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Welcome to lecture number 18 of the course on High Performance Computing. Just to 

remind you what happened in the previous lecture, we were trying to understand what 

happens when a program of ours runs on a computer system. We saw that the operating 

system is sharing the resources of the computer system among all the programs in 

execution. In particular, as far as the use of the one processor on the system is concerned, 

we looked at how the operating system, by actually viewing each process as a data 

structure, as a collection of data and some operations associated with it, can shift a 

tension from one process to another process. This was well illustrated by a very simple 

diagram that we came up with, called the phase operating systems perspective of how the 

process states transit or the process state transition diagram. So, I will just start off by 

reminding you about that. 

(Refer Slide Time: 01:09) 

 



In the process state transition diagram, there is one state associated with each possible 

condition that a process could be in. At any given point in time, one process can be 

running on the CPU, several processes could be waiting for events of various kinds to 

happen. Once the events happen, each of those processes could become ready to be 

allowed by the operating system to run on the CPU. 

Now, the interesting question became - when we have one program running on a system 

sharing the resources with hundered other processes, what do we need to know about 

what happens to our process? Now, we see that it may be useful to know something 

about how the operating system decides when a ready process should be allowed to run 

and that is what we are looking at. 
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We are looking at various possible strategies the operating system could use. The event 

of switching from one process to another is described as a context switch. It involves a 

little bit of overhead, because the hardware state of the process which used to be running 

must be remembered because you will subsequently have to run at some point later in 

time. The hardware state of the process, which is to start running on the processor, must 

be put into the registers of the processor. So, this is what we call the context switch. 
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The operating systems process scheduler could be written to use many different kinds of 

policies depending on what the perspective of the person who designs the operating 

system is. We saw that the two possible higher level considerations could be either to try 

to come up with the policy that reduces the average amount of time to execute a program 

across many programs; alternatively, to try to be fair to all processes. Various possible 

process scheduling policies could be designed. We saw that if one takes a viewpoint that 

the operating system should not preempt a process. In other words, allow a running 

process to run as long as it wants. Then, there are one or two possible policies such as 

First Come First Served, which would be implemented using a queue of processes, but 

which would suffer from something like an infinite loop running in a process because 

that process would actually never yield the CPU. 
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The alternative is to use non-preemptive policy such as Shortest Process Next, which, 

once again will not do anything about the infinite loop process, but will be a little bit 

fairer among processes in order to reduce the average program execution time. Since 

neither of these policies is ultimately fair enough for the requirements of a real operating 

system like Linux or UNIX, we learnt that, in practice preemptive policies are what we 

should expect. 
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A preemptive policy is one which periodically will switch from the running process to 

one of the ready processes in order to be fair to all processes. One simple idea in this 

direction was the Round Robin policy, which we described in this way. It maintains a 

First Come First Served ReadyQ, a newly arriving process, a newly created process will 

be added to the end of the ReadyQ. 

A process, which is running at some point in time, will be preempted at the end of its 

CPU time slice in favor of the process, which is at the head of the ReadyQ. The process 

which was preempted itself will enter the ReadyQ at the end. So, in this way, processes 

periodically get some amount of CPU time and then go to the end of the ReadyQ, and so 

on until they finish their execution. So, in that sense, I described it as much fairer than 

any of the non-preemptive scheduling policies. 

We also saw that this scheduling policy would not suffer from an infinite loop in a 

program because at the end of the CPU time slice, even if the process was running an 

infinite loop, it would be preempted from the CPU in favor of one of the ready processes. 

(Refer Slide Time: 04:58) 

 

Next, we are going to look at the alternatives to the Round Robin scheduling, which 

would try to take other considerations into account in a sense to try to become fairer to 

processes in a commercial system like UNIX or Linux, we suspect that fairness might be 

an important consideration. In this direction, rather than just inserting processes into the 



First Come First Served queue on the basis of their time of creation, some other 

consideration could be used. So, the idea of any priority based scheduling scheme is that 

the ReadyQ need not be ordered on a First Come First Served basis. 

First Come First Served basis is in some sense arbitrary. It does not take into account any 

attributes of the process other than its time of creation. In order to be fair to processes, it 

might actually make sense to have other considerations, which could be described by 

what is called a priority. You have heard the word priority in connection with common 

everyday usage. The word priority would imply that all processes are not considered to 

be equal at all points in time. Some may have higher priority or higher privileges or 

higher preferences than the others. The scheduling policy could take a priority into 

account, instead of treating all processes as exactly equal. 

Now, if one gives a priority based scheme, the ReadyQ rather than being First Come 

First Served could be ordered on priority. What do I mean by ordered on priority? Now, 

whenever we think of a ReadyQ, we think of a data structure in which there is a back 

(Refer Slide Time: 06:37) and a front. The idea is that any newly arriving process would 

typically enter at the back. When a process has to be scheduled; in other words, one of 

the ready processes in this ReadyQ has to be made into the running process, one would 

take the process from the front of the ReadyQ. 

Now, if I am ordering the ReadyQ on priority what this means is that, processes will not 

enter the queue based on the time of creation or anything like that; rather, they will enter 

the ReadyQ at the appropriate point depending on their priority. For example, let us 

suppose that there is a process in the ReadyQ with priority 5. I am describing the priority 

of a process by an unsigned integer. We will assume that the higher the number, higher 

the priority. The next process might have a priority of 3, the next process might have a 

priority of 2. Now, let us suppose at this point in time, a new process comes into 

existence, you will notice that I have ordered the ReadyQ in terms of priority. The 

process with highest priorities at the front of the queue, the process with second highest 

priority is next, and so on. 

