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Hello, so we will continue our discussion on cloud computing. As in our previous lecture 

we discussed about data store or data how to manage data in cloud having an overview 

of the things. Now, we like to see that another programming paradigm which is call 

MapReduce right a very popular programming paradigm which is primarily level out by 

Google, but now being used for different scientific purposes. So, Google primarily 

developed it for their large scale searches search engines primarily to search on huge 

amount of volumes of documents which their Google search engines chants, but it 

becomes a important paradigm programming paradigm for this scientific world to work 

on to exploit this philosophy to efficiently execute for different type of scientific 

problems. 



 

 

(Refer Slide Time: 01:30) 

 

So, map reduce is a programming model developed at Google, primarily objective was to 

implement large scale search, text processing on massively scalable web data stored in 

using big table or and GFS distributed file system. So, as we obtained that big data and 

GFS distributed file systems the data are stored. So, how to process this massively 

scalable web data that means, the huge volume of data are coming into play. Design for 

processing and generating large volumes of data via massively parallel computation 

utilizing tens of thousands of processor at a time. 

So, I have a large pool of processors a huge pool of data and I want to do some analysis 

out of it. So, how can I do it? So, one very popular problem what we see is that if I have 

a huge volume of data and number of processors then how do say want to do some sort 

of word counting or counting the frequency of some of the words in that huge volume of 

data like I want to find out that how many times IIT Kharagpur appears in this a huge 

chunk of data, which are primarily stored in this HDFS or GFS or big table type of 

architecture. 

So, and it should be fault tolerant, ensure progress of the computation even if processor 

fails and network fails right. So, because as there are huge volume huge number of 

processors and say underlining networks, so I do ensure fault tolerant. So, one of the 

example is Hadoop open source implementation of MapReduce developed at time 

volume had over initially developed at Yahoo and then became a open source. Available 



 

 

in a pre packaged AMIs on Amazon EC 2 platform, right. So, we are what we are 

looking at is trying to give a programming provide a programming platform or 

programming paradigm which can interact with data basis which are stored in this sort of 

cloud data stores right, it can be HDFS, GFS type or managed by big table and so on so 

forth. 
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So, if we look at again parallel computing as we have seen in our previous lectures, so 

different models of parallel computing it depends on the nature and evolution of the 

processor, multiprocessor computer architecture. So, it is shared memory model, 

distributed memory model, so these are the 2 popular thing. So, parallel computing 

developed for computing, intensive scientific tasks as we all know; later found 

application in data base arena or data base paradigm also, right. 

So, it was initially it is more of a doing a huge scientific task and later we have seen that 

it has a lot of application in the database domain too. And we have seen in our earlier 

lecture that we have three type of scenario one is shared memory, shared disk and shared 

nothing, right. So, whenever we want to do a programming paradigm or work on 

something which can work on this sort of parallel programming paradigm where the data 

stored in the different this sort of clouds storages, so we need to take care of that what 

sort of mechanism is there. Like, whether it is shared memory, shared disk or shared 

nothing type of configuration. 
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This is the picture already we have seen in our earlier lectures, so we do not want to 

repeat. So, it is a shared memory structure, shared disk and shared nothing, but the 

perspective we are looking at now is little different. There it is more of the storage where 

we are looking at. Now, we are trying to look at that how the programming can exploit 

this type of structure. 
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So, this is already we have seen; so, shared memory suitable for servers with multiple 

CPUs. Shared nothing cluster of independent server each with its own hard disk, so 



 

 

connected by a high-speed network. And shared disk, so it is a hybrid architecture 

independent server cluster shares storage through a high speed network storage like NAS 

or SAN. Clusters are connected via to storage via standard Ethernet, fast fiber channel 

infini-band and so on and so forth. 

So, whenever we do anything parallel or anything parallel computing or parallel storing 

and type of things, what is our back of the mind is to have efficiency right. So, you want 

to do parallism to one of the major aspect is to have a efficiency. There may be other 

aspects of fault tolerance and full proof and failure register and type of thing, but 

primarily it should be efficient. Now, first of all the type of work we are doing there 

should be inherent parallism into it. If there is no inherent parallism, then it may not be 

fruitful to do using always a parallel architecture. 

