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Lecture – 06 

Groups: Applications 
 

Today, I am going to show you one application of groups, and that is when it is very 

interesting application, clearly simple one also. There are large variety of problems on 

which groups can be applied, but we will respect our attention to just this one. And we 

will use groups in developing this abstraction further from the next lecture. 
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And this application is related to counting. So, let us start with an example. Suppose, we 

have a square and we want to color the vertices of this square with two colors, let say 

black or white. How many ways are there to color these vertices with these two colors. 

But then if you look at it this closely and that is where the complication set in, if there 

are certain symmetries of coloring.  

For example, if you color this black, this white, white, white, and you color this black, 

and this white, white, white, then these two colorings are essentially the same, because 

you can rotate this square, and get to the other coloring or vice versa. So, we want to not 

just color, we also want to know that how many distinct ways are there to color a square 

in this fashion. And distinctness is counted with respect to this rotation there; if we 



compare the square I color the vertices I rotate that square, I get another coloring that is 

the same coloring. Now, how many colorings are possible? 

We just count all black or gets number of coloring with respect to rotation symmetry. 

First is all blacks; another 1 is all white; third-one is 1 black, 3 white; and it does not 

matter which of this 4 vertices I color as black, because I can rotate it and get any other 

vertex colored as black and all other 3 as white. So, actually there is just one coloring 

with respect to rotation symmetries and which we can color vertex with black and all 

other three as white.  

Correspondingly, there is 1 white and 3 black. Then how about 2 whites and 2 blacks, 

how many colorings are there? 2, right. We can adjacent vertices are black or with 

diagonal vertices where black, and then all other possible colorings can be extracted by 

symmetry. Adjacent 2 black, 2 white diagonal. So, we get 6 different colorings and that 

is it, there are no any other colorings possible. So, there is simple enough. 
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But now let us may propose a more difficult for coloring. Let us say suppose we have a n 

gon with say 97 vertices which is basically similar structure with 97 vertices. Now how 

many colorings are possible? Same 2 colors - black and white; how do you count, 16? 

Distinct colorings with respect to this rotational symmetry; we do not want to, so again 

all black is clearly 1 all white is another, 1 black is another one, 1 white is another one, 

and then rotationally they are all same.  



How about 2 blacks? It will be determined by the gap between the 2 blacks, there will be 

some number you can count easily. But then 3 blacks, 4 blacks, 27 blacks, now if you 

have to count 27 blacks, you have to worry about how many what are the gaps between 

these 27 blacks and with respect to that count is that going to be easy? No, there is not 

going to easy at all. 

Now, by the end of this lecture, we will derive a very convenient way of counting such 

numbers, have we use groups as I just said. So, how do we use the groups? Well, let us 

stay with this particular example, although we will generalise it very soon. We have two 

factors out in the sense the rotational symmetries.  

Let us try to represent the rotational symmetries in an abstract way. When I say 

rotational symmetry, what does it really mean, a rotation is a mapping of or a rotation of 

by certain number, they are 97 vertices so how many different notations will there be, 97 

with different notations, you can take these vertices and keep it to itself that is a trivial 

rotation. There is no rotation or send it to the first one or second one or third one. Once 

you fix mapping of a vertex to the other vertex all other are automatically fixed, so 

therefore 97 notations possible. 

Each rotation can be viewed as a permutation of 1 to 97 correct. So, if that is if I start 

labelling this vertices by numbers, so 1 to 97, each rotation I can represent as sending 

this number 1 to 97 to a permutation of these numbers and that permutation will be 

determined by where 1 is mapped to say 1 is mapped 4, then 2 would be mapped to 5, 3 

would be mapped to 6, 4 would be mapped to 7 and so on, 97 would be mapped to 2 and 

so on right, it is very simple.  