Suppose at this point in time, a process with priority 4 comes into existence due to a fork 

or something, in the default FCFS, First Come First Served ReadyQ, the process with 

priority 4 would have entered at the back of the queue and appeared in the queue after 



process with priority 2. However, if I order the ReadyQ in terms of priority, then the 

process with priority 4 will enter the ReadyQ here (Refer Slide Time: 08:10). The other 

processes, which had priority 3 and 2, would move back in the ReadyQ. So, in this way, 

we are giving slightly better treatment to the process, which has priority 4 because of its 

priority rating. So, what could the priority be decided based on? 

There are many examples which ,one could think of. One possible idea is the one which I 

have written over here. The process that has not run for the most time could get the 

highest priority. 

(Refer Slide Time: 04:58) 

 

Now, as the priority of processes are different, there is this possibility that a process with 

very low priority may in fact not get the chance to run in the CPU for a long duration of 

time. This could be used to actually enhance its priority. So, that is the idea, which is 

expressed in this example. A process that has not run for a very long amount of time 

could be given a higher priority. 

Let us suppose, there we have an example shown in the diagram. It could well happen 

that the process with priority 2 does not get to execute for a long time. Maybe because 

after the process with priority 5 runs, the process with priority 4 runs, and the process 

with priority 3 runs, it is conceivable that new processes with priorities higher than 2 

might get created and they would all enter the ReadyQ in front of the process with 



priority 2. So, after this has happened for a significant amount of time, it is possible for 

the operating system to be designed with this kind of a consideration. 

The process with priority 2 having been deprived of the CPU for a huge amount of time, 

could be given an enhanced priority, maybe a priority of 6, which would cause it to come 

to the head of the ReadyQ. So, this is a simple idea. It could be used by the operating 

system process scheduler to enhance the fairness as far as processes are concerned. So, 

by not treating all processes identically, processes which have been deprived could be 

given preferential treatment periodically. So, this is the idea of any priority based 

scheme. 

As it happens that scheduler could even more… For example, we talked about the idea 

that associated with the operating systems scheduler, there could be duration of time 

called the CPU time slice. I gave you the example that one second or 100 milliseconds 

might be an appropriate CPU time slice. This may be decided based on properties of the 

processor, properties of the amount of time it takes to do a context switch, and so on. So, 

this is what we might think of as the CPU time slice (Refer Slide Time: 10:40). This is 

the maximum amount of time that a process would get to run on the CPU before it is 

preempted. 

However, if there is a process which has not run on the CPU for a long time, such as, our 

process 2 in the example, which may ultimately get to run as a process with priority 

number 6, then it does get to run on the CPU and the scheduler could even give it an 

enhanced time slice. For example, if all the other processes when scheduled were getting 

100 milliseconds, then this particular process, which had not got the CPU for a long 

time, might be given one second CPU time slice. 

There are other dimensions… Not only is that the dimension of importance of a process 

as quantified by priority, this could also be used not only in the ordering of processes in 

the ReadyQ, but also in the amount of CPU time that they would get when they are 

scheduled for example. So, this actually opens up a whole possible design space of 

process scheduling policies. Designers of operating systems could use their discretion in 

deciding what setting of the different parameters of this designs space would be most 

appropriate to come up with a good fair efficient scheduling policy. 
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I am going to talk about one class of scheduling policies a little bit, which falls in the 

category of priority based. Generally, one hears them refer to as Multilevel Feedback 

policies, a family of policies. Policies of this kind were used in some variants of UNIX. 

So, ideas along these lines might be what you would see in a UNIX or Linux system. 

Now, just you describe briefly attributes of a multilevel feedback policy. In general, 

these policies are preemptive and they use priorities. 

Now, let me try to explain such a policy by looking at each of these two terms: the term 

multilevel and the term feedback. Now, when you hear the term multilevel, you realize 

that there are many levels. The suspicion is that, there are many levels of queues; in other 

words, the operating system is actually maintaining one ReadyQ per priority level. So, 

for example, in the previous slide, I had talked about priorities in terms of numbers. I had 

used the numbers 6 5 4 3 2 to talk about the different possible priorities. The process 

with priority 6 was a very high priority or important process from the perspective of the 

scheduler. A process with priority 2 was a low priority process. 

Now, the idea of a multilevel scheduling policy would be that, rather than maintaining 

just one ReadyQ, there would actually be one ReadyQ per priority level. So, one ReadyQ 

for priority level 6, one for priority 5, one for priority 4, one for priority 3, etcetera. 

There could be a number of processes in each of these queues. So, if there are two 

processes with priority 2, they would be the lowest in this diagram ReadyQ (Refer Slide 



Time: 13:34). If there are three processes with priority 6, they would be in the top-most 

ReadyQ. So, in a sense, the operating system might choose to keep separate ReadyQs for 

each of the priority levels. Then, there is no question of reordering the elements in the 

queue because if you look at the queue for priority level 6, all the processes have priority 

level 6. Therefore, the question arises in what order should they be included in the queue. 