So, first of all they should be inherent parallel it should not be a sequence of operations 

and then you try to do a parallel. So, it is job 1, job 2, job 3, job 4 a sequence is there or 

in between some parallism is there, but if you want to make a parallel operation, there 

may not be. 
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So, if a task takes time T in uni-processor, it should take pT /  if executed in P processor 

ideally if the parallelism is there, and we are thinking that there is no cost in dividing 

distributing and type of things. So, it ideally pT /  is a something ideal condition we can 

have. So, inefficiencies introduced in distributed computation due to need of 



 

 

synchronization among the processors. So, I need to synchronize among the processor, it 

is not like that all processor has you may have the individual clocks and you need to 

synchronize that where things will be there. Otherwise if you if you divide the job into 2 

where one executed now and one executed after couple of hours then it is it could have 

been better that is execute to in a one system. So, synchronization in between the 

processor is one of the important aspects. So, need to synchronize. 

Overheads of message communication between the processors another aspect; imbalance 

in the distribution of work to the processors another, so it may not be equally divided and 

type of things. So, these are the different aspects which indirectly affect this efficiency or 

bring about inefficiency into this parallel implementation. So, parallel efficiency of an 

algorithm can be defined as 
pTp

T


. So, if it is scalable we say this is scalable or 

scalable parallel efficiency remains constant as the size of the data increased along with a 

corresponding increase of the processor. 

So, what is happening when more data is coming, so you go on deploying more 

processor or you go on requesting from the cloud more processor and then your 

efficiency remains constant, the efficiency values does not change? So, then what we say 

that it is scalable. So, that if I increase both say for example, for linearly then it goes on 

in the constant thing. Parallel efficiency increases with the size of the data for a fixed 

number of processor, it increases with the size of the data; and if it is a fixed number of 

processor then we can have effectively more efficiency. 
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Now, the example, which is there in that book you are referring also you will find the 

example in different literature, this sort of example not the same. Consider a very large 

collection of documents say the web document crawled by the entire internet. So, it is a 

pretty large it is large every day it is growing. The problem is to determine the frequency 

that is total number of occurrences of each word in this collection right. So, I want to 

determine the total number of what is the frequency of occurrences of each word in this 

document d. So, thus if there are n documents and m distinct words, we use to determine 

m frequency one for each word right. So, this is a simple problem may be true or may be 

more relevant for search engines and type of things. 

So, we have two approaches let each processor compute the frequency for pm/ words. 

So, each processors if there are p processors, if the m frequencies I need to calculate, I 

divide m by p, so many, so for example, I want to look for I have ten processors and I 

have no I am look for some 90 words, m equal to ninety. So, every processor does it 

chunk of ten right roughly if it is not divisible then you have to make some asymmetric 

division. So, it makes things and that at the end of things they again report the things 

together or in some through some system. So, other way let each processor compute the 

frequency of m words across n by p documents. 



 

 

So, total number of documents say 10,000. So, 10,000 number of words I am looking for 

90 number of processor I am having 10. So, one is 90 by 10 is the 9 words on an average 

given to the every processor and they count on the things. 

Other thing what we are telling that each processor compute the frequency for all the 90 

words, but on n by p document if that 10,000 words and then p 10 processors; so, some 

thousand document so each take 100 documents and do the processing and once that 

frequency of this m words by individual professors processors come out then I sum up 

this thing and aggregate and show the result that this is the thing right, by followed by all 

processors summing their results right. Parallel computing, now which one will be 

efficient based on this parallel computing paradigm, we need to look at right. So, parallel 

computing is implemented as a distributed memory model with a shared disk, so that 

each processor is able to access any document from the disk in parallel with no 

contention. So, this can be one of the implementation mechanisms. 
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Now, time to read each word from the document say if let us assume that time to read 

each word from the document equal to time to send the word to another processor via 

inter processor communication and equals to c. So, making thing simple so it may be it 

should be means ideally in ideal case or in a real life case it will be different, but we 

make these scenarios. So, first approach so time for so time to add to a running total of 



 

 

the frequencies negligible, so summing up is negligible. Once I find the frequencies of 

this m word then summing up is negligible. 

