
Cloud Computing 

Prof. Soumya Kanti Ghosh 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 13 

Managing Data 

 

Hello. So, we will continue our discussion on cloud computing. Today, we will discuss 

about some aspects of managing data in cloud, right. So, as we understand that in cloud; 

as we have discussed in our earlier lectures that in cloud, one of the major aspect is the 

data because at the end of the day, your data and even processing applications are in 

somebody else’s domain, right. So, they are being executed at somewhere else which is 

beyond your direct control. So, it is virtually host in some virtual data; a virtual machine 

somewhere in the cloud. So, it becomes tricky to on the security point of view that we 

have discussed; not only that if you look at from the other point of view; so, from the 

clouds provider point of view, managing huge volume of data keeping their replicas and 

making them queriable and these becomes a again a major issue. 

So, all our conventional relational or object oriented model may not directly fit into the 

thing, right. So, long you are doing on a small instances experimental some database 

application or some small experimentations, then it is fine, but when you have a large 

scale thing where huge amount of read write going on or the volume of data is much 

much higher than the normal operations, then it is; we need to look in a different way. 

These are the things which come into not only for the cloud, it was there a little earlier 

also; like how this parallel database accesses; parallel database execution; read-write 

execute operations can be done. So, those things become more prominent or a de facto 

mechanisms; when we talk about in context of cloud. So, what we will try to do is more 

of a overview of how data can be managed in cloud or what are the difference strategies 

or schemes people or this ISPs follows and it is not exactly the security point of view; it 

is more of a management data management point of view, right. 



(Refer Slide Time: 03:02) 

 

So, we will talk about a little bit of relational database already known to you then what 

you known to do that scalable data bases or data services like one of the couple of things 

are important one is Google file system big table and there is a Mapreduce parallel 

programming paradigm; those are the things which comes in back to back, when we are 

doing to the things. So, what we want to do when we were we are managing anything on 

a cloud platform; whether it is application or data we want to make it scalable in the 

sense the it suites scale as the requirement goes up. So, scale-up scale-down in a 

ubiquitous way or minimum interference from the; or minimum human or management 

interference. So, that type of infrastructure; we want to come up with, right, it is true for 

data also. 



(Refer Slide Time: 04:09) 

 

So, these are primarily suitable for large volume of massively parallel text processing, 

right that is one of the major thing or it is suitable for environment say enterprise 

analytics, right, I want to have a; if we want to do analytics on a distributed data stores, 

right, it may be a chain of a shopping or commercial staff or it may be a banking 

organization or financial any financial organization, even it is something to do with large 

volume of other type of data like it metrological data, it maybe climatological data 

something which need to be chant or has a distributed things, I need to do some parallel 

processing down the line where the actual effect comes into play. If you have a simple 

database with a simple instant, then you may not have gone to cloud for that; right. So, it 

may be a simple system or you buy a very a VM and work on it then the actual effect of 

cloud things are actual advantages of cloud you are not taking out. 

So, we will see that similar to big table models there are Google app engines datastore, 

Amazon simple DB which are which different provides provide in different flavor, but 

the basic philosophy are same. 



(Refer Slide Time: 05:46) 

 

So, if we look quickly look at the relational data base which is known to all of you or 

most of you users application programs interact with RDBMs through SQL, right. So, it 

is the structured query language or SQL by which we interact with the user programs, 

etcetera. 

So, there is a relational database management parser which transforms queries into 

memory and disk label operations and optimize the execution time. So, in any query, we 

need to optimize the execution time of the query, right. So, if it is a large data base like 

you, whether you do project before select join before or after select that makes a lot of 

difference; though the query may be same the query output will be same, but the 

execution time may vary to a great extent, right, like I have a huge 2 data bases like R1 

say relational databases R1, R2 and I do some projection or selection of some of the 

things, right I select A1, A2 and then do a; then do the; join whether I do the join before 

or after makes the things like suppose; if I do the select on R1; the number of tuples 

come down from 1 million to say few 1000s. Similarly for R2, if I do a select on that; 

right. So, then joining is much less costlier. So, whether you do the join first or it said 

that becomes a thing that is a database optimization problem nothing to do specifically 

for cloud, but relational database allows you to optimize those things. 

Disk space management layer, this another property that stores data records on pages of 

contiguous memory block. So, that the disk movement is minimized pages are fetched 



from the disk into memory as requested state using pre fetching and page replacement 

policies. So, this is another aspects of the things like one is looking at that property 

making it more efficient in the query processing, other aspect it make it more efficient in 

storage terms of things like nearby things if the query requires the some 5 tables if they 

are nearby store then the access rate is high. So, database file system layer. 

