1, then that is a bad case for us. Then, what happens? We 

will show that it is not possible. How do we show that it is not possible? GCD, that is, 

GCD of a 1, a 2 is 1 and GCD of b 1, a 2 is 1. Let us look at what is GCD of a 1, b 1 

with a 2 and I claim, that GCD of a 1, b 1 with a 2 is 1. Why? Well, it is just a bit of 

calculation, GCD of a 1, a 2, 1 means what? 

Student: (Refer Time: 16:38) 



Alpha a 1 plus beta a 2 is 1, GCD of b 1, a 2 is 1 means what? Gamma b 1 plus delta a 

2 is one. So, just combine these two, just multiply this with b 1. So, we get alpha a 1 b 1 

plus beta a 2 b 1 is b 1 and multiply this with gamma alpha gamma a 1 b 1 plus beta 

gamma b 1 a 2 plus delta a 2 is 1. This is b 1 and b 1 you substitute in this, you get this 

equation and this gives me alpha gamma a 1 b 1 plus beta gamma b 1 plus delta a 2 is 1. 

So, this show, that GCD of a 1, b 1 and a 2 is 1. And that is not possible because clearly, 

a 2 divides a 1 b 1 by the assumption and that is it, and proves the theorem. 

So, this ring F[x] bears very much like the ring of integers. 

(Refer Slide Time: 19:03) 

 

Now, let us consider, now its general column P(x) be in F[x]. This is polynomial degree 

d and let us goes back to that the fundamental theorem of algebra where we are looking 

at the roots of this polynomial P in the field F. So, unique factorization holds, I can 

write P(x), let us say Q 1 x Q 2 x dot dot dot Q k x, where Q j x is irreducible and this 

can be written uniquely. Now, if one can be say, that P has the root in F in terms of Q 1 

to Q k. 

Student: (Refer Time: 20:45) 



Q has. 

Student: (Refer Time: 20:53). 

Q I is in F[x], each one of them is in F[x]. 

Student: (Refer Time: 21:00) 

See, the fact that I can write here the product of this irreducible polynomial, each one of 

Q j is in F[x] and that that is not in F. 

Student: (Refer Time: 21:23) P(x) will be (Refer Time: 21:25). 

Root of P will be root of one of them, yes, clear, right. If P is 0, then one of them will be 

0 that is one conclusion we can derive. But suppose, alpha is a root of P and alpha is in 

F, can we say something about the nature of this, at least one of these Q j’s? See, just go 

back to this proof. If alpha was a root of P, then P i can write as this and which is x 

minus alpha times P at x. 

Student: Linear (Refer Time: 22:12). 

Linear factor, so if alpha is a root of p and alpha is in F, then one of these Q j’s will be 

of degree 1 and alpha that will be actually of the form x minus alpha where alpha is a 

root. 

Student: Linear (Refer Time: 22:36). 

Any linear polynomial is irreducible, of course. 

Student: (Refer Time: 22:47). 

Up to multiplication by unit; that multiplication by units is fine. So, that tells us 



whether by looking at this factorization of P we can see how many roots of P are in F 

that equals the number of linear factors. So, there is no guarantee, that all of them are 

linear factors. So, some of them may not be linear factors. So, let us say, suppose Q 1 x 

has degree greater than 1. So, it is not a linear factor. 

Now, consider this ring, F[x] quotiented with the principle ideal Q 1. What can we say 

about this quotient ring? 

Student: (Refer Time: 24:32). 

Sorry. 

Student: (Refer Time: 24:38). 

Elements of this, it depends on the degree of Q 1, right, if the degree. 

Student: (Refer Time: 24:50). 

Let degree of Q 1 be d 1, then elements of F, let us call this, okay I will, I will be giving 

away the name, by name the nature. Elements of F hat, this form where each element is 

a polynomial of degree at most d 1 minus 1 with coefficients being in F because you are 

quotienting with Q 1, which is a polynomial degree d quotienting with Q 1. Take any 

element, if F[x], you would, can divide this again, just the GCD trick will give you a 

polynomial.  

After taking, dividing you will get a residue, which will be of degree less than d 1 and 

that is the element in this. Strictly speaking, it is, the element is this plus the ideal. The 

elements of this quotient ring have the form a plus I. So, this is a and plus the ideal. In 

that plus ideal I am not writing this to simply this, but you must keep in mind, that the 

elements of this quotient ring are not polynomials, they are equivalence classes. What 

else can we say about F hat? We, can say, that F hat is a field. 



Student: (Refer Time: 27:48) Q 1 x is (Refer Time: 27:51). 

Q 1 x is irreducible, yes, that is, that is by factorization, yeah, it follows because this 

ideal generated by Q 1 is a maximum ideal. We have seen, it is a principle ideal of 

course, principle ideal, but it is also a maximal ideal because Q 1 is irreducible. So, if 

there is any other take, any polynomial that is not a multiple of Q 1 is GCD with Q 1 

will be 1 because Q 1 is irreducible, which means, that this principle ideal generated by 

Q 1 is maximum. And so, F hat is a field. 