Each what word occurs f times on the document on an average. So, if I for our 

calculation sake that each word that on an average, workers some f time. Time for 

compute all m frequencies with the single processor equal to then I have cfmn  . 

So, this is the time to compute m frequencies with a single processor, if I have a single 

process this could have been the thing. So, if we do the first approach, first approach was 

this one, let each processor compute the frequency of pm/  words, so that is a first 

approach. 

So, each processor reads at most 
fp

mn




. So, parallel efficiency is calculated as 

cfmnp

cfmn




, so 1 by p very vanilla type consideration. So, we take that all are doing 

all are morally same frequencies, all are negligible time for the any aggregation then the 

all time for the means read and write another operations we have to consider c, 

considering this we are getting 
p

1
. So, efficiency falls with increasing p. So, if we 

increase the p, then the efficiency falls. So, it is not constant. So, it is not scalable, it is 

one of the major problem is that though it is what we say easy to conceptualize etcetera, 

but there is a problem in the scalability so of the things. This one that let each processor 

compute frequencies per n by m words n by m words is not scalable. 
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Whereas, in the second approach, where that m words we divide into the different 

processes oh sorry we divide that document d, whereas every processor compute this for 

all the m words and then aggregate. So, apparently what it looks that this could me more 

costly. So, it is there is a aggregation thing then you are doing clubbing those processor, 

club means dividing the m set into different this whole documents set into different 

partitions and doing that, this could be in efficient than the first one. But let us see what 

is there. So, the number of read performs for each processor is fmpn / right the time 

taken to read is fmpn / . It is because you are having pn /  amount of volume of the 

data and then want to calculate for cfm  , so that number of time taken to calculate 

this read. Time taken to write partial frequency on of m words in parallel to disk is 

).( mcm  . 

So, once you are done you need to write on the parallel to the disk and that is that comes 

to be )( mc time taken to communicate partial frequency right to 1p  processors. And 

then locally adding sub p sub vectors to generate p/1 of the final m vector of frequencies 

then what we have c
p

m
p . So, what you need to do we are time taken to communicate 

partial frequencies right because you do not have the whole frequencies. So, partial 

frequency by different processor and 1p  processor and then locally adding p sub 



 

 

vectors to generate 1 by p here of the final m vector frequencies is this one. So, 

individually need to do. 

So, if we adopt all those things in case of this second approach what we have this parallel 

frequency as this structure, so
nfp21

1


, so that is if you if you look at it little minutely 

if you consult the book, it is not a very difficult problem difficult to deduce. It is pretty 

easy just have to go by step by step. Now, this is an interesting phenomena. So, the term 

we are having here is nfp21 . So, in this case a p is many, many times less than nf. 

Efficiency of the second approach is higher than that of the first right here if it is p is 

many, many times less than nf, then this term that this will be tending towards one. And 

it can be seemed that there is much efficiency is much higher. 
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In the first approach, so there is a type it should be, let us in the in first approach each 

processor is reading many words than it needs to read resulting in wastage of time. What 

we have done in the first approach this many processor we have divided this m into 

different chunk. So, the processor say as we as we have taken the example that if I am 

having m as ninety and number of processor is p, so 90 by p is 10. So, everybody is 

getting 10, but when it is searching the whole document, so number of documents is 

reading where there is no hit, it is no success. 



 

 

So, efficiency, so in the second approach every read is useful right. As it results in a 

computation and distributes to the final results. So, for in the second approach, every 

read is likely to be useful where it contribute to this result. So, it is scalable also. The 

efficiency remains constant at both n and p increases potentially, they proportionally. So, 

what we see what we have done there that if my data load increases I will increase the 

processor. So, if I proportionally increase the data processor then my efficiency remains 

constant in this case in the second case. Efficiency tends to one for fixed p and gradually 

increasing n. So, efficiency tends to 1, if the number of processor is fixed and gradually 

increased we are increasing n that means we are increasing the data load, number of 

processor fixed and it will basically approaches one. 
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So, with these context or with these background of that which can be that this doing that 

individually then aggregating is becoming more efficient with this things, we look at that 

your map reduce model. So, it is a parallel programming abstraction used by many 

different parallel applications which carry out large scale computations involving 

thousands of processors; leverages a common underlining fault tolerant implementation. 