Then, the answer, which one could see clearly is that the queues could then be 

maintained as First Come First Served queues. All the processes in a particular queue 

have equal priority. Therefore, the queues by definition could be First Come First Served 

queues, which is what we normally understand by the term queue anyway, from a data 

structures course. 

Now, the question becomes the following: If there are many ReadyQs, when the time 

comes to identify a process to schedule… in other words, to make as one running process 

from among all the processes and all the queues, which one should the operating system 

process scheduler pick? 

Obviously, if there are any processes in the highest level priority queue, the process from 

the front… For example, if there are processes in the ReadyQ for priority level 6, then 

the process from the head or front of that queue could be scheduled. However, what if 

the ReadyQ for priority level 6 is empty? Then, it makes sense to have the policy design 

so that it then looks into the priority level 5 ReadyQ. If that too is empty, it could look 

into the priority level 4 ReadyQ and so on. 
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In short, one could describe the scheduling policy as schedule the process, which is at the 

front of the highest priority non-empty queue. So, start looking at the highest priority 

queue. If it is not empty, take the process from the front of that queue. If it is empty, go 

down to the next priority queue and so on. So, this gives a well-defined mechanism for 

deciding which process to schedule next. 

Now, the danger of this kind of a scheduling policy with only multiple levels is that, it is 

no different from what we had seen before unless there is some mechanism by which the 

priority of a process can change. So, if a process of priority level 2 can become a process 

of priority level 6, then this can be used by the operating systems scheduler to create a 

level of fairness to processes. So, that is where the term feedback comes into the picture. 

When you hear the term feedback, you imagine some kind of a system in which some 

attribute of the system is used to change the properties of the system either through 

enhancing or reducing some attribute of the system, negative or positive feedback. So, 

the idea here in terms of scheduling might be that based on what has happened to a 

process up to now. One could decide whether to enhance or to reduce the priority of the 

process or possibly to keep the priority of the process the same as it is right now. So, that 

is what the term feedback is going to imply. 



In this class of scheduling policies, which I have described this multilevel feedback, the 

word feedback is going to mean that the priority of a process is not fixed. During the 

lifetime of a process, its priority could increase; whereas, priority could decrease 

depending on how the operating system process scheduler is designed to deal with 

fairness. 

We have seen an example, where it might make sense to increase the priority of a 

process. Suppose for example, that a particular process has been at priority level 2 for a 

long time and has not got CPU time, then that could be used as an indication that the 

priority of that process should be increased. On the other hand, if there is a process, 

which has received a lot of CPU time because it has been at level 6, then the fact that it is 

at priority level 6 and has received a lot of CPU time, could be used to reduce its priority 

level; maybe, bring it down to priority level 5. So, this combination of having multiple 

levels; in other words, priorities and feedback; in other words, the priority is not being 

fixed, but the priority of a process potentially increasing or reducing, could end up with 

policies that are not only dynamic in terms of how the treat processes, but also as fair and 

as efficient as could be designed. So, these are quite flexible process, scheduling policies 

compared to the simple alternative of something like Round Robin, which would have 

put all the processes into a single First Come First Served ReadyQ. After scheduling a 

process state, bring it to the back of the ReadyQ. So, the multilevel feedback provides a 

lot more flexibility to the designer of the operating system. 

(Refer Slide Time: 18:09) 

 



Now, given this rough introduction to how the operating system might be doing the 

scheduling of processes, we get the idea that when we submit a program for execution, 

we can think about its lifetime. I have used this term before. Let me just formally say 

what I mean by lifetime of a process, is the time between its creation which happens due 

to fork system call and its termination, which happens typically due to execution of the 

exit system call. So, this is the standard use of the term lifetime, that we have been 

throughout the course. I talked about the lifetime of a piece of data, the time interval 

between its deletion and its creation. We now talk about the lifetime of a process. 

Now, if we think about the lifetime of a process and we want to quantify it in terms of 

time, we need to look at timelines. We have this clear picture in our minds that from the 

process state transition diagram, where we have at least three states: running, ready and 

waiting, we have this clear idea that process P1 could be running right now. Then, it 

might be in a waiting state because it does a I/O operation. When the I/O operation 

completes for example, it could end up in the ready state, then from there, it could go 

back into the running state, and then after being in the running state for some time, it 

might get preempted for which reason it goes to the ready state, and so on. So, a process 

during its lifetime is going to spend sometime in the running state, sometime in the ready 

state, and sometime in the waiting state. Therefore, we need to look at timeline to get a 

better idea of what lifetime might mean. 

(Refer Slide Time: 19:53) 

 



Let me just draw a timeline. As usual, I draw a timeline as a line which starts at some 

point in time and goes on indefinitely into the future. Now, let us consider what would be 

the various kinds of things we would see on the timeline. If there were many processes 

contending for the CPU; in other words, let suppose I have five or six programs running 

on a computer system, this might result in five or six processes. All of these five or six 

processes at some point or the other will hopefully end up being running, waiting, and 

ready. However, I am going to draw on this timeline is a history of the order in which the 

different processes actually get to run. Since it is only when a process is running that it is 

making use of the CPU and that its instructions are getting executed, its data values are 

getting modified, and so on. So, on this timeline, we are basically going to show intervals 

of time, when a particular process is running. That is the important state from our 

perspective. So, it might happen that the first process, which gets to run, is process P1. 

So, I show that by indicating an interval on the timeline and labeling that interval as P1, 

the suggestion is process P1 is running in that interval. 

