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This is lecture 21, of the course on High Performance Computing. In lecture 20, we had 

looked at some of the problems and solutions to those problems relating to concurrent 

programming. We saw how locks which are known as pin locks or busy weight locks, 

can be used to, and first, something called mutual exclusion through which shared 

variables between processes can be safely used. 

We also saw how something called the semaphore can be used to synchronize processes 

to coordinate the progress of processes, in order to achieve the common objective in a 

concurrent program. Just you remind about an example that we saw relating to 

semaphores, the example that we had looked at, had the situation where they were three 

processes, process P 1, P 2 and P 3 which were cooperating towards the reading in 

multiplication and outputting of a matrix multiplication. 
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We saw how two semaphores could be use to synchronize the work as divided among the 

three processes. For example, process P 1 which is reading the matrices, process P 2 

which is multiplying them and process P 3 which is writing the result, it could be set up, 

so that a semaphore initialized to 0 could be used to block process P 2, until process P 1 

had finished the reading; and another semaphore which had been initialize to 0, could be 

used to block process P 3 from writing the result, until process P 2 had successfully 

multiplied the matrices. So, with a little bit of thought, one could use semaphores for 

different kinds of synchronization of processes which are cooperating towards a common 

objective. 
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Now, moving right ahead with some of the problems relating to concurrent 

programming, I have talked about potential problems that could arise due to the vigorous 

of shared variables and we saw that if one just wrote concurrent programs using shared 

variables, and did not identify and suitably protect the critical sections of the program, 

then the results could be somewhat unpredictable. The program may not do what you 

thought it was going to do, that is what the mutual exclusion problem and need to 

identify critical sections came up. 

Now, other problem which could arise in concurrent programs is a problem known as 

deadlock and as a name suggest, it is somewhat serious problem. Now, to understand 

deadlock, let me just give you a very simple example of a deadlock situation. Let us 



suppose that, I have a process which I am referring to as P 1 - I am just showing you a 

small part of the activity of that process - you will notice that it starts by acquiring a lock, 

a lock called L and the next thing that it does is to acquire the lock again. 

It is not too clear what this process was written to achieve, but if we think about this little 

bit, we realize from our understanding of the implementation of acquire lock, that let 

suppose the process P 1 is lucky in his first call to acquire lock, let suppose that the lock 

is currently available. Then what will happen is the net effect of acquire lock, if it is 

implemented using let us say test and set of L is going to be that, the process is going to 

test and set L, so that the old value of L which would have been 0, will get changed to 1. 

The process will then proceed to its next statement, which is acquiring lock L again, and 

we know that since the lock L is currently held in fact, by process P 1, the second call to 

acquire lock is just going to keep on executing, while test and set of L forever. We know 

that this is not a situation in which the value of L is going to get changed, because the 

only possibility for the value of L to get change is where this very same process 

executes, release lock. This process every time it executes, it just going to keep on 

executing acquire lock busy weighting on this loop inside the acquire lock function. 

Now, this is in itself is not a dangerous situation, because we know that acquire lock 

involve busy weighting and after the process as used the CPU for some amount of time, 

it could be preempted and we Leal the CPU. But, they could be a most serious situation 

if the acquire lock function is not written using busy weighting, but is using the blocking 

idea, which I had talked about last time. 

Let suppose it has a situation, where this is a blocking scenario; then as far as process P 1 

is concerned, process P 1 is a situation where it is holding a lock and subsequently is 

trying to acquire the lock, but will be blocked until the lock becomes available. The only 

process which can release the lock is process P 1. 

We know that is never going to release the lock because it is currently blocked, 

weighting for the lock to become available. Therefore, this is a situation which will never 

happen, we know that this will never happened and this is happen because of in correct 

use of the lock. 



When we first looked at this piece of code, I suggest that is not clear what the 

programmer has in mind because it is not easy to understand how a single process could 

try to acquire a lock and while holding the lock, try to acquire the lock again, it does not 

make any sense, it is not logical. Therefore, this is very clearly a wrong piece of code, 

but this is just as simple illustration of a more general problem, which could arise if there 

are multiple processes and this situation is known as a deadlock. 

The situation could arise if there are multiple processes, each of which is trying to 

acquire a resource may be using a semaphore and that resource is held by an another one 

of the processes, in such a way that there is a cycle of processes, each of which is waiting 

for something to happen that can only be achieved by the next in line, in that cycle of 

processes. 

This ends up in what is known as a deadly embrace, where there is a group of processes 

which are in a sense blocked and locked, waiting for something that only one of the 

others in the group can do, which in turns waiting for something that one of the others in 

the group can do, guarantee that none of these processes can progress ever. So, this is 

much more dangerous in an infinite loop because that is a guarantee that the processes 

are not going to make any progress. 