(Refer Slide Time: 08:15) 

 

So, previously we have seen that RDBM parser then disk space management layer then 

database file system layer. So, it is independent of OS file system, it is a separate file 

system. So, it is in order to have full control on retaining or realizing the page in the 

memory, files used by the DB or database may span multiple disk to handle large 

storages, right. 

So, in other sense like if I dependent on the operating system for phase all those things 

then it is fine when your again database load is less if it is pretty large then the number of 

hope you take it text it becomes costly. So, what you need to do we need to do directly 

interact at the at the much lower level with the with the hardware or the available 

resources and that exactly this database file system layer tries to immolate uses parallel 

IO like we have heard about Raid disk Raid1, Raid2, Raid5, Raid 6eN type of things 

arrays or multiple clusters. So, which keeps a redundant redundancy into the thing. So, 

the your this failure down time is much less so; that means, is it is basically full failure 

proof implementation of the database. 



(Refer Slide Time: 09:42) 

 

So, usually the databases storage as row oriented that is we had tuples and its a set of row 

of the same schema optimal for write oriented operation the transaction processing 

applications, relational records stored in contiguous disk pages access through indexes 

primary key on specific columns, B plus tree is one of the favorite storage mechanisms 

for this sort of thing. Column oriented efficient for data warehouse workloads right. So, 

those who have gone through data warehouses. So, it is a high dimensional data huge 

volume of data and being collected and populated by different things. So, it is more of a 

warehouse, rather than a simple database. So, this is this column oriented storage are 

more suitable for data warehouse type of loads aggregate of measures where rather than 

individual data it is more of the analysis on analytics come into play. So, it is aggregation 

of measure columns need to be performed based on the values of the dimension columns. 

So, we are not going to the data warehouse. So, it has a different dimension tables and 

type of things and we need to the operations are more aggregate operations, right, we 

want to do some sort of analysis and type of things. 

So, projection of a table is stored on as a stored on a dimension table dimension values in 

case of a column oriented require multiple join indexes if different projection are to be 

indexed in a sorted order right. So, it is; if it is a different-different thing because the 

organization may have different views for different type of data and need to be stored in 

that fashion. 



(Refer Slide Time: 11:31) 

 

So, data storage techniques as we have seen; it is B plus tree or join indexes. So, one is 

row oriented, other one is column oriented. So, this is row oriented data and this is 

column oriented data and we need to have a join index which allows this data to be 

linked to one another. So, these all these we will get in any standard database book or in 

standard literature; primarily as we are following that Gautam Shroff’s Enterprise cloud 

computing book for this particular thing. So, that is why we have mentioned, but this is a 

very standard operation and you can get in any standard books. 

(Refer Slide Time: 12:16) 

 



So, if we look at the parallel database architectures. So, it is broadly divided into 3 

aspects one is shared memory one is shared nothing another is shared disk, right. 

(Refer Slide Time: 12:30) 

 

So, I just see the picture fast then come back. So, this is a typical structure of the shared 

memory, right. So, these processors different processors shared the memory, here it is a 

shared disk. So, different processors shared the disk, here we have shared nothing. So, 

individual processor has individual disk; so, in case of a shared memory suitable for 

servers with multiple CPUs. So, if there are multiple CPUs. So, if there are multiple 

CPUs memory address space is shared and managed by SMP operating systems like the 

memory address. This is shared among these SMPs and schedule processors in parallel 

exploiting the processors. So, it schedules small things so; that means, I have a shared 

memory space and I basically do a execution in a parallel mode. 

So on the extreme other end is shared nothing. So, cluster independent servers with each 

of its having own disk space and connected by a network. So, at the with a back bone 

high speed network if any server shared its own disk space and then do the rest of the 

execution and if we look at that in between the thing is the shared disk like it is a hybrid 

architecture. So, to say independent server cluster storage through high speed network 

that can be NAS or SAN and clusters are connected to storage data via standard Ethernet 

fiber, etcetera what we have shown here. So, it is a shared storage and these different 



processor access this. So, based on your application type of parallelisms you need we can 

go for any of this structure. 

So, here we see that it is more this more efficient if the memory things are more compact 

where in the other end we if the processors are individually working on separate data sets 

and there are machine to say then this could have been a advantage. 