At this point in time, something happens – possibly process P1 gets preempted if this is a 

preemptive scheduling policy, which is why there is an end of the interval and 

conceivably process P2. Some other process, which was in the ReadyQ ends up being the 

running process. Just remember that we have this clear notion that, in order to switch 

from process P1 to process P2, there was a little bit of overhead; there was this thing 

called the context switch. So, the event that happened over here was the context switch 

from process P1 to process P2 (Refer Slide Time: 21:35). 

You note that if the CPU time slice was one second, then it is conceivable that the 

duration the process P1 was executing was one second. It is conceivable that the duration 

for which process P2 will execute is one second and that the context switch itself is not 

instantaneous, but it is likely to take a small percentage of one second. For example, I 

had used the example last time of a few microseconds. So, it is something which takes 

time, but it is such a small amount of time compared to the other events of interest, the 

intervals on the timeline, that I will just show it by that very thin line. But do remember 

that the context switch does take some small amount of time. The amount of time that it 

takes to remember in memory the state of process P1 and to put into the hardware 

registers, the beginning state of process P2 as it should have been based on where it 

stopped execution the last time it was running. 



The history as we have it now process P1 was the first process to be scheduled. This was 

followed by process P2. After process P2, was either preempted or did a long duration 

operation like a file I/O or a page fault or something like that. It is possible that process 

P3 executed and so on. So, there is going to be a history of the various processes as time 

went on. Do you notice that after P3, I show process P1 executing once again. So, P1, 

which had got its first chance to run on the CPU over here, (Refer Slide Time: 23:07) 

gets a second chance to run on the CPU over here. 

Now, what are we showing on this timeline? We are showing the events of interest as far 

as the operating system is concerned. In fact, we are showing what you might describe as 

the Real timeline. I continue to show process P3. The implication from this diagram 

might be either the process P2 had finished execution, the program had terminated, or it 

could be that after process P1 had executed, the priority of process P2 became less in the 

priority of process P3, which is why process P3 followed process P1 the second time 

around. So, that is a vagary of the process scheduling policy. We will not worry too 

much about that. 

(Refer Slide Time: 19:53) 

 

The important thing to notice is that on this timeline, we are putting our information 

about what happened as far as the use of the CPU is concerned. This is the history of 

processes running on the CPU. It does not contain information about the history of 



processes waiting or the history of processes spending in the ReadyQ and so on. Those 

could be separate kinds of timelines if that information was important to us. 

Now, we do need a term to refer to this kind of time because we are actually going to 

talk about other versions of time. Since the timeline that we have drawn over here is 

showing the sequence of events that happened as far the CPU is concerned in reality, we 

could refer to this as Real time (Refer Slide Time: 24:29). This is not some kind of a 

fictitious time or an imaginary time such as when we talked about memory, each process 

had its imaginary or a virtual perspective on what addresses were. Here, the events that 

are happening are what actually happened on the CPU. Process P1 did run on the CPU 

first, then there was a small duration of time and the context switch occurred, then 

process P2 did run on the CPU, and so on. So, in that sense, one could refer to this time, 

the time that we have been drawing on this time line as the Real time. What do I mean by 

Real time? 

What I mean by Real time is what you may also call Wallclock time. The term Wallclock 

time is used just to disambiguate from any other possible kind of Real time that you 

might have in mind. The picture that you should have in mind when you think of the wall 

clock is that on the wall behind you, there was a clock and you know that clock ticks, 

every second hand moves forward by one. If it is digital clock, it might be a little bit 

different, but you know the rate at which time moves for that clock. So, we are 

essentially saying that the time moves along this timeline at the same rate the time moves 

along the wall clock. In other words, we are talking about the same physical time that we 

deal with in our daily lives, the time as I see advancing along my watch. 

In general, we think of these two terms: Real time and Wallclock time as being 

synonymous. In some books you may hear people talking about Real time; in other 

books, you may see people talking about Wallclock time. In fact, another term which is 

sometimes used to describe this concept of time is to refer to it as Elapsed time or the 

amount of time that has elapsed since the beginning of the timeline. In this case, it might 

be when the system was booted up, when I turned on the system. That might be the 0 that 

I see over here. So, these three terms: Real time, Wallclock time, and Elapsed time are to 

be viewed as being synonymous. In general, you will find all three of these terms used 

depending on the preference of the person, who is describing the time. Whenever you 



hear any of these terms, think about your watch or the clock on the wall, a correctly 

running clock on the wall. 

Now, the question which has been in your mind ever since I put up this slide when I 

titled the slide about time would have been… Obviously, what are the kind of time could 

there be? 

Now, thing to notice is that when we talked about main memory and the CPU at the 

beginning, it was fairly clear to us that whenever we talked about a memory address, we 

were talking about a main memory address until we introduced a notion of protecting 

one process from another and the notion of having virtual addresses, where we actually 

had separate addresses for each process. Since the process is the important entity as far 

as the execution of programs is concerned, the process is the unit of resource 

management by the CPU. It stands to reason that we might have another perspective of 

time on a computer system. 