Now, deadlocks are a serious problem that could arise in writing concurrent programs 

and they are serious in that unless the deadlock is understood and eliminated, the 

program is not going to achieve its objective. We will talk about deadlocks again a little 

later; I wanted to introduce the idea. 
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Since we are talking about potential problems, that one is to be aware of in concurrent 

programming. Now, just to tie in the concepts of concurrent programming, it is often a 

teaching technique that is used in concurrent programming classes to look at some 

standard problems and analyze how they could be solved using the constructs of 

concurrent programming. These are known as some of the classical problems of 

concurrent programming; one of these is known as the Producers-Consumers problem, I 

thought I would run through this. 

This also sometimes known as the bounded buffer problem, the nature of the problem is 

the following. The situation is one where I have one or more processes, which are 

producing; I refer to them as a producer process. 

So, the property of the producer process is that, it produces something and then puts the 

thing that has been produced into a fixed size array or buffer. So, when I use the word 

buffer, I am referring to something which we will represent as an array in the program. 

The property of the array is that, it is a shared array and that it is of some fixed size. 

Now, the other entities in this concurrent program, but the other entity in this concurrent 

program is what I will refer to as a consumer and as the name suggest, what a consumer 

process does is, it take something out of the shared buffer, that is why it is called a 

consumer and it uses that whatever the thing was. 



Now, the problem that could arise is that, if I write a concurrent program to solve to 

handle consumer producer like situations as two processes; one is a producer process, 

one is the consumer process. I just think about the code of the consumer process, the 

code of the consumer process is going to try to read something out of a shared buffer or a 

shared array and use that thing. 

But unless, the producer process has already produced something and put it into the 

buffer, there may be nothing in the consumer process for the consumer process to 

consume. Similarly, if the consumer process if the producer processes has something 

which it has made, and would like to push it into the buffer, but up to now the consumer 

process has not removed anything from the buffer and the buffer is therefore full, then 

the producer process may not just be able to insert the newly created thing into the 

shared buffer. 

Hence, there is a need to synchronize the activities of the producer and the consumer to 

make sure. For example, that the producer does not put into a full buffer or the consumer 

does not take out of an empty buffer. These are what may be viewed as synchronization 

requirements between the producer process and the consumer process. Therefore, in 

some sense, it is a useful example to try to write code for in terms of a concurrent 

programming exercise. 
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The other aspect which is interesting here is that, the producer and the consumer not only 

have to be synchronizing, but they also have shared variables which they are both 

accessing. Specifically, the shared variable that they have is the shared buffer and 

therefore, we have to understand that in writing the producer consumer concurrent 

program, we have to treat accesses to the buffer has a critical section. Therefore, there 

are in addition to the synchronization requirements there is a mutual exclusion 

requirement. Therefore, this is a nice problem to understand these concepts more fully; 

just look at a possible encoding of the problem. 

So, I describe the shared buffer by - some this is not exactly c code, it is not exactly any 

program, but a programming language, but will be added could for our purposes - the 

sudo code form. 

So, I have a shared buffer and array which I describe as buffer; it is a fixed size, the size 

of this particular buffer is n. So, i number the elements from 0 through n minus 1 and I 

have a producer process, which is going to execute a loop in which it repeatedly 

produces a thing, which I will call x and then inserts that thing into the buffer. 

So, associated with the buffer, I have an index variable call I which will let me know the 

current available slot in the buffer. So, I will initialize i to 0 and then subsequently 

whenever something is put into the buffer, increment i which is why there is i plus plus 

associated with the producer and the producer does this repeatedly. 

What is the consumer do? The consumer once again repeatedly remove something from 

the buffer, in order to do that it decrements i and looks at the object inside that element 

of the buffer or array, put silent to a local variable call y and consumes y. 

So, this is the basic activity which we have talked about, now there is a need to enforce 

the mutual exclusion requirement on the accesses to the shared variables. There is also a 

need to enforce the synchronization requirements of not making sure that the producer 

and the consumer do not produce and consume from empty or full buffers etcetera. 

Now, one of the requirements that we have is that when the producer produces an object 

x, it must obviously, check to see if the buffer is full. If the buffer is full, then it has to 

wait for at least one consumption of an object to happen, that will ensure that one 



element on the buffer is available; therefore, the producer can push the x that it has 

produce into the buffer, can insert the x it has produced into the buffer. So, that is one of 

our requirements. 

The other requirement is that prior to thinking that it can take something out of the 

buffer, the consumer will have to check if the buffer is empty and if the buffer is empty, 

it will have to wait - in other words, it cannot just proceed after the if condition, it will 

have to wait - until at least one element has been produced. So, it has to wait for at least 

one production. 

Now, we notice that there is the weighting for consumption and there is a weighting for a 

production. Now think about the consumption, when does something get consumed? 

Something gets consumed, when it is taken out of the buffer by the consumer. When 

does something get produced? It gets produced, when it is put into the buffer by the 

producer. Therefore, we can think of these requirements as being synchronization 

requirements between the processors, between the processes is producer and consumer, 

which could conceivably be handle using semaphores. 
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Now, another problem which people often talk about as a concurrent programming 

problem is, what is called the dinning philosophers problems. It is a rather curious 

problem. Problem is stated as follows: let us suppose there is circular table and there are 



n philosophers, n people sitting around the table, each has a plate of a food in front of 

him or her and there is a fork on the table between each two philosophers. 