But this abstraction now allow me to view these rotations as maps, and these are not just 

maps, collectively these rotations form a group. Such that pi j of any i is i plus j minus 1, 

I think. So, pi 1 gives does not rotate at all pi 2 shifts by 1 or I can name it any which 

way, but this is and this when I say this of course, I mean that when I map 97 and add 

something to this, I will reduce it by taking out that folding back. 

For mod 97, I will need to do this numbering slightly differently, I should have number 

this with 0, is exactly, I should have started with let us say the number not 1, but 0, 1, 2, 

3 and up to 96. Then I would say that instead of 1, I will call it pi 0, pi 1, up to pi 96. In 



that case, I can now say that pi j of I is I plus j mod 97, now it makes sense i plus j minus 

1, no, now you have pi 0 we start with, so it is i plus j mod 97. 
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Now this tells means let G be this collection of pi 0, pi 1 to pi 96. This is a finite group 

under the usual operation, which is works for permutations that is the composition. And 

this is simple proof pi i compose with pi j equals pi, i means rotate pi i shift by i 

essentially if pi j shifts by j which is same as pi i plus j mod 97. So, there is a closure 

property this shows it has associativity trivially, it is not commutative. How does it, it is 

commutative also in this case it is commutative as well (Refer Time: 13:09), then there is 

identity which is pi 0, and there is inverse. What is inverse of pi i? 97 minus i or is this 

97 minus i; 96 minus i. 

Student: (Refer Time: 13:31) 

97 minus i plus not plus i plus 1. 

Student: pi i and pi 97 minus i. 

Yes. 

Student: 97 minus i plus i. 

So, you get 0 that is right, so 97 pi I is mapped to pi 97 minus i that is sorry the inverse is 

pi 97 minus i. So, for these reasons, now we are seeing some interesting structure 



emerging. Now we can apply our knowledge about groups to understand the number of 

symmetries or adjust number these are we know that these are so many symmetries each 

group elements here captures a one type of symmetry, and then we can use it to count, 

requires a little bit of cleverness. So, let me describe that. What is it that this so the we 

have this group elements, these group elements, each one of them we apply it to a picture 

like this, and rotate it, so each group that is the we apply to this and we get another such 

figure that am I making sense here? 

So, let me explain (Refer Time: 15:27). So, we have this group of symmetries. These 

each one of this, I am going to view it as follows. I am going to view each of these 

elements as operating on a set of elements we call X which is notationally I write it as pi 

which is in G takes in element of X and produces another element of X. What are these 

elements? These are the elements which we really want to count. What are the elements 

you want to count, we have this n gon, 97 gon, we color each vertex, give some coloring 

to vertices.  

How many distinct coloring you just counted this, you write it in the beginning, set X is 

the collection of all possible colorings of 97 vertices that is 2 to the 97, each vertex can 

be either black or white, there are 97 vertices. So, there are 2 to the 97, so that is my set 

X. When I apply a pi in G on one element of this that just rotate it and produces another 

element of set X. This is an important point or rather important view is not very difficult 

to understand, where its important view to keep in mind that this symmetry which are pi 

the rotations, I will view as taking one coloring of this 97 vertices and sending it to 

another coloring of this 97 vertices. Any question on this, no? 
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Now, what is rate that I want to count I can re put it across in a very nice way. Let us say 

here are all the circle, these are all elements of the set X each of the point here represents 

one coloring of the 97 vertices. Now each coloring, if you look at it, an apply a pi on it, it 

would be map to another coloring, let say this is map by pi 1 to this, may be by pi 2 to 

this and so on. Keep in mind that is there are some pi’s, which will map this point to 

itself. For example, pi naught will map an element to itself, it does not change the 

element, but that is not the only pi that may map an element to itself.  

For example, if you look say this element is all black. And you apply pi on it, where does 

it go to it stays here, no matter which pi apply you just stay here right. So, all pi, so we 

will just take it keep it to itself. So, this will look different, so for different elements here, 

we will get different structure that some pi will take it to some other notes some pi will 

map it to itself. Now let me define, so we create this picture, we keep this picture in mind 

this is what we have these element, so then we create this arrows corresponding the 

different pi taking that element or node to another node. 