If there is another perspective of time, it could be a per process notion of time. In other 

words, I could have another timeline specific. Let us say to process P1. If I was to label 

this timeline, I could not just label the time since the word time is now ambiguous. It 

could mean the kinds of time that we had in the upper timeline or could mean the kind of 

time that we have on the lower timeline. Therefore, in future, whenever I talk about time, 

I will have to qualify by explaining whether I mean Real, Wallclock, or Elapsed time or 

whether I mean virtual time. If I am talking about virtual time, I have to qualify by which 

process I am referring to (Refer Slide Time: 27:59) in that timeline. Now, in this 

particular timeline very clearly, I am drawing a timeline, which is the virtual time of 

process P1. What we mean by the virtual time of process P1 is going to be related to its 

intervals of time when it is running. 
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Once again, our emphasis is on running as the timelines are going to show us running 

times since the time that the processes in the waiting state or in the ready state are not 

onto the direct control of the programmer; whereas, the times which are on this line are 

under the direct control of the programmer and therefore, are of interest to the 

programmer. 

Here (Refer Slide Time: 28:36) we are trying to get a timeline in which all that is shown 

are events relating to process 1 and events relating to process 1 being running. If I had to 

fill up this timeline, it will show… If I am drawing the timeline up to this point in Real 

time, then the process 1 virtual timeline would end over here because we know that 

process 1 was running on the CPU for one second and then later on it ran on the CPU for 

maybe half a second. That looks like a smaller interval. So, it ran on the CPU for total of 

1 and half seconds in this Real time interval (Refer Slide Time: 29:14). So, in the Real 

time interval, which might be about 7 or 8 seconds, process P1 ran for 1 and half 

seconds. 

Let us say this Real time interval is 4 and half seconds. In this Real time interval of 4 and 

half seconds, process P1 ran for an interval of 1 and half seconds. What I am showing in 

this diagram is (Refer Slide Time: 29:35) the process 1’s perspective of time. This is 

because you will note that the other intervals of time do not really exist for process 1 in 

the sense that it was not active on the CPU when process P2 was running. It was not 



active on the CPU when process P3 was running. Therefore, this is a complete picture of 

time as far as process P1 is concerned in terms of its variables changing or its 

instructions being executed. 

(Refer Slide Time: 30:07) 

 

Now, we can add one more complication into such a diagram given our exposure to 

process lifetime. You will remember that when we talked about system calls, I 

introduced the idea that at any given point in time, a process could be running, but 

further it could be running either in user mode or in system mode. Up to now, we 

understood that a process would be running in system mode when it makes a system call. 

If it is just running in its ordinary mode, where it is executing instructions of its own 

program not the very special instructions within the system call, which is part of the 

operating system, then it is actually just running in user mode. 

We had this idea that the operating system actually makes it possible for us to find out 

how much time our process was running in user mode and how much time our process 

was running in system mode. Over here, we actually had used the term CPU time. 

However, we now understand that what we are talking about here is this concept of 

virtual time, the time specific to this process. So, I could not use the term virtual time 

earlier, which is why we are talking about CPU time. However, now, we know that the 

CPU time is shared among many processes. In order to disambiguate what we mean by 

CPU time, we could more profitably use the term virtual time. 
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We could go back to the diagram we had just seen, where we had both the full picture of 

the CPU from the perspective of how it is time is being used among all the processes to 

the picture of time in terms of one specific process. We realized that the same the process 

P1 got 1 and half seconds of CPU time could be further refined to saying that if I looked 

at the virtual timeline of process P1, there would be some intervals of time when it is 

running in user mode and some intervals of time when it is running in system mode. So, I 

could actually color code. 

In this particular diagram, I am going to show in brown the intervals of time when the 

process P1 is running in user mode and in yellow the intervals of time when it is running 

in system mode. We would then there expect to see a breakup of what is happening in 

those two time intervals, maybe along the lines of what you see over here. So, you will 

notice that process P1 starts by running in user mode. Then, possibly it makes a system 

call. So, it is running in the yellow system mode for some time. Then, it comes back to 

the user mode. Then, once again, it goes into the system mode possibly because of 

another system call. Then, it ends up running in user mode. At that point, apparently it 

gets context switch doubts. So, there is a small interval of time for the context switch, 

few microseconds. When it starts executing again, it is executing in user mode, etcetera. 

When I told you that the operating system actually keeps track of how much time that 

your process is running in user mode and how much time it is running in system mode, 



the implication was that this book keeping of - what is the sum total of the intervals of 

time which are brown as far as process P1 is concerned and what is the sum total of all 

the intervals of time which are yellow as far as process P1 is concerned is done by the 

operating system. It is something which you can get access to. So, there are mechanism, 

system calls through which you could request the operating system for this information. 

As we saw, this might be useful for you in improving your program. In using 

mechanisms that we will talk about later. So, the notion of the process virtual timeline… 

In other words, trying to restrict once the tension, what is happening to your process 

rather than the other process is which happen to be running on the system and have 

nothing to do with you. 

In other words, concentrating on process virtual time rather than on what is really 

happening in terms of the movement of time as the world knows it may be of relevance 

to us in improving the qualities of our programs understanding, how our program is 

doing things. Further, the breakup between doing things in user mode and system mode. 

(Refer Slide Time: 33:53) 

 

Now, before we move forward, I will fill in a few gaps, which remain from our 

discussion of how the operating system manages CPU time. One interesting question, 

which would arise if one thinks about it deeply is the one on the screen - how is a 

running process preempted? 