So, the setting is as over here (Refer Slide Time: 13:36). There are n philosophers, in this 

example n is equal to 5 and a plate in front of each with food on it. Unfortunately, there 

are not enough forks, we assume that each philosopher needs two forks to eat with, that 

is the suggestion; but, there are only n forks on the table, which means that the forks are 

shared resource which is scarce. 

They call philosophers because all that the philosophers do is repeatedly, in other words, 

this is a loop; they think and then they eat. In order to eat, they have to require two forks, 

just eat - they have to get the fork on the left and the fork on the right, then eat and after 

having eaten, they put the forks back and think. 

Now, the problem that one has to deal with here is that, it is possible that one could end 

up with some kind of a deadlock situation. For example, if this philosopher grabs this 

fork and this philosopher grabs this fork and this philosopher grabs this fork and so, on 

(Refer Slide Time: 14:28). 

They could be a situation where each philosopher has one fork and therefore, all of the 

philosopher’s processes will be deadlocked, unable to eat because they cannot get two 

forks. Therefore, there is actually a serious need to make sure that this philosophers or 

the code which is use to describe the activity of anyone of these philosophers is carefully 

written to ensure that, this deadlock does not arise or each philosopher ends up with one 

fork. 

So, the problem is basically one of avoiding deadlock. So, these 12 problems could be 

looked at of solutions. So, the solutions to these 12 problems could be looked at to 

understand the need for or the use of the synchronization of mutual exclusion primitives, 

and they are treated very nicely in many of the text books. 
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One additional concept which we were going to need later on and I will comment on 

that; what I mean by later on, in a few minutes is the concept of a thread. Therefore, I 

would like to talk about the thread before wrapping up on concurrent programming. 

Now, we have talked about processes and a thread is in some sense are related concept. 

We will think of a thread as being thread of control in a process, hence the name thread. 

So, in general when I talked about a process, I talked about this worms could link to the 

process, which was a flow of control in along the same lines, we now talked about a 

thread of as being a thread of control within a process. Some people talk about a thread 

as being a special kind of process, but just lighter in weight and I will talk about that a 

little bit. 

Now, when people talk about the weight of a thread as related to the weight of a process 

which is obviously, what is happening in referring to a thread as a process which has 

light weight, they must be referring to something about the thread which is simpler or 

less expensive or less time consuming, then the corresponding concept in the case of the 

process. Some aspects of threads, which may be relevant in this context, are that a thread 

is simpler than a process. 

Therefore, text typical less time to create a thread as we are going to see is simpler from 

a process in important ways through which it takes much less time to switch from one 



thread to another thread. Both of these are ramifications are a symptoms of the facts that, 

size of the context or the size of the amount of information data and operating system 

information or library information, associated with a thread is much smaller than that 

associated with the process. 

So, now that to understand what a thread is, we need to understand the little bit about 

what we mean by the size of the thread or the context of a thread. Just to go back to or 

understanding of what a process is, let me remind you something that we saw in 

connection with our discussion of a process as a data structure. This will help us to 

understand what we mean by size of context. 
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Now, when I talked about the process as a data structure, we went through the exercise 

of listing the different operations that would be done on a process and those ultimately, 

what the different operations which were implemented a system calls. Subsequently, we 

have started to look at the different pieces of data, let for manipulated by those 

operations and we came up with a large collection of different pieces of data, that were 

be viewed as being important as far as the process is concerned. Therefore, the data 

associated with the process, there was a text data stack and heap which was fairly 

obvious. 



There it contains of the hardware registers associated with the process, when it was 

running. Then there was a lot of operating system information which was associated with 

the process such as identifiers, memory management information such as page table 

etcetera, various species of information. 

Now, all of this information is information that is associated with the process and could 

be described as the process context. In other words, the information that must be present 

or taken into account when that process is running; we saw that when there is a context 

which from one process to another. 

Some of the information that is listed over here had to be loaded into the hardware 

context. Some of the other pieces of information had to be taken into account by the 

operating system because, whenever there was a system call during the running of a 

process, the operating system had to be where which process is page table, which process 

is information about CPU time, which process is open files had to be refer to. 

Therefore there was this notion that whenever there was a context switch not only the 

hardware state, but the operating system perspective had to be changed to that of the 

incoming process and the context of a process was fairly large, it filled one screen. 
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Now, in saying that the context of or in saying that the time for context, which of a 

thread or the size of the context of a thread is going to be lighter than that of a process, 



implication must be that, the thread is some kind of an entity a (( )) to a process, but with 

much less information associated with it. 
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Therefore, it should be possible for us to list for commonly occurring implementations of 

threads, what in the information might be contain within the thread context; it turns out 

that is this typically quite small, while it is obvious that each thread must have a unique 

identifier. Just like each process had to have a unique identifier, it is obvious because if 

there are multiple threads corresponding to the exclusion of a program, then it may be 



necessary to switch from one to another and that therefore, they must clearly be 

distinguish from each other, for which reason each must have a unique identifier. 