And now let us define a relation. There exist a pi in G, such that pi a equals b, this is for 

a b in X. So, when 2 nodes a and b in X are related, what does it say about a and b. It 

says that there is a rotation of a that gives me b fine, and therefore a and b are from this 

rotational symmetry perspective are the same. So, we do not want to count in our 

regional counting, we do not want to count a and b separately. We want to count them 



together a just one element. So, this relation is what we want to enforce on this set, and 

then count how many distinct unrelated elements are there, so exactly that is what I am 

driving at but for that we have to first show that R is an equivalence relation and that is 

easy. 

(Refer Slide Time: 22:46) 

 

Well, firstly a is related to a, pi 0 is a. Second a related to b implies b related to a, since 

pi a equals b implies pi inverse b equals a. We know that pi 0 belongs to the group G, it 

is an identity map. We know that if pi is in the group G then pi inverse is also in the 

group G that we why they group property.  

And 3 a related to b, and b related c, implies a related to c, since pi 1 a equals b; and pi 2 

a, I do not want to use index 1 and 2, because I used it is slightly differently pi equals b 

and pi prime b equals c implies pi prime compose with pi a equals c. And pi prime 

compose pi is again by the closure of the property belongs to the group. So, there is 

another elements that there. Here another demonstration that there is a close relationship 

between equivalence relation and group so this group G induces an equivalence relation 

on these elements. 
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So, now the picture looks much nicer, because now we have that there are equivalence 

classes there with respect to this relation. By the way, this is an equivalence class of its 

own, this all blacks, because every element in G takes it to itself, so this is a solitary 

equivalence class. 
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And, now the problem is the number of equivalence classes each equivalence class gives 

me one distinct element, because a element of an equivalence class can be transformed to 



each other via this rotations. So, we just need to count, how many distinct equivalent 

classes are there that will give me exactly the number of different colors.  

Are you with me so far? There is a slight problem because equivalence classes, where 

define equivalence classes, we will have different number of elements you saw example 

here is an equivalence class that are just one element in it, whereas some other 

equivalence class, we will have many more. So, we have to do a slightly careful 

counting, you cannot count very easily. So, how do we count well, here is a trick we use. 

So, in general, we are given a finite group G and a set X such that pi is a mapping X to X 

for pi and G, then G induces we just saw an equivalence relation on X and we want to 

count the number of equivalence classes. So, now, let I am removing this connection 

with this rotation group take I am saying take any finite group and. In fact, this group 

need not even be commutative could be any group we are given a finite group and a 

collection of elements X so that every elements of every elements of finite group maps 

elements of X to X this induces an equivalence relation on X and then you want to got 

the number of equivalence classes. 
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How do we do that for that define a set Y as pi Y is a set of pairs, one component of a 

pair is pi and G, and second component to the pair is a and X. And pi a pair belongs to 

the set Y, if pi of a is a; that means, this elements pi of the group G does not disturb a. It 



keep since a to itself; pi need not be identity, pi could be mapping some other element to 

a third element that is possible, but it just so happens that it keeps the element a to itself. 

What is a size of Y, well, I will write it in two ways. Size of Y, first way I will write it as 

it is sum over pi in G X pi, where X pi is set of elements a in X, so that pi a sends to a 

too itself. This is trivial to observe so I am doing something special here, I am just saying 

that (Refer Time: 30:25) a pi contains a pairs pi sorry Y contains a pair pi and a, for all pi 

and always that is find this equation, you just split that and write it as sum over all pi’s in 

G and X pi where X pi is all the elements a and X, so that pi is in.  