Two phases of map reduce map operation and reduce operation. A configurable number 

of M mapper - mapper processor and R reducer processors are assigned to work on the 

problem. Computation is coordinated by a single master process. So, what we are having 

now? There are different mapper processors like and there is a different reducer 

processor. So, whole process, I divide into two things. 
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Like I have a mapper, so different mapper processor, so there are M processor and there 

is reducer. So, there are different reducer processor. So, what we does it when the data 

come here it basically do some execution and then this reducer may be based on the type 

of problem it will go on different reduce things and do the execution. So, reducer will 

generate is more of aggregated results right. So, what it tries to do it is a parallel 

programming abstraction used by mineral parallel applications which carryout large 

scale computation involving thousands of processors. So, here the application come into 

play. So, it is a two phase process, one is a map operation, another is a reduce operation. 

So, that the configurable number of M mapper processor, R reducer processors, so it is 

configurable; that means, you can have more etcetera mapper and reducer. 
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So, map reduce phase. So, if we look at the map phase each mapper read approximately 

M
1 of the input from the global file. So, it is not the whole data d, but a chunk of the 

data read. Map operation consists of transforming one set of value key value pair to 

another set of key value pair. So, what map does, it is a one set of key value pair to 

another set of key value pair. So, map )].[().( 2211 vkvk  . So, each mapper writes 

computational results in one file per reducer. So, what it does, it basically for every 

reducer it produces a file. So, it says if there are reducers R 1, R 2, R 3 a mapper m, I 

create three files based on the corresponding the reducer. So, the files are sorted by a key 

and stored in a local file systems right. The master keeps tracks of the location of these 

files. So, there is a master map reduce master, so which takes care of this location of the 

file, each mapper produces a one file for every reducers and the master takes care where 

the files are stored in the local disk etcetera. 
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In the reduce phase, the master informs the reducers where the partial computation have 

been stored on local file systems of respective mappers; so that means, in the reducer 

phase the reducer consult this master which informs that where its related files are stored 

corresponding to the every mapper functions. Reducer makes remote procedure call to 

the mappers to fetch the files. So, reducer in turn make a remote procedure call for the 

mapper. So, mapper it is somewhere in the disk and the reducer there may be in different 

structure with different types of VMs etcetera running on the things ideally it is not far 

not geographically distributed then the things will not work. So, nevertheless it is 

working on that particular data which are produced by the mapper. 

So, each reducer groups the results of the map step using the same key value key value 

function f etcetera, so ]))([.(]).[( 2222 vfkvk  . So, here the aggregated functions in 

comes into play. In other sense, if we remember our problem. So, what we do that every 

doc, every key or every word we want to calculate the frequency, so the functional model 

is summing up the frequencies of the things, it can be different for different type of 

things. So, it does a vk2  etcetera. So, it goes for another key value up here. Final results 

are return back to the GFS file system Google file system. 
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So, map reduce example. So, if we see there are 3 mapper, 2 reducer. So, map function in 

this in our case is that is the data d there are the set of word w1, w2, wn and it produce for 

every wi the count of the things, how much count the portion of the mapper it is having. 

So, every wi, it counts the thing. So, if you see if d1, it has w1, w2, w4; d2 these are the 

things and it counts this. So, every mapper does it, and then it basically stored in a 

intermediate space where the reducer reads. So, it generates every file for every reducer 

like this particular things is generate a particular file for a reducer. So, there are two 

reducer. 