If they are separate threads of control, separate floors of control on a program, then they 

would clearly be able to make function calls it dependently of each other and must 

obviously, therefore, each have their own stack. Notice that, I do not say each must have 

their own text or each must have their own heap, they could actually have shared text 

data and heap but specifically, must have separate stacks because they are threads of 

control and may make separate function calls. Clearly, they must have separate stack 

pointers, if they have separate stacks and for that they must have must separate special 

purpose and general purpose context associated with them. 

If they are two threads and they could they are viewed a separate threads of control, 

exclusions inside the processor and I can switch from one to the other, very clearly the 

meaning of R 1 register 1 2, one of the threads is not going to always be the same as a 

value in R 1 from the perspective of one of other threads. 

Similarly, as independent threads of control, flows of control they will be executing 

different instructions therefore, they must have separate hardware context of this kind, 

but that is pretty much it. So, the thread context is going to be very small, possibly 

separate stacks and stack pointer and a few of the general purpose registers, I am sorry 

the general purpose register file, as well as some of the special purpose registers. 

But other than that, threads need not have separate context from each other. In fact, as a 

consequence of this, the amount of time that is going to take to switch from one thread to 

another is going to be much smaller than the amount of time that is takes to switch from 

one process to another. Flashily comes from the fact that, the process context which we 

listed on the previous slide is so large. 

Now, the perspective that we could have is that, we could have a problem in that we to 

understand where the text data and heap associated with a thread are going to come from; 

its well and good to say that, the thread context includes only these things, but if a thread 

is an active entity which could run on a processor, then in must have instructions 

associated with it. 



I have mention the anything about its text or it is data or it is heap which is why the next 

point is we assuring, the picture we should have in mind is that, there could be many 

threads which are all part of the same process. In other words, they are all sharing many 

parts of the process context such as may be the text, the data and the heap. 

So, the picture we may have in mind then is, I could have a single process in which there 

could be many threads and that is the common process context which includes text, data 

heap, open files etcetera, but each of the threads on its own may have a small amount of 

context of its own. And therefore, when I switch from one thread to another some of the 

process context between them could be shared. 
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In particular, other than the stack the virtual address space could be shared as a 

consequence of which the threads t 1, t 2, t 3 could actually have a large number of 

shared variables within the virtual memory frame work of any operating system. 

Therefore, a lot of what we talked about in connection with concurrent programming 

could actually find implementation in the form of threads rather than in implementation 

in the form of processes which are cooperating. Rather we could think about threads with 

in a process, cooperating towards the common objective, the threads would have to be 

synchronize, the threads would have to have our mutual exclusion on their access to 

shared variables. 



But, those shared variables themselves could all be within a single process and therefore, 

not violating or understanding of the operating systems virtual memory in order to 

protect one process from another. This is a situation where the threads do not have to be 

protected by the operating system from each other. The threads being part of the same 

program would have been written to carefully and correctly utilize the shared variables in 

a manner that is good for their common objective. So, much about we have said, may 

make sense in the context of the one processor machines that we run on in the context of 

threads. 

Now, we therefore have this notion, threads running in the same process having shared 

variables, but the stack allocated variables may not be need, may not be shared for reason 

of the stack being part of the separate context of the individual threads. In other words, 

each thread has its own stack and it is therefore, it is local variables and parameters are 

distinct from each other. 

Now, the question which will arise now is, we talked about processes before we talked 

about operating systems. And subsequently, learn that the concept of processes created 

by the operating system, one of the operating system jobs is the management of 

processes. The operating systems schedule processes on to the CPU etcetera, what is the 

status of threads or threads also operating system level entities. 
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Now, there are actually two possibilities. It is possible that the threads could be 

implemented or supported directly by the operating system, but on the other hand, it is 

possible to have implementation of threads which are made available through a library. 

In other words, not implemented inside the operating system but implemented outside 

the operating system through libraries of functions. 

Some of the systems that you deal with will have hardware operating system support for 

threads and some of the others will not. In this case, you would use a threading library in 

order to deal with threads. 

Now, one of the commonly available thread libraries is known as P threads; P threads 

stand for POSIX thread library and this is downloadable, available on many systems. 

What do you expect to find when you look at the thread library, what we mean 

understand by library is that it is a collection of functions and possibly associated data. 

What kind of functions would be expected to find in connection with the P threads or a 

threading library in general. 

Now, very clearly we will expect that, they just like there is a system call to fork a new 

process, they must be some kind of a function inside the thread library to create a new 

thread. In the case of P threads, the name of that function is P thread underscore create, it 

returns an integer value, it takes various parameters; I would not go in to the details of 

this, but this is reassuring because this would be the parallel of fork, it is how one creates 

a new thread. 

There are various other functions included in the library for doing various operations on 

threads, at the level of the process operations that we talked about. And I list some of 

them here, but will not going to the details. It becomes necessary to use P threads; one 

nearly has to understand the library. 