(Refer Slide Time: 14:32) 

 

So, if we look at the advantages of parallel DB of relational database, if you do not want 

to put that; what are the features of relational parallel database structures which is more 

advantages for parallel this sort of operations, then the relational database efficient 

execution of SQL query by exploiting multiple processors, for shared nothing 

architecture tables partition and distributed across possessing table, right. So, happened 

that I can partition the table and every the data accountant in the table can be executed 

parallely they can be distributed in the different days and the processor can work that 

totally depends on your; what is your working mechanisms out there. 

So, SQL optimizer handles this distributed joint. So, whenever we need to do some join 

then we need to fall on the; distribute your SQL optimizer. So, distributed 2 phase 

commit locking for transaction isolation between the processors. So, these are the some 

of the features, fault tolerant like system failures handled by transferring control to 

standby system. So, I can have different standby system or some with some protocol or 

some policy and then if there is a failure, then I can shift that particular execution to 



some of the standby system. So, that is possible in this sight of things and restoring 

computation for data though these are the things which are more required for data 

warehouse type of applications. 

(Refer Slide Time: 16:15) 

 

So, there are examples of databases capable of handling parallel processing traditional 

transaction processing things are oracle, DB2, SQL server data warehouse application 

are some of the Vertica, Teradata, Netezza; these are the some of the things which are 

more of a data warehouse type of database. Now with these background or with these 

things in our in our store what we say we look at that cloud file system. 



(Refer Slide Time: 16:50) 

 

Now, as we understand it will not go something become totally we cannot through the 

whole thing out of the thing and start doing something new because this database has 

grown; they are fault tolerant, they are efficient we have raids and type of things we need 

to exploit some of the things and put some more philosophy of which behind the cloud. 

So, one of the predominant thing is cloud file Google file system was GFS and back to 

back; we have a open source stuff called HDFS; Hadoop distributed file system. So, 

which is what we say someone to one mechanism set Google file system. So, Google file 

system, design to manage relatively large files using a very large distributed clusters of 

commodity servers connected by high speed things. So, it is whether GFS or HDFS, they 

are enable to work on very large data files which are distributed over this commodity 

servers; typically some of the things are Linux servers which are interconnected through 

a very high speed line. 

So, they can handle failure even during read write of individual files, right, during the 

read-write operation if there is a failure it can handled. Fault tolerant it is definitely a 

necessity. So, if we have any that is any simple system term that P(system failure) 

probability of system failure is 1-(1-P(component failure))N. So, for if the N is pretty 

large, then you can say that we can go for that is the risk of this failure is minimum. So, 

supports parallel reads writes appends multiple simultaneous client program. So, it is 

parallel read parallel write and update by the client program and we have HDFS that is 



Hadoop distributed file system which is open source implementation of GFS architecture 

available on Amazon EC2 cloud platform from. So, we have HDFS which is there. 

(Refer Slide Time: 19:18) 

 

So, if we have a big picture. So, that how a typical GFS are there. So, there are some of 

the components are there is master or the name nodes master node in GFS or name node 

is HDFS and there are client applications and we have different chunk server in case of 

GFS and data nodes in the case of HDFS in a typical cloud environment. So, single 

master controls the namespace. 

(Refer Slide Time: 19:47) 

 



So, logically a single master is there which control the namespace. So, namespace is 

important because it gives us that how there are stored; how data can be referred; it is 

more of a; it may modes of a meta-data sort of information which is controlled by the 

master large files are broken into chunks, in case of a GFS and block; what we called in 

case of a HDFS stored on commodity server, typically Linux servers called chunk 

servers in GFS and data nodes in HDFS, so replicated 3 times on different physical rack 

network segment. So, this chunk; so, what we have? We have the GFS or HDFS in the 

things below that we are having a chunk servers which are basically Linux servers chunk 

server or data nodes in the things which are the main custodian of the data and they are 

the every data Di is replicated on different 3 times at least 3 time on different physical 

rack and network segments. 

(Refer Slide Time: 21:11) 

 

So, if you look at the read operation in GFS, client program sends the full path offset of a 

file to the master, right where it wants to read or name node in case of HDFS. So, we 

will refer the GFS master node and which is back to back when we it is refer to the name 

node in HDFS master replies on meta-data for one of the replicas of the chunk where 

these data is found, right, client caches the meta-data for faster access. It reads the data 

from the designated chunk server. So, master from the master; it gets that and gets the 

mirror this meta-data and from there it basically access this chunk server. 