Now, you will recall that I mentioned that if one is using a preemptive process 

scheduling policy, the idea is that the operating system process scheduler will not allow a 

process to run indefinitely, but periodically. Let us say after it finishes its CPU time 

slice, it will preempt it. Now, if you bear in mind that preempted and switched to one of 

the ready processes rather than continuing execution of the process in question. 

Now, if you think about this a little bit, there is a problem because the operating system 

itself is a piece of software. In order to preempt a process, the instructions within the 

operating system, which do preemption, which I will refer to as preemption code, must 

run on the CPU. What does the operating system preemption code do? Basically, the 

operating system preemption code will include instructions, which do the scheduling 

policy, which look into the ReadyQs, etcetera. It will include instructions, which will do 

the saving of the hardware context of the running process; it will include instructions, 

which do the restoring of the hardware context of the process, which is going to be 

scheduled. So, fairly large number of instructions, all of which I am describing as the 

operating system preemption code. 
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For this to happen, the instructions of the operating system must be running, but 

unfortunately, process P1 is running. Process P1 will continue to run until it is 

preempted. Hence, the problem (Refer Slide Time: 35:50). How come the operating 

system runs its preemption code before process P1 has been preempted? Until process P1 



is preempted, process P1occupies the CPU. So, this is the nature of the problem. So, very 

clearly, this is going to require some kind of a hardware support. This is not something 

with the operating system can manage as a software entity. This is just a rewording of the 

question, how does the operating system get control of the CPU from a running process 

P1 for example? P1 was a running process in our example in order to run its preemption 

code. 

As I had indicated, this may actually require hardware support (Refer Slide Time: 36:28). 

The form that the hardware support takes is a small piece of hardware called the 

hardware timer. Essentially, when you hear the word timer you normally think of 

something which counts time. That is basically what this piece of hardware is doing. 

Basically, it is something like a clock, which periodically will try to grab control of the 

CPU. The way that it grabs control of the CPU is using a mechanism called an interrupt. 

Now, what is the hardware timer, what does the hardware timer do? It periodically 

generates an event. The period of this event could be a few milliseconds. What I mean by 

period is the frequency with which the event occurs. If the hardware timer is such that it 

generates this hardware event once every millisecond (Refer Slide Time: 37:21), then the 

period would be one millisecond. So, it is a hardware generated event. So, it is a piece of 

hardware which is doing this part of the CPU. 

Now, the mechanism that is going to have to be provided within the CPU is whenever 

this kind of an event occurs, the hardware must automatically transfer control to the 

operating system. So, the hardware has to be built, the processor has to be built so that 

whenever an event, the kind mentioned in the first bullet occurs, automatically without 

the need for intervention from any form of software, control gets transferred to the 

specific operating system code, which is called the timer interrupt handler. So, this gives 

the operating system a mechanism through which it can grab control of the CPU. This is 

because we now have a guarantee that if the period of the hardware timer is 1 

millisecond, once every 10 milliseconds, the small piece of code, part of the operating 

system, will get executed again. 
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Going back our timeline, we do the timeline like this. However, we now need to 

understand that once every millisecond, which is very frequently in this timeline… 

Remember: This interval is one second. Therefore, if the timer interrupt interval is 1 

millisecond, then thousand times the operating is actually getting control in this interval. 
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We realize that with this mechanism, the operating system gets control whenever it 

wants to as far as the control of the CPU is concerned. So, very clearly, in those 1000 

times that the operating system timer interrupt handler gets controlled, 999 times we do 



not execute the preemption code and last time it will execute the preemption code. As a 

result of which process P1 gets replaced by process P2 through the context switch. 

Now, the concept that we have over here, (Refer Slide Time: 39:15) where there are 

events in which the hardware automatically causes control to be transferred to a piece of 

operating system code, will require that the hardware be designed to do this. So, it must 

have a very well-defined interface for operating systems and hardware to interact with 

each other in this way. So, a very well-defined sequence of events must happen for this 

kind of a commitment to be made by the designer of the hardware. 

Very clearly, we are talking about a slightly more general phenomenon than just to solve 

the problem, which is listed on the screen. In fact, the interrupt which I talked about over 

here, the hardware timer interrupt is merely an example of a more general phenomenon, 

which is known as an exception. So, I would like to spend a few minutes talking about 

exceptions before we move forward. 

What we need to understand here is that there is something called an exception and 

today's processors are designed so that whenever an exception occurs… There could be 

many different kinds of exceptions. However, whenever an exception occurs, whatever 

happen to be running on the CPU before, control automatically gets transferred to a 

special piece of operating system code. Depending on what the exception is, a different 

piece of operating system code might be beneficial. For example, if the exception just 

occurred was a timer interrupt of the kind that we were talking about over here, (Refer 

Slide Time: 40:44) then control automatically gets transferred to a piece of operating 

system code called the timer interrupt handler, which would contain the appropriate 

activity as for as handling or dealing with timer interrupt is concerned. 
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Apparently, there could be other kinds of exceptions. Therefore, we will need to learn a 

little bit more about this. So, let me first talk about exceptions. By its very name, we 

understand that exceptions are some kind of rare or unusual. So, the word exception here 

means rare, unusual, not in the common sequence of events, exceptional events. These 

are exceptional events that occur during program execution and automatically handled by 

the processor hardware in that. Depending on what the event is, a specific piece of 

operating system code would transfer control to automatically. 