Therefore, from our perspective you seen one function in P thread library which relates 

to fork, but we have seen that when we talked about writing concurrent programs using 

processes, there was the need for various synchronization in mutual exclusion primitive’s 

came up.  I suggested that the same requirements may exist if we are programming with 

threads, because threads do have shared variables, threads may have to synchronize with 



each other. Therefore, locks and semaphores may be important for concurrent 

programming using threads. 
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We would hope to see a several functions available in the thread library for operations 

relating to locks and semaphores. That is, in fact the case, we find out that there are 

functions for doing operations on locks. For example, there is the pthread mutex lock 

function and the P pthread mutex unlock, which serves the role of acquire lock and 

release lock in our earlier terminology. As far as semaphores are concerned, there is a 

mechanism to initialize a semaphore on many systems, a mechanism to do the P and the 

v operations on semaphores. 

Whenever we see wait, we understand that would correspond to the P operation and post 

corresponds to the v operation - post of signal. Therefore, associated with these threading 

libraries, one does find support for the various issues that we saw in connection with 

concurrent programming. 
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Now, I am going to stop the discussion of concurrent programming with this. You may 

be wondering why I talked about concurrent programming in some sort of a partial 

mode; for example, I talked about synchronization a little bit. I mention some other 

synchronization primitives, but did not go into them in detail at all. For example, I talked 

about lock and semaphore to some extent, but in earlier lecture, I had talked about 

something called the barrier. I never said anything to you about that, you will be 

wondering about this, you also be wondering about the relevance of this particular topic. 

Now, let me just warn you about things which are ahead. Later in this course, we are 

going to actually talk about some high performance systems, remember the title of this 

course is high performance computing. Many of the high performance systems today 

there is more than one processor; up to now, our assumption has been that, we are talking 

about computer system in which there is only one processor. 

And hence only one process could be in execution at a time, only one thread could be in 

execution at a time, what I mean by that is only one process could be running on the 

processor at a time or only one thread could be running on the processor at a time, 

because there is only processor, only one program counter etcetera. But, if in high 

performance computing systems there is more than one processor, then there is a 

potential for a concurrent program to actually run with one process on one processor and 

one process on another processor. If that is the case, then it is no longer fair to call that a 



concurrent program, because the activities on the two processors could actually be 

happening in parallel, in fact at the same time. 

At exactly the instant in time, when process P 1 is running on processor 1, process P 2 

might be running on processor 2. Therefore, there is no problem of concurrency there is 

actually a problem of events happening at the same time. This might in fact, we are most 

severe from the perspective of problem issues like, mutual exclusion and synchronization 

then, it was in the context of concurrent programming. 

Therefore, later in this course, when we talk about high performance computer systems 

with multiple processors, we will come back to many of these issues in more detail, 

which is why I am rushing through them a little bit right now. 
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Now, coming back to our agenda, we are at a break point we have successfully 

completed our discussion of process management. About to move into the next topic, 

which is as you will see item number 5 label pipe line processors. Let me just switch to 

in that material, so we are now moving into the next topic which is line item number 5. 
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We have moved out of - if you looking back you will notice that, for the last 10 lectures 

we were on the software side of the computer systems prior to that, we were on the 

hardware side of computer systems briefly. We are now going back into the hardware 

side of computer systems for something like the next 9 lectures or so. You get to start off 

with this discussion of pipelined processors. 

Again, let me just remind you, when we stop talking about hardware while back. We are 

still in the context of thinking about a computer system in which there is only one 

processor. Our discussion of the computer systems with more than one processor is a 

little - several lectures down the role. Our understanding of whether the processor 

operates is that, there is the need for the I O devices and the memory, but we looked a 

little bit at the control and had a picture in which we understood the various steps which 

had to happen in executing an instruction. There was a need to fetch the instruction from 

memory, there was a need to decode the instruction; in some instructions, they need to do 

a memory operation and in some instructions, they need to do a right back. 
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We came up with simple hardware for each of the different steps in execution of an 

instruction. A question which you did not ask at that point in time was how fast can a 

processor be? You will recall that when we talked about implementation of a processor, 

we talked about how there was a general purpose register file, the correct operand may 

have to be fetch from memory; for that to happen conceivably the address may have to 

be calculated and so on, but we never talked about the performance of the processor, 

which is the title of the current slide. 

Now, if we are to think about the processors that are available today, we assumed that 

they must be high performance processors and therefore, their hardware is not going to 

be along the lines of what we have seen. 

It is going they are going to have some ideas within them to improve a speed with which 

they execute instructions. Now, an important question in this context which we need to 

understand to start things of is what is the correct priority? Which is more important? Is 

it important to build the hardware? So that, it can execute each instruction in as little time 

as possible. In other words, is it important to reduce the execution time of a single 

instruction or is it more important to increase the throughput of instruction execution? In 

other words, increase the number of instructions which are executed per unit time. 



If you think about little bit, these two are distinct objectives, if it is my objective to 

reduce the execution time of a single instruction, I would actually try to optimize the 

piece of hardware for doing instruction fetch, instruction decode, etcetera. Then, put 

them all together to get the minimum possible amount of time for executing each 

instruction. 