So, this set Y, I am dividing it into subsets one corresponding to each pi, and then 

summing over oops sorry size of X not a size. The other way I will write size of Y as 

sum over a and X we can guess G a so that is a other split you fix one for each a and X, 

you just count again this is a size, count the number of pi’s that map to itself so that is a 

slightly different split of Y. Now as splitting Y in subsets, one for each a in X and then 

counting how many pi’s map that a to itself, and clearly both or though is summations 

give me the same number which is size of Y. 

Therefore, we can write equality between these two sums, pretty straight-forward so far, 

but the cleverness here is already used which is to define this set Y and count it into two 

different ways. Once we said this equation enough, the rest is pretty straight-forward, 

keep in mind the final target. What is the final target, I want to count the number of 

equivalence classes. Let us focus on this sum.  

This sum I am going to write slightly differently and for that let us go back to the picture. 

Keep this sum in mind, what is the sum, this is sum of for every element a of X the 

number of mappings or number of pi’s of G that keep a to itself. If you go back to this 

picture, what we are talking about is how many here is an element a, how many of G’s 

map, how many of pi’s map, this element to itself, so that is how many arrows are in this 

picture going from this element to itself that is G a. If this element is a, G a is in this 

picture the number of arrows that send a to itself, correct. Feel free to stop me and ask a 

question for clarification. 
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Now, I will just make one final observation, and then we are done. If a is related to b, 

then size of G a is same as size of G b that means, if I draw a sub picture of that picture 

say this is a, and this is b, a is related to b, so that mean there is a pi that maps a to b. And 

now I want to see my target is see how many self loops are there in this picture, which 

are arrows which send a to itself. Similarly, I want to count how many self loops are 

there on b and I want to related these pronouns and the relationship is that the numbers 

are the same. Why, well, let us prove this. Suppose, pi a equals b, then for any sigma in 

G a take a map which send a to itself, and I am going to transform this map into a map 

that is map b to itself. How do I transform it? 

Student: Composition with pi. 

Composition with pi and that would be sufficient. I want to go pi sigma pi inverse is in G 

b. Why, just this is another map in the set rather group G. What happens when you apply 

this map on b, apply on b, pi inverse will take b to a, then sigma will take a to itself and 

that pi will take a to b. Since pi sigma pi inverse of b is pi sigma of a, which is pi of a, 

which is b. So, we have established a mapping from G a to G b therefore, we have a map 

from G a to G b and that (Refer Time: 37:03) give it a name plus call it psi. 

Student: (Refer Time: 37:25). 

Yes. 



Student: (Refer Time: 37:29). 

Colors, the relative position the colors are the same, you are right? 

Student: (Refer Time: 37:39). 

The same thing give a very right that is an intuition, and I am just putting their intuition 

in formal symbols that is all otherwise there is nothing very special happening here. You 

can see I think instead of you know giving further details, I think is easy to see that psi is 

a 1 to 1 and on to map. Therefore, size of G a is same as size of G b, psi maps G a to G b 

is a 1 to 1 and on to map, both are finite sets to their size are the same. And once we have 

the same sizes I am done just we will let us go back to this. 
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Let us we write this as splitting this further into equivalence classes. So, O is an 

equivalence class summation a, is in O size of G. So, I am writing this sum and splitting 

it. First, I am going over all equivalence classes and then next I am going over all 

elements within the equivalence class, so in the inner sum size of G a is the same for 

every element, so this is I can write as size of O times size of G.  

Now, what is size of O times size of G a. Go back to this picture, here is an equivalence 

class size of G a, is all pi is that map a to itself that is the number of pi. How many 

elements are there in all in the equivalence class that number we do not know, but what 



we now is that if we take any pi in G, it will send keep either a to itself or send a to some 

other elements in the equivalence class.  

And so the there are size of G different elements in G. Each one of those elements 

corresponds to one arrow in this equivalence class; and size of G a times size of O, this is 

a equivalence class O is exactly equal to number of arrows in this equivalence class, why 

is that. This I am going to saying is O is an equivalence class size of G. To prove this, I 

will just appeal to you to think about the last lecture or the even the lecture before and 

observe the following. 