Now, in general, one could talk about two different classes of events. I will use the word 

classes rather than kinds of events. There are two different classes of exceptions. These 

two classes of exceptions are referred to as traps and interrupts. We had seen the word 

interrupt before; I talked about hardware timer interrupt. In other words, an interrupt or 

an exception generated by the hardware timer. So, in general, when we talk about 

exceptions, we need to remember that they are two kinds: traps and interrupts. 

Now, a trap and an interrupt are different in that the trap is a software generated event 

and interrupt is the hardware generated event. So, we saw that the hardware timer is a 

piece of hardware, which periodically possibly once every millisecond generates an 

event. In that case, we call that an interrupt. Now, the suggestion from this classification 

is that there are also some kinds of exceptions, which are generated not by specially 

designed pieces of hardware, but by software. You will be wondering… I want to 



actually emphasize what the terms synchronous and asynchronous mean here. It is not 

important for us in our current context. So, the question of what kind of exceptional 

situations might be generated by pieces of software? 

In fact, we have already seen at least one. That is the page fault. If you think about it, a 

page fault occurs because… Let us say a load word instruction is executed. The effect of 

the load word instruction might be that an address is generated. It may be found out that 

the address is not an address, which currently has a page table entry in the TLB; or, it 

may not be an address, which has a valid page table entry. In that, the page table entry 

associated with that virtual address might not have the valid bit set. In some sense, one 

could say that this is a software generated exception. I view it as an exception because 

we know that automatically when this page fault occurs, control got transferred to the 

operating system page fault handler. That is the common term. You will recall that we 

talked about an exception being handled. The piece of operating system code, which 

handles the exception, is what we refer to as handler. 

We had previously seen what happens as far as the page fault handler is concerned. Now, 

we can think of the page fault as being this kind of an exceptional event; it is relatively 

rare. Hopefully, it does not happen on every memory reference. However, when it does 

happen, the processor has to be diverted from what it is currently doing to actually 

executing the operating system’s piece of code called the page fault handler. 
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We have also seen that the system call is something which would be caused by the 

execution of an instruction. In other words, the sys call instruction in the MIPS 

instruction set. This call instruction is an ordinary user mode instruction; it is not a 

privileged instruction. However, when this instruction is executed, control automatically 

gets transferred to the operating system region of code, which executes that particular 

system call and through system call handler of some kind conceivably. Once again, it 

was a situation, where control automatically got transferred to a piece of the operating 

system code. We have seen both of those before. 

Let me just mention that it is also possible that there are other events of this kind such as, 

if there is a program, which executes a divide instruction, which results in a divide by 

zero, things could be set up so that this is handled by a divide by zero trap handler. So, 

different kinds of traps for different kinds of exceptional situations could be caused by 

the execution of instructions. 

Interrupts on the other hand are exceptional situations which are explicitly generated by 

the hardware. We have seen one example of an interrupt. That was the hardware timer 

interrupt. We saw that this was very important from the perspective of the design of the 

operating system since it is only through having a periodic timer interrupt that the 

operating system could periodically get control of the CPU in order to do its 

management of the resources; otherwise, the operating system would lose control of the 

CPU to infinite loop process and never be able to recover it. 

Now, we could also think about other pieces of hardware in the system and ask the 

question, for example, when I hit a key, how does that mechanical device on the 

keyboard cause any information to enter into the computer, which is as far as we know 

made out of circuitry? We can now look at this from the perspective of the following 

sequence of events. When you hit a key, mechanically, something is happening inside 

the keyboard. The keyboard itself contains circuitry. The pressure on the key is going to 

call some of that circuitry to generate a keyboard event or a keyboard interrupt.  

Essentially, what is going to happen when you press the key is that the keyboard 

interrupt gets generated; control gets transferred to a small piece of operating system 

code called the keyboard interrupt handler. What the keyboard interrupt handler does is 

to transfer the character, which you had typed in. So, if you had pressed the A key, then 



within a buffer within the keyboard, the character A is going to be generated and the 

character A is going to get transferred by the keyboard interrupt handler into somewhere 

in memory. So, you may have typed the key and then you may have included in your 

program some kind of a scanf to read input. Ultimately, from the keyboard, the keyboard 

interrupt causes the piece of character to get transferred and then the data will go to your 

buffer, which you have mentioned in your scanf call. So, all of this is triggered by an 

interrupt as far as the keyboard is concerned. 

Similarly, operations on disks also may have interrupts associated with them. For 

example, we talked about the fact that when a process does a file read operation, this is 

going to cause a read operation to start on the disk. Now, this is an operation, which 

could take conceivably a large number of milliseconds to complete. So, the process itself 

is going to go into a waiting state. It was in the ready state when it executed the file 

operation, but the process may go into the waiting state at the discretion of an operating 

system designer. Subsequently, the disk I/O operation will complete and the data will be 

available somewhere in the disk ready to be transferred from the processor to memory. In 

doing this, it is possible that the disk can indicate that the I/O operation has completed 

possibly by an interrupt to grab the attention of the processor, to execute a disk I/O 

interrupt handler routine, and to do the transfer of the data. So, it is conceivable that 

things could have been setup that way. 

Associated with different input and output devices or with different pieces of hardware in 

the computer system, there might be generation of interrupts in order for the interaction 

to happen. Therefore, traps are important from the perspective of the events that you 

generate within your program. Interrupts are very important from the perspective of 

interaction with the outside world and in particular the I/O devices. We have now seen 

the special case of the timer interrupt handler important for the operating system design. 