We saw that for some instruction, the amount of time to execute the instruction was 3 

cycles, for other instructions the amount of time to execute the instruction was 4, for 

others it was 5. May be, where very careful design I could reduce this to 2 and 3 and 4, 

and that would be what would happen, if my objective was the first; first objective would 

try to reduce the times by very aggressive design possibly whereas, the objective in the 

second is saying do not worry too much about the individual instruction execution time, 

but try to improve the rate at which instructions execute, which is an interesting concept 

is not too clear at this point, how they could be done. But if you think about it little bit, 

let us assume that our objective is to make our programs run as fast as possible. 

That is the ultimate bottom line; the manufacture of a processor knows that the processor 

will sell well, if it is able to execute programs faster than the competitors. Therefore, in 

some sense, whichever of these objectives will achieve that ultimate objective is 

probably the important one. Little bit of thought one can actually argue and convince 

people that the throughput is where one is going to get faster program execution, not 

necessarily from the faster in individual instruction execution time. 

Therefore, we are actually going to start looking at an idea in which the objective is in 

fact, the second. Trying to reduce I am sorry trying to increase the rate at which 

instructions are executed, not paying too much attention to the amount of time that it 

takes to execute any one instruction. 

In fact, they are not being too concerned if the amount of time to execute any one 

instruction is actually higher than it could have been, rather trying to increase the rate at 

which instructions are executed. Now, a commonly use terminology for the rate at which 

an instructions are executed is to talk about the number of cycles per instruction and that 

is sometimes abbreviated as CPI-Cycles Per Instruction. The general ideas that, if I have 

a program which is going to execute, I can count the total number of clock cycles it takes 

to execute the whole program. 
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I can also count the number of instructions that it took to execute the whole program and 

then, I can divide the total number of cycles divided by the total number of instructions 

and come up with the cycles per instruction number for the execution of a particular 

program on a particular piece of hardware. 

Now, for the kinds of design ideas that we have been looking at so far, you may ask what 

would the cycles per instruction for a program b. Arguing along the lines that I suggested 

at the top, you will remember that for using the ideas that we have so far, where some 

instructions take 3 cycles, some instructions take 4 cycles, some instructions take 5 

cycles. 

You will notice that, when I execute a program on a machine which has these 

characteristics, some of the instructions may take 5 cycles and some of the other may 

take 3, but no instruction is going to take less than 3 cycles, no instruction is going to 

take more than 5 cycles. 

Therefore, however many instructions I execute - in other words, however many 

instructions have to be executed - as part of running a program that I am interested in, the 

CPI is going to end up somewhere between 3 and 5, it cannot be less than 3 it cannot be 

more than 5, it is going to be somewhere between 3 and 5 using the current ideas and a 

certain simplifying assumptions of course. 



Now, we are going to look at an idea called pipelining, which is going to concentrate on 

the rate at which instructions are executed. It is not going to try to reduce the 3 to 2, 

reduce to 4 to 3, reduce to 5 to 4, the effect of doing that might have been to reduce the 

CPI to something like the range 2 to 4 and that is not very aggressive. The pipelining is 

going to try to reduce the CPI to something like 1, which is substantially better than the 

cycles per instruction that we were talking about for the ideas that we seen so far, so it is 

a substantially new approach. 

Now, the basis of the idea of pipelining in essence from the context of the hardware that 

we have seen is to try to get an answer to this question. In building the hardware that we 

had, we had the hardware to fetch an instruction and increment the program counter, we 

had the hardware to decode an instruction and access the operands, then we had a 

hardware to execute the ALU etcetera, the hardware related to the access to memory if 

its load or store etcetera. Then, we just put these pieces of hardware one after the other 

and expected that, you would be use to execute instructions. 

We never ask the question we still over here, the question is after the piece of hardware 

which was meant to fetch the instructions from memory had fetched the current 

instruction, why do I keep it idle when that particular instruction is being decoded? 

Why cannot I use that fetch hardware for something else? This is the fundamental 

question which answers to which provide the idea of pipelining, but before getting into 

the mechanics of pipelining, I will just quickly suggest where the idea pipelining may 

have been motivated from. 

Now, the suggestion from the name pipelining you might guess that the motivation for 

the idea of pipelining came from petroleum pipelines sorry in a quick - I am just going to 

hypothesis, how by this may be reasonable guess about where the inspiration for the 

word pipelining came from. 

Let me just say talk a little bit about pipelines, I am not a chemical engineer, some of you 

may be and will have better ideas about pipelines then I have, therefore this is a just 

general rough kind of perspective on pipelines. 
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Now, pipelines are actually physically objects, they are used to transport fluids. The 

fluids could be liquids or gases over long distances and when I talk about long distances, 

I could be talking about 1000s of kilometers; for example, some of you may be aware 

about pipelines. For example, there is well known pipeline which stretches from 

somewhere in your Mumbai in India to somewhere near Delhi and that is 1000s of 

kilometers. 