G is a group, first observation is a G a is a sub group of G. And we then when we 

quotient G with G a, you get equivalence classes, each of this equivalence class 

corresponds to one elements here. There is this is a G a, these are G a's here as the sub 

group then there is a other group. If you look at G, and quotient it with G a, you will get 

exactly the number of distinct elements in an equivalence class. I leave you to proof this, 

it is not difficult just need to observe that. And now I have number of equivalence class 

just look at this, this sum is running over all equivalence classes; and inside the sum, we 

all have the same number which is size of G. So, number of equivalence classes is 

precisely 1 over size of G times the sum. 
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What we just proved is call Burnside’s theorem that number of equivalence classes 

equals 1 over size of G times sum over pi in G X pi. This theorem is applicable in 



general for all groups and all X’s where G operates all though X’s here finite groups. Of 

course and it is a very useful tool in counting, why? let us get back to our original 

example of 97 vertices. How many pi’s are there? 97 in the group G, there are 97 X. Let 

us count X pi for each one of them. What is the X pi 0 size of this? Pi 0 maps an element 

to it each node to itself, there are 97 nodes in that figure each pi maps each node to itself. 

So, how many distinct colorings are there, how many colorings are there which are 

preserved by pi 0, all what is all what is that number? 

Student: All 97. 

All 97; how about X pi 1, X pi 1, pi 1 sends one vertex to the X 1 and then next, next, 

next, next. How many colorings would be preserved by pi? Is the first vertex vertex 

number zero as say color black, pi 1 will map 0 to 1 in order for that colors to be 

preserved one also must have colored black; one is goes to 2, the 2 also must have the 

color black, 2 goes to 3, so all of them must have the color black or all white, so that just 

2. How about X pi 2, here 0 goes to 2; 1 goes to 3. So, 0 and 2 must have same color, 1 

and 3 must have same color. So, 0 2, 2 goes to 4, 0, 2, 4, 6, 8 - this even number must 

have the same color; 1, 3, 5, 7, 9 - odd number must have the same color create counted 

mod 97. 

So the next observation is there it will one, when you start moving from 0, 0 to 4, 8 when 

you come to 98, that is just as one, sorry? 

Student: (Refer Time: 46:44). 

And then. 

Student: (Refer Time: 46:47). 

No, see it would I am claiming there it is all white or all black only, because 0 suppose 0 

is black, then 2 must be black, 4 must be black, 6 must be black and so on 94 must be 

black 96 must be black, 98 must be black 98 is 1. 1, if 1 is black then 3 must be black, 

then 5 must be black, 7 must be black, so all we have gone through; sorry? 

Student: (Refer Time: 47:16) 



So mod of 97 the question is yeah how many can you cover all the elements so this is 

also two. And in fact, all of them are 2, and this falls out of the fact there since 97 is a 

prime number. In case 97 was not prime, suppose we had in 9, then there should be 

different because 0, 3, 6, 9, 0 that would be one. 

Student: That is what I was saying. 

That is what you are saying, OK perfect, so that I did not understand that and that is it. 

We have now our count so the number equivalence classes is 1 by size of G which is 97, 

and this sum inside is how much 2 power 97 plus 2 times 96 that is 192. So, therefore, 

we have an exact count of the number of equivalence classes. 

Student: (Refer Time: 48:43) 

Yes, number of elements, sorry number of elements in G; if the G as a large number of 

elements, then you have more difficulty in counting. 

Student: (Refer Time: 49:01). 

Then you would have to do a little more involve counting, but that still would not be it 

will depend on number of factorization of would that number is. The key game here is 

that this count is now one for each elements of G, G will typically which is set of 

symmetry, we will have a small number of elements. So, you can do this counting much 

more easily compare to earlier where we looking at all possible ways that is we will took. 

So, we have done with the groups and I will mail you the assignment also the second one 

on groups today, and (Refer Time: 49:44) submission deadline. 