So, for two reducer every mapper generates the file. So, and the reducer in turns 

basically accumulate those. So, it says that w it has the thing w1, w2, so w1 as 7, w2 as 

something 15. In this case, w3, w4 are the other two. So, the reducers reduces the thing 

from the inputs of the or from the outputs of the mapper getting the input from the 

mappers output. 
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So, map reduce model is fault tolerance; there are different way to look at it, one is heart 

beat message. So, every particular time period, it says that whether it is a live and type of 

things. Communication exists, but no progress master if there are communication exists, 

but no progress master duplicate those tasks and assign the processor who are already 

completed or some free processors. If the mapper fails, the mapper reassigns key value 

designated to it to another work node on the re-execution. So, if it is a failure then it re-

execute the thing. If the reducer fails only the remaining task need to be reassigned to 

another node. Since the completed tasks are already written back to Google file system. 

So, if the completed tasks are there, they are already in Google file systems only the 

remaining tasks need to be reassigned. 
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So, if you want to calculate the efficiency of the MapReduce, so the general computation 

task on a volume of data D. So, takes w D time to uni-processor read time to read data 

from disk performing computation write back to the disk. Time to read write one word 

from to disk is c. Now, the computation task is decomposed into map reduce stages like 

map stage mapping time Dcm  data producing and output D , reduce stage reduce time 

Dcr and data produced at the output is D . So, this is not that difficult. So, mapping 

time how much that with D every mapper is doing data produced time is from the 

particular mapper which is how much time it is producing reduce reducers time in 

calculated with the every cr and that finally, we have that reducer output. 
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So, considering no overheads in decomposing the task into map and reduce stages, we 

can have the following relationship. So, if we forget the overhead in decomposing in 

mapping and reducing, so we can have this summation of the things. Now, if we had P 

processors that serve as both mapper and reducer right irrespective of the phases to solve 

problem. So, if we use P processor sometimes it acts as a mapper, sometimes act as a 

reducer. Then we have additional overhead each mapper writes to local we have some 

additional overheads writes to local disk followed by each reducer remotely reading to 

the disk. For analysis purpose time to read to a word locally or remotely, let us consider 

as same. Time to read a data from the disk is for each mapper is wD by number of with 

an if the number of processor is P PwD  data producer is mapper is PD . 
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So, time required to write back to the disk because once you read then you have to after 

computation, you have to write back to that is that much. So, similarly data read by each 

reducer from its partition to each mappers P mappers are PPD . So, 
2P

D
. So, if we 

calculate like that we say that the parallel efficiency of the map reduce implementation 

comes as this one,


w

c2
1

1



. 
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Now, so this is what we get a parallel efficiency out here. Now, if the indexing map 

reduce there are several type of applications one is indexing a large collection of 

documents right, so that which is primarily one of the major motivation for Google. So, 

important aspect for web search as well as handling structured data. So, map task 

consists of emitting a word document, record id pair for the each word like as we have 

seen wdk.w1.n into map to one its map w1 into every word dks. So, I can have some sort 

of indexing reduce step groups the pair of words and creates entry into the thing. 

So, there are applications in relational operations using map reduce. Execute SQL 

statements relational join, group by on large set of data. Advantages of parallel data base 

large scale fault tolerance we want to exploit and I can have those type of function like as 

we have seen that it is a group by clause and type of etcetera we can do, so that some sort 

of relational operations we can execute. 

So, with these we come to this end of today’s talk. So, what we try to do here to give you 

a overview of a MapReduce paradigm that how a problem can be divided into a set of 

parallel executions, which is a mapper node which creates intermediate results. And 

there is a set of reducer nodes which takes this data and create the final results right. And 

what we can which there are some of the things which is interesting that the mapper 

creates data file for every reducer. So, it is the data is created per reducer. So, the reducer 

knows that where the data is there. 

Over and above there is a master controller or the map reducer master things which come 

to which knows where there things where the data is stored by the mapper and how the 

reducer will read. Not only that if the mapper node fails how to reallocate the things; if 

the reducer node fails, how to reallocate because the things or the reallocate the not 

executed data not executed things not executed yet to be executed operations and so on 

and so forth. So, with this we will stop our lecture today. 

Thank you. 