Student: (Refer Time: 29:07). 

We do not need degree greater than 1, but if, what if Q 1 at degree 1, what is F hat? 

Then, F hat is just isomorphic to F because then, elements for the, the form alpha 0 plus 

the ideal you want that is just F. Whereas, if Q 1 has degree greater than 1, then we get 

a field F hat, which is not equal to F, it certainly contains F, but it contains elements 

more than F. Why are we sure that it contains element more than F? Simply because all 

such elements are in the F hat of this, which are polynomials of degree less d 1 and 

these ploy, these elements are not two such polynomials are not same in F hat. In 

particular, a root of Q one is in F hat. Do you see that? 

Student: (Refer Time: 31:23) 

What (Refer Time: 31:32) did not get that. 

Student: (Refer Time: 31:33) 

Classes corresponding to 0 that is, not root of Q 1. 

Student: (Refer Time: 31:38) 

The Q 1 x will map to 0, so that is fine, but in F hat I am claiming. So, what I should 

have done instead is, let us. That is an important point. 



(Refer Slide Time: 32:08) 

 

Let me, instead of doing it with x, let us redefine F hat as F of y quotiented with Q 1 of 

y. It is the same field, only thing that has happened is, instead of variable x I am using 

variable y. So, in the same field, in the sense, this F hat is this field isomorphic to the 

field that earlier defined, fine. 

Now, I ask, what is a root of Q 1 x in F hat? Consider Q 1 of y plus Q 1 y. This is an 

element of F hat. Now, I am writing it properly with the clear understanding, that this is 

an equivalence class. This equivalence class is an element of F hat. So, if you replace x 

by this element of F hat in Q 1, what do you get? 

This would be Q 1 of y plus a multiple of Q 1; q 1 of y. You do not see that, let us do it 

more slowly; let me erase this. Let q 1 of x be this polynomial and do the substitution. 

Let us write I for this ideal. Is this fine? The moment I do this substitution, Q 1 of y 

plus I is now becomes an element in the field F hat because y plus I is an element in F 

hat and I am just doing some addition, multiplication using that element.  

So, this is element in field F hat, which element is this, this, carry out this arithmetic, 

this is field, you can do the arithmetic and we know exactly how do you do arithmetic 

on the quotient rings. This is same as; multiplication would mean, y plus i raise to the j 



is same as y to the j plus i, correct. And this sum would be just the sum of this part plus 

I. This is Q 1 of y plus I and this is I because q 1 of y is contained in I. So, therefore, 

what we got was, that Q 1 was this element y plus I is I in f hat. So, y plus I is a root of 

polynomial Q 1 of x in the field of hat. 

(Refer Slide Time: 38:47) 

 

So, therefore we conclude, that Q 1 has a root in F hat, which means, Q 1 is no longer 

irreducible in F hat. So, Q 1 further factors in F hat. So, I can write Q 1 as it is, 

irreducible factorization in F hat. At least one of those factors is linear, if, there may be 

still some higher degree factors. So, we can repeat this whole exercise with the higher 

degree factors. So, this iterative process will eventually give me a field, field, let us call 

it F bar. Now, I do not want to call it F bar, F prime, such that all roots of P of x lie in F 

prime. There is a name for this particular field, is called as splitting field of the 

polynomial P. 

All these fields, that we get starting from F hat and continuing all way up to F prime, 

these fields are called algebraic extensions of the field F. We started with F, we took a 

polynomial, which does not factor completely in F and used that polynomial to create a 

larger field and successively larger and larger fields till that point that that polynomial 

factors completely. So, all the field that we get in this sequence will, are algebraic 



extensions. Yes. 

Student: (Refer Time: 42:28) polynomial x (Refer Time: 42:30) minus x square plus 1 

(Refer Time: 42:33). 

Yes. 

Student: (Refer Time: 42:34). 

Yes, that is right, that is right. 

Student: So, those which were already linear in F (Refer Time: 42:48). 

They will stay, those root stay. See, any extension contains the smaller field, contains 

again in those, in the isomorphic sense, right, because now an element alpha of F in F 

hat becomes alpha plus I, that is, the corresponding element in F hat, right. F hat is 

quotient field, so the every element is in equivalence class. So, it is corresponding to 

alpha in F. The element in F hat is alpha plus I. So, this is what an algebraic extension 

is. 

One of you asked in the last class, how, what is algebraic, how do elements of algebraic 

extension look like? This is exactly what they look like. They are polynomials of a 

certain degree in the base field, the starting field. The key thing is, that we must start 

with a field, look at the ring polynomials, quotient it with the irreducible polynomial of 

degree more than 1, we get extension field which contains the original field. Its 

elements are polynomials in the base field. Again, when I say polynomial, this is strictly 

speaking not true because they are equivalence classes of polynomials. What I am just 

going to continue saying, they are polynomials because it is kind of easier to describe 

that way. 