(Refer Slide Time: 22:01) 

 

So, for read operation any of these chunk server or replicated chunk server will do where 

write append operation in GFS is little tricky, client program sends a full path of file to 

the master GFS on name node HDFS right, the master replies on the meta-data for all 

replicas of the chunks where the data is found. The client send data to be appended into 

the all chunk servers; chunk server acknowledges the receipt of the data, master 

designate one of the chunk server as primary, the primary chunks server appends its copy 

of the data into the chunk by offset choosing an offset, right. So, that it do it appending; 

appending can also be done beyond end of file to account for the multiple simultaneous, 

right. 

So, this is a pretty interesting thing that even if you can have append end of EOF beyond 

EOF because there are simultaneous writers which are writing and it basically 

consolidated at later stage. Sends offset to the replica, if all replica do not success in 

writing in the designated offset, the client retries, right. So, the all offset; so, idea is that 

whenever I am looking for a data, I need to know that for all the 3 replicas, it should be 

at the same offset ideally. So, that I the read processed as there is no delay in that things 

because once its calculates it is directly access the other chunks on that offset, right. 



(Refer Slide Time: 23:42) 

 

So, fault tolerant in Google file system; the master maintains regular communication 

with the chunk server what we say heart beat messages sort of a are you alive type of 

thing and in case of a failure chunk server meta-data is updated to reflect failure for 

failure of primary chunk server the master assigns a new primary clients occasionally we 

will try to this failed we will try to this failed chunk server, update their meta-data from 

the master and retry. So, in case of a failure the chunk server meta-data after reflect the 

failure. So, the chunk server meta-data says that there is a failure. So, the next time you 

do not allocate or like that and for failure of the primary server itself, the master assigns 

a new primary. So, it assigns a new primary to work on the thing. 



(Refer Slide Time: 24:47) 

 

And update the clients; occasionally we will try to this failed chunk server because it will 

be flagged, right. Now another related stuff is big data or related concept of big data, 

distributed structure storage 5 system build on GFS, right. So, it is build; it is a structure 

distributed structure storage file system it is build on GFS, right. So, data is accessed by 

row key, column key, timestamp. So, if you look at. So, it is a multiple instances are 

stored. So, there is a time key column key and of course, say row key which says that 

where the data is there. 

(Refer Slide Time: 25:26) 

 



So, in big table each column can store arbitrary name value pair in the form of column 

family and label right. So, here if you can see that these are column families and it is 

labeled and they store a name value pair. Set of possible column family is of a table is 

fixed when it is created. So, which are the different column families will be there. So, 

that is somewhat fix. Labels within a column family can be created dynamically and at 

any time. So, I can recreate or create the table each big table cell row and column can 

store multiple versus of the data in decreasing order of the time stamp. 

So; that means, it is the chronology is meant it in that fashion. So, it is multiple persons 

are stored in a decreasing time stamp. 

(Refer Slide Time: 26:20) 

 

So, again we see these things. So, there are different tables there are different tablets 

which are referred to this table and it is a hierarchical structure and we have a master 

server it is primarily a registry or a meta-data repository. So, each table in big data is 

split into rangers called tablets, each table is manage by tablet server. So, its stores each 

column family for a given row range in a separate distributed file called SS table. So, this 

type of management goes into play. So, that my access rate end of the day the access rate 

or will be pretty high. 



(Refer Slide Time: 27:03) 

 

So, a single meta-data table is maintained by the maintained by the many meta-data 

server the meta-data itself can be very large. So, the meta-data while storing this itself 

can be very large, in that case; it is again broken down into split into different tablets a 

root tablet points to the other meta-data tablets. 

So, if the meta-data are repository a pretty large, it is again broken down into different 

tablets and there is a root tablet which coordinates with your meta-data; this tablets and 

want to real a want to emulate or realize that meta-data services. Supports large parallel 

reads and inserts even simultaneously on the same table, insertion done in sorted fashion, 

requires more work can be more work than the simple append, right. There is true for a 

other databases also because once you insert it is basically you need to push the data 

aside and create a insertion point where as in case of a append you are putting data at the 

end of the end of that storage or data or the tables. 



(Refer Slide Time: 28:22) 

 

So, Dynamo; it is developed by Amazon that supports large volume or concurrent 

updates each of which can be small in size different from big table supports bulk read 

and writes right end is. So, data model for Dynamo; it is a simple key value pair well 

suited for web based e-commerce type of applications and not dependent underlining 

distributed file systems, right for failure handling conflict resolution, etcetera, they do it 

their self. 