The very fundamental operating system design may require this existence of a timer 

interrupt handler as we had described it. 



(Refer Slide Time: 49:29) 

 

Now with this idea that the hardware must be designed to handle exceptional events and 

that the exceptional events could either be traps or interrupts, I will sketch out in more 

detail what happens when an exceptional event actually does occur. We have seen that 

when an exceptional event occurs, at the beginning, an interrupt or a trap gets generated. 

I will lay the blame for this at the hardware. 
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Now, if you think about the traps that we talked about, if there is a page fault, the 

question of how is the page fault identified will arise. You will realize that the page fault 



occurred because of an instruction in your program and hence, we think of it as a trap. 

However, the page fault will actually be recognized by the memory management unit 

when it tries to translate the address. Similarly, the system call is an instruction in your 

program, but the fact that this is a system call is identified by the hardware, which 

executes the instruction, the instruction fetch, instruction decode hardware. So, 

ultimately we could lay the blame for handling the exception initially at the hardware. 
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I will start the description of what happens on an exception with the hardware. If it is a 

trap, there is some prior history relating to the software, which we have already studied 

adequately. So, what should the hardware do when it realizes that an exception has 

occurred? It could be a trap; it could be an interrupt. 

Now, the first thing that it will have to do is, the hardware will have to be designed to 

bear in mind that in the very near future, control is going to have to be transferred to an 

operating system routine called the handler. It could be a page fault handler, timer 

interrupt handler depending on what this particular exception is. However, control will 

have to be transferred to the handler, which is a special piece of operating system code. 

This is going to mean that whatever is currently executing on the processor, which could 

be process P1 executing in user mode, is going to have to be stopped for the moment. 



If one is going to stop the execution of process P1 for the moment, then its current state 

will have to be saved because later on the state will have to be restored. Therefore, the 

first thing that the hardware will do when an exception occurs, it cannot just immediately 

transfer control to the handler; it will have to save the processor state in memory. After it 

has saved the processor state, since the state will be necessary when one is coming back 

from the exception, it can transfer control to the corresponding operating system 

exception handler. As I said, it could be the page fault handler, timer interrupt handler. 

Now, the control transfers to the software, which is the exception handler. What does the 

software do? Again, depending on what the exception is, the software would have been 

written to do certain action. For example, we saw exactly what action the page fault 

handler would be designed to do. So, the page fault handler does that. So, I will just 

describe this for saying that the appropriate action is taken as per the situation. Since 

control was transferred to the correct exception handler, correct instructions will be 

executed for the handling of that particular exception whatever it may be. What about 

after the exception has being handled? 

All the codes in the exception handler have been successfully executed, what should be 

done next? Then, it is time to transfer control back to the process, which was running 

when the exception occurred. Now, one will need an instruction to do this. One cannot 

just do this using the jump registers in the type of instruction that we use to return from a 

function call for various reasons. So, this would be done with a special instruction, which 

might be called the return from exception instruction. 

Every instruction set is going to contain such an instruction. We have not talked about 

this instruction before in talking about the MIPS one instruction set because this is not 

the kind of instruction that you or I would use in our ordinary programs. This is an 

example of a privilege instruction; it is only going to be used at the end of an exception 

handler. An exception handler is a piece of operating system code. Therefore, it was not 

necessary for us to know about it. Since we are worried about ordinary user programs, 

none of us at the moment as far as we know is going to have to worry about writing an 

operating system. So, exceptional handler ends with execution of special instruction, 

which would cause control to be transferred back to wherever it should. 
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We are now back to hardware, the execution of the RFE or return from exception 

instruction. What should happen in this instruction or as an effect of this instruction? The 

answer is, this instruction should cause the saved processor state to get restored into the 

processor; then, it should cause control to be transferred back to the appropriate PC 

value. So, whatever process happened to be executing… It might have been process P1 

executing at the PC value, X 1 0 0 0. That is where control should be transferred back to 

process P1. We are back to process P1 because we have restored its saved state and 

resuming from the correct PC value, which we knew because that was part of the saved 

processor state. 

With this, we have some idea about what an exception is and we have some idea about 

how an exception is handled. Just to sum up what we have seen in today's lecture: In 

today's lecture, we saw how operating system process scheduling policies might be made 

little bit more flexible than what we had seen in the previous lecture. Largely, from the 

perspective of allowing the scheduling to be done as fairly an efficiently as possible, we 

saw that it is important for the operating system to have some way to grab the CPU from 

the currently running process; otherwise, the very idea of preemption would not be 

possible. I mentioned how this is typically done through a mechanism called an interrupt 

by having special piece of hardware called a hardware timer, which periodically 

generates an exceptional event called an interrupt. 



Interrupts are important events in a computer system. They are examples of more general 

events called exceptions. There are two kinds of exceptions: traps, which are software 

generated such as page faults or system calls and interrupts, which are hardware 

generated typically by I/O devices or a piece of hardware like a timer. The hardware 

must be designed if it is going to use operating systems of the kind that we have seen. To 

handle these kinds of exceptional events by saving the state of the processor, transferring 

control to an appropriate operating system handler, and then returning control with the 

restored context of the originally running process. 

With this, we have a fairly good idea about what is happening behind the scenes when 

our programs execute from the perspective of operating system process scheduling. We 

will continue with a few more closing comments in this area in the next lecture. 

Thank you. 