These are substantially large distances and they are used to transport fluids could be 

liquids or gases. This sometimes arises in the context of transporting petroleum products 

from a refinery to a point from which they could be distributed. What I mean by 

petroleum products I will elaborate on a little bit, but as far as a pipeline is concerned 

one should have a picture of some kind of a pipe, I am not sure the diameter these pipes 

will be. 

In some case, the pipelines could be underground and on the cases, for cost reasons they 

may be over ground. What is important is that they must have some periodic stations, 

periodic pieces of equipment which could be used to pump or compress depending on 

whether we are talking about liquids or gases, because unless there is a pump to push the 

fluid through the pipeline, then the whole pipeline would have to have some kind of a 

gradient in order for the fluid to flow. The objective here is transportation of the fluid 

and therefore, they may be a need for these pumps periodically. 



In addition to this, there may be the need for some protection mechanisms periodically 

such as valves, things like that periodically, but in a sense the abstraction of the pipeline 

that I will work with is one something like this. There is a pipe has been out running for 

potentially 1000s of kilometers and one example is, it might be running from a refinery 

to a city. 
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Now, a refinery is a place where crude petroleum is taken in and it is refined into many 

products. For example, it is cracked in one gets diesel, kerosene, airline fuel, etcetera; 

various different kinds of things will obtained from crude petroleum and are conceivable 

that all of them have to be transported to the city to the other end. 

Now, one could actually think about, let suppose that one can describe the amount the 

volume of each of the different kinds of petroleum products that one has in terms of 

kilometers. Let suppose that at some point in time, I have the equivalent of 20 kilometers 

in terms of volume. The volume would be defined by the area of the pipe multiplied by 

the link that particular volume occupies, if it is pumped through the system. Let suppose 

that I have 20 kilometers of airline fuel, which I want to transport from the refinery to the 

city. 

Then, one thing could be done is to just pump the 20 kilometers through the pipeline. 

Now, if that is the case then much of the effort of using the pipe line is going to be spent 



in pumping air through the pipe line, because any given point in time there is 20 

kilometers. Now, the 20 kilo meters of airline fuel here and it slowly moves to the 

pipeline as some point to time is over here and in pumping it, you are basically pumping 

air, in order to push the petroleum fraction that you have through the pipeline. 

So this is not a very effective use of the pipe line, must more effective use of the pipeline 

might be that after having pump the 20 kilometers of airline fuel, I conceivably have to 

leave a little bit of a gap, but I could then pump may be 50 kilometers of some other 

fluid; may be, diesel through the same pipeline. After a little bit of a gap I could pump 

100 kilometers of some other fraction of petroleum. In a sense by trying to keep the 

pipeline full, I will be increasing the utilization of the pipeline and in fact, I will be 

reducing the amount of time that it takes for anyone of these fractions to reach if I look at 

the average amount of time across all of the fractions. 

In other words, here what we are trying to do is to improve the throughput of the 

pipeline. This is an idea for petroleum pipelines of improving the throughput and the key 

idea is rather than just concentrating on one fraction, I concentrate on many fractions; I 

try to get many fractions into the pipeline, so that pipeline is full of many different 

fractions at the same time. 

Now, if you want to translate this into our processor context, I just have to replace the 

term petroleum by the term instructions and talk about, this has being one instruction, 

this has potentially being another instruction and so on (Refer Slide Time: 44:14). The 

general idea being that if I have a piece of hardware which is capable of executing 

instructions, then rather than trying to use all of the hardware for just one instruction at a 

time, in other words that 20 kilometers of airline fuel, I try to actually use some of the 

hardware for airline fuel, one of the instructions. 

Some of the other hardware for kerosene, in other words, one of the other instructions 

and so on, in other words tries to use all of the hardware at any given point in time for 

various instructions, so that none of the hardware is idle. The net result will be that I 

might actually increase the throughput in other words, the rate at which instructions are 

completed. 
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This seems like a reasonable guess as to where the motivation for pipelines came from. 

Now, if I look at the hardware that I had for the processor, this is what it look like, as I 

said there was the hardware to do fetching of instructions and incrementing the program 

counter, there was a hardware to decode instructions and fetch the operands, there was a 

hardware to do various ALU related operations whether they be in connection with 

arithmetic instructions or load store instructions or branch instructions. 

In all these cases, the ALU may have to you have been involved and then there was a 

hardware to do operations on reading from memory such as load and store instructions. 

Up to now, our picture was that we can just use all of these for one instruction at a time. 

The time that we when through this description I had introduced a label for each of the 

five steps in instruction execution, the labels were IF, ID, EX, MEM and WB standing 

for Instruction Fetch, Instruction Decode, Instruction Execution, Memory Access and 

Write back. 

Now, in the lectures to follow, I do not want to repeatedly reproduce this detail diagram; 

in fact, do not have to look at the details of the individual components of the hardware 

too often. Therefore, I will try to use some of kind in abbreviated notation which may in 

fact just looks something like this (Refer Slide Time: 46:30). Rather than drawing the 

instruction fetch hardware, I may just draw a yellow block labeled IF for instruction 

fetch. 