(Refer Slide Time: 28:59) 

 



So, this is typical architecture of the Dynamo where there are several virtual nodes and 

different physical nodes and they are logical connectivity are zone. 

(Refer Slide Time: 29:13) 

 

So, if you look at the Dynamo architecture. So, it is a key value pair with arbitrary value 

key value pair with arbitrary arrays of bytes like it uses MD 5 generates a one twenty 

eight bit1hash table hash value. 

So, it basically try to map that were virtual node will be mapping to by using this has 

function. Range of this has function is mapped as we are discussing that set of virtual 

nodes arrange in a ring type of thing. The object is replicated as a primary virtual node as 

well N-1 additional virtual nodes, the N is the number of physical nodes. So, that any the 

objectives replicated into the things. Each physical nodes are managed is a number of 

virtual node at a distributed position on the ring. So, if you look at that this physical node 

server they are basically linked with this virtual node server. 



(Refer Slide Time: 30:12) 

 

Dynamo architecture, load balancing for transient failure network partition this can 

handle write request on object that executed at one of its virtual nodes, right. 

Forward all the request to all other nodes; it is executed one of the virtual node and say 

in all other all other nodes which have a replicas of the object so; that means, if I am a 

object; if it is replicated into another N-1 node. So, one is updated rest are being 

communicate. So, there is a quorum protocol that maintains eventual consistency of the 

replicas when a large number of concurrent reads and writes going on. So, this quorum 

tries to find out that which are the minimum level of replica will be there to handle this 

large read write of person. 



(Refer Slide Time: 31:02) 

 

So, in next, we are having this dynamo distributed object version right creates a new 

version of the objects in his local time stamp created. There are algo for column 

consistency. 

(Refer Slide Time: 31:12) 

 

So, read operation R; write operation E. So, read plus write operation should be greater 

than any of the system is quorum consistent there are overheads which will be coming 

there is a efficient write large number of replicas are to be read and if it is for a, b, c and 

read large number of large number of replicas need to be written. So, these are the 2 



things which are they are; so, it is implemented by different storage engines at node level 

Berkley DB used by Amazon and can be implemented to using MySQL and etcetera. 

(Refer Slide Time: 31:51) 

 

Another; the final concept what we are having is the data store. Google and Amazon of a 

simple traditional key value pair database stores, right, Google app engines data store in 

case of Amazon what we say simple DB; all entities objects in the data store reside on in 

one big table, right. 

Data store exploit column oriented storage right, data store as I mean store data as a 

column families. So, unlike our rational traditional thing is a more of a row family or 

tuple based it is called column family. 



(Refer Slide Time: 32:30) 

 

So, there are several advantages or several features or characteristics like multiple index 

tables are used to support efficient query. Big table horizontally partitioned call sharded 

and across the disk whereas, stored lexicographically in the key values other thing. 

Beside lexicographic sorting of the data enables there is a execution of prefix and range 

queries on key values entities are grouped for transactional purpose because if there is if 

when we are having transaction. So, that is a set of entities which are accessed in a more 

frequent way and index table to support varied varieties of queries. 

So, we can have different indexes or different type of queries. So, it is not we should 

understand is not a simple a low a database it is a large database. So, in order to do that; I 

cannot churn the whole database. So, need to slice them appropriately. So, that based on 

the different variety different queries it can be executed more efficiently. 



(Refer Slide Time: 33:37) 

 

And there are few more properties like automatically it creates indexes single property 

index or there is a kind index supports the efficient lookup queries of form select all type 

of things the configurable in indexes and there is a query execution indexes with highest 

selectivity is chosen, right. So, it is when we do the query execution. 

So, with this we will stop our discussion here. So, what we tried to discuss over see is 

there different aspects we have the notion of our traditional databases which is 

established, fault tolerant, efficient and there are different mechanism to do that. So, we 

have we have also already this parallel execution things and its present. So, when we 

deal with a large volume of data in the cloud which are likely to be there, then what is 

are the different aspects we need to look at. So, we may not be able to follow the this 

column oriented or tuple oriented relational database we need to a sorry row oriented 

database we need to four for column oriented data base and there are different file system 

like GFS, HDFS and over that this data store Dynamo and your simple DB and those 

things what which are being implemented by various inter cloud service providers CSPs 

for efficient storage access, nread write execution of very very large databases. 

Thank you. 