Student: (Refer Time: 44:45) 



Two fields are isomorphic we take them to be equal, not equal, you are right, they are 

not identical. But if two fields are isomorphic, then you can treat them as identical. 

Student: Can a ring be isomorphic (Refer Time: 45:13). 

A ring, so if two rings are isomorphic and one of them is a field, other has to be a field, 

it has to be that. See, the isomorphism means, both additions, multiplication are 

preserved. So, if a times b is 1 in 1, then 5 of times 5 b would be 1 in the other, so that 

means, the inverse will also exist in the other. So, that is, isomorphism essentially, you 

know, captures the same field. In fact, it has to use a notion of isomorphism. 

(Refer Slide Time: 45:57) 

 

Just to take a side issue, why do we consider isomorphism? Well, let me define ring of 

integers as this. Now, integers are, this is a usual way of defining ring of integers, let 

me define the following. This is a collection of different set of elements, the names, the 

symbols I am using are different, but the operations in both these rings are go in the 

essentially the same way, a i a j is a i plus j a i times a j is a i times j. 

Would you say that this is also ring of integers? It is just that I am choosing, it is a 

choosing symbol 0, 1 to represent numbers. I am choosing different symbols to 



represent the ring, but they are both, they represent essentially the same entity, and the 

only way I can establish the equitant between them is true isomorphism. They are not 

equal, but they are isomorphic and that is why, when two objects, algebraic objects are 

isomorphic, we treat them as identical, alright. Yes. 

Student: (Refer Time: 49:05) 

How do we see vector space? Now, you tell me. 

(Refer Slide Time: 49:20) 

 

Go back to the example, consider F hat, what were the elements of F hat? F hat had as 

elements polynomials in y of degree less then d 1 plus I, of course. This I we will 

ignore continually, that is basically the zero elements. Now if you just look at 

polynomials in variable y of degree less then d 1, this forms a vector space over F. I can 

view F hat as a d 1 dimensional vector space over the field F with basis b 1 y y square 

up to y 1 to the d 1 minus 1. Any element of F hat can be written as a linear 

combination this d 1 only and these are linearly independent also. So, that is, falls out 

of the way we have created extensions. 

Student: Scalar multiplication (Refer Time: 51:30). 



Scalar multiplication is through F. Any element of F is treated as scaler here. So, now, 

the next question is, we now understand the algebraic extension of a field, are there 

other types of extensions of a field? So, you start with, extension is basically you start 

with a field and create a bigger field. So, algebraic extension we have seen, how to do 

that? There are, there is one more very important type of extension of a field, which is 

called transcendental extension. 

So, again start with a field F and let F hat be the field of all rational functions in the 

variable x over F. This field F hat is a transcendental extension of F; this is clearly not 

an algebraic extension. Firstly, it is an extension because F hat contains F, but there is 

really no polynomial involved in this extension. Another way of seeing, that F hat is not 

a finite dimensional vector space over F because it contains polynomials of arbitrary 

high degree as elements. So, non-algebraic extensions which include an infinite 

dimensional extension are called transcendental extension, but this is not of much 

interest for us. We will not really worry too much about this. 

Let us get back to the algebraic extension. So, is it and ask the following, is it that we 

can do an algebraic extension from any field, that is, take any field, can we do an 

algebraic, find an algebraic extension of that field which is larger than this? The answer 

is no for the simple reason, take a field, consider F, let us say starting, take a 

polynomial and go to the splitting field of F with respect to that polynomial. Then, take 

another polynomial over F prime and go to the splitting field of that polynomial with 

respect to F prime and keep doing this process. So, essentially just keep of course, this 

is an effectively long process, but you will eventually have a field which contains roots 

of all polynomials in it, okay. 

So, add roots of all polynomials. This is a little informal that notion, that I am giving 

you because I am not precisely defining it. So, let me, instead of that let us just go to 

the definition. So, we have a field F where every polynomial over F has a root in F, then 

such a field is called algebraically closed field because you cannot extend this anymore 

algebraically. You take any polynomial that has a root in F, take that root out, it gives 

you, get a, get another polynomial of lower degree that will also have root in it. So, 

every polynomial of degree d will have exactly d roots in this, such a field F, and so, it 



is not possible to algebraically extend such a field. 

And earlier, what I informally talked about, keep extending it, keep extending it forever 

gives a way to visualize that there exist an algebraically closed field, but that is kind of 

not a very concrete example. So, in the next class I will not, well, do not prove, that 

actually is none, let me just end up with a theorem. 

(Refer Slide Time: 57:53) 

 

The field of complex numbers is algebraically closed. This is also called fundamental 

theorem of algebra. 

Student: (Refer Time: 58:18). 

Sorry. 

Student: (Refer Time: 58:23). 

Yes, every polynomial of degree D has exactly D roots over complex numbers. 