Similarly, for instruction decodes a grey block labeled ID, instead of this instruction 

execute a red block labeled EX and so on. So, I will use this abbreviated form and when 

in doubt one in some situations, I may refer back to the full diagram, but typically the 

abbreviated form the surface. 
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The fundamental idea of pipe lining is that, we are interested in trying to maximize the 

rate at which instructions are executed, so we will keep steady track of time. Now, when 

I draw this time line, I just to make sure that there is no confusion about our recent use of 

time line - our recent use of time line involved either process virtual time or it involve 

real time. In this particular context, we are back to the hardware level and therefore we 

are talking about the hardware time line which is more accurate to the real time line, but 

in which we are actually concerned about the individual cycles that are going by as the 

activities proceed. 

If I consider, I could therefore label that time line as clock cycles. In fact, since I know 

that the clock cycles discretize the time line, I could hence forth know the time line has 

being this discrete version, where there is the first clock cycle which is the time between 

here and here, this is followed by the second clock cycle and so on. 

From now on, we will actually have a discretized version of the time line clock cycle 1, 

clock cycle 2, etcetera. In most cases, we will not be too concerned about the various 



activities that happen within clock cycle 1 for example; in some cases, we may have to 

work now that important for the moment. What happens as instructions execute? Now, 

our current picture is that, the first instruction executes we will execute by spending 1 

clock cycle being fetched, 1 clock cycle being decoded, 1 clock cycle being executed, 

etcetera. If it is an instruction which requires all the 5 aspects of the hardware, what 

about the second instruction execution? 

Now, our current assumption is that the second instruction will start executing when the 

first instruction finishes execution. In other words, it will actually use the IF hardware in 

the sixth cycle, it will use the ID hardware in the second cycle, I am referring to the 

second instruction and so on. 

Based on our current understanding, the second instruction would finish execution in the 

cycle numbered 10; it would be finish right back in the cycle number 10, but just based 

on the question that was just asked, the question which was asked in the slide before a 

last was, after the first instruction has used the IF or the Instruction Fetch hardware why 

do I keep it idle? Why instruction fetch hardware is kept idle for 4 cycles? Why cannot I 

use the instruction fetch hardware to fetch the second instruction right away? In other 

words, why not fetch the second instruction in cycle number 2, rather than waiting until 

cycle number 6 to fetch the second instruction and so on. 
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The second instruction can be fetched in cycle number 2, it can be decoded in cycle 

number 3, it can be executed in cycle number 4, it can use the MEM hardware in cycle 

number 5 and it can be written back in cycle number 6, rather than actually finishing on 

the cycle number 10. This is in a sense, what process of pipe lining will try to do. Note 

that, as far as process pipe lining is concerned, the fact that each instruction took 5 cycles 

is hardly concerned at all, because what we have achieved is more important. So, the 

third instruction can follow and use IF hardware starting from cycle number 3 and so on. 

What is the net effect? The net effect is that just like in our previous simple perspective 

of the hardware, the amount of time that it takes to execute a single instruction is still 5 

cycles, but with this new perspective on reusing the hardware as soon as possible, the 

rate at which instructions can complete is now 1 instruction per cycle, how do we see 

this? We see this if we look at the time that instruction 1 completes; instruction 1 

completes in cycle 5, instruction 2 completes in cycle 6, instruction 3 completes in cycle 

7 and so on. 

In other words, even though it takes 5 cycles for anyone instruction to execute, every 

cycle in instruction seems to be completing in this diagram. Therefore, the throughput or 

the rate at which instructions are execute is one instruction per cycle or one cycle per 

instruction using our CPI notation. Now, one thing I would want to point out from the 

perspective of the diagram, since the diagram is upon the screen is that, it is true that an 

instruction is completing every cycle starting with cycle number 5. In cycle number 5 

instruction 1 completes in cycle number 6 instruction 2 completes and so on, but if I look 

at the first 4 cycles, no instruction completed. Therefore, I do have to know that there 

was this initial time of 4 cycles during which the pipeline was filling up when no 

instruction completed, but after that the throughput of this pipeline is 1 instruction per 

cycle. 

Therefore, this simple idea if it can be implemented is very successfully increasing the 

rate at which instructions are completing and can therefore successfully reduce the 

amount of time that it takes to execute a program. 

Now, we will look into the details of pipe lining and the problems that arise in the design 

of the hardware to achieve the objectives of pipe lining in the lectures that follow. I will 

stop today by just reminding you that we have now, in this lecture we have begin the 



transition from software side of computer organization back to the hardware side of 

computer organization. We are now going to look in a little bit more detail at one of the 

more recent developments and computer hardware where pipe lining is used. This is in 

fact, a development which happened as more than 20 years ago, but the earlier ideas that 

we had seen predated even that. 
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So, this is an important stepping stone for us to understand the nature of processors 

today, because on the process of today we can definitely expect the pipe lining is a 

widely used hardware phenomenon and that is something which as programmers we may 

well have to be aware off, thank you. 


