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Welcome to lecture 26 of the course on High Performance Computing. In today's lecture, 
we start on the next item of our agenda; this is item number 6, where we talk about cache 
memory. I had given you a general introduction to this topic towards the end of the 
previous lecture. 
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Now, this topic is important to us from our discussion of pipelining and process of 

architecture, because we realize that in discussing how instructions could be executed, it 

was important to make rather strong assumption that memory latencies would not be 

seen by the processor most of the time, because the main memory is so much slower than 

the processor. We just bypass the problem by saying that there would be some hardware 

called cache memory, which would solve that problem and make the assumption valid. It 

is now time to look into that assumption and how it is realized in the hardware. 

The cache memory is the name of the hardware that makes that assumption a reasonable 

assumption. As I had mentioned in the previous lecture, the design principle of cache 

memory is something that we have seen, and we talked about virtual memory, the 



principle of locality of reference of which they are two aspects that it is important to 

understand. Temporal locality which tells us that typical program behavior, it is the least 

recently used entities, whether they are instruction or data that are least likely to be 

referenced in the near future. 

Remember that it was important in the case of our discussion of virtual memory, in the 

connection with page replacement policies, to have some kind of understanding of 

program behavior and the sense of what it is likely to do in the near future. So, this 

principle gives us a model or understanding of typical program behavior from that 

perspective. 

Second aspect of locality was spatial locality which leads us to understand there, for 

typical programs, the neighbors or neighboring memory locations to a location which is 

currently being referenced are the ones that are likely to be referenced in the near future. 
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The principles of temporal and spatial locality which were of relevance when we talk 

about virtual memory, once again, being principles of models of how programs access 

their instructions or data, will also be relevant in our discussion of cache memory. 

Now, just to illustrate how cache memory exploits the principles of locality of reference. 

First of all, remember that cache is a hardware entity and it in some sense provides what 

the processor wants directly, rather than expecting the accesses to be satisfied out of the 



main memory, which is slow. This will happen hopefully most of the time, not necessary 

all the time, but most of the time at a very high speed. 

The picture we should have in mind is that the CPU, as always, sends requests to main 

memory for instructions or data in the form of an address, and some later point in time 

get back the piece of data or instruction. We now understand that there is this 

intermediate piece of hardware called the cache memory, which typically most of the 

time provides the instruction of the data at high speed. I have shown the cache memory 

as being much smaller, significantly smaller, than the main memory in this diagram. 
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The general principle of how caches operate and we are blowing up that small green 

block into at the larger block, is that when an address A received by the cache hardware 

from the processor… remember that processor sends an address to the cache memory as 

per this diagram. When the address reaches the cache, obviously the cache must have 

some amount of very fast memory in order to able to provide data or instructions 

quickly, so there must be some fast memory inside the cache. But in addition, since 

clearly not all of the contents of the main memory could be present in this small cache, 

there must be some hardware within the cache which can determine which instructions or 

data from main memory are currently inside the cache and inside the fast memory of the 

cache. 



Technically, what that hardware what have to do is, given the address A that the process 

has requested determine whether or not the contents of memory location A are currently 

inside the fast memory of the cache, which is what I labeled as, do I have it? Logic, once 

again, I am using the term logic to refer to circuitry. 

So, circuitries which can determine whether or not the address A is currently present 

inside the cache memory. In order to determine whether or not address A is currently 

present inside the cache memory, the cache will obviously have to keep track of the 

addresses which are currently in or represented inside the cache memory by a table of 

some kind. The technical terms for the fast memory, do I have it logic, and the table of 

addresses that I have are cache RAM, look up logic and cache directory. 

The cache directory is a hardware table which contains information about the current 

contents of the cache. In other words, which memory locations are currently available in 

the cache RAM. The cache RAM is the fast memory in which those instructions or data 

are stored. The look up logic is the circuitry, which checks whether the address A is 

present by referring to the cache directory and subsequently can provide instructions of 

the data if it is present out of the cache RAM. 

Now, I had given this indication that the cache is much smaller than main memory which 

suggests that, the amount of information that can be stored in the cache RAM is much 

smaller than the size of the main memory. A typical number for one of the kind of cache 

is we are going to look at, is as little as 32 Kilo Bytes. Remember that when we talk 

about main memories today, they would be a few GigaBytes in size which is 1000’s of 

times more than the size of, I mean, what is it magnitude, but I definitely 1000’s of times 

larger than the size of this cache RAM. So, this actually is of relevance to us and the 

discussion that is to follow. 

We should note that if at any given point in time the cache RAM can contain only 32 

kilobytes of instructions or data. Given that the typical in our MIPS 1 instruction set the 

size of one instruction is 4 bytes, then the number of instructions which could be 

contained in the cache is about 8000, 32 kilobytes divided by 4 bytes which is about 

8000. And similarly, if I was storing integer’s, 4 byte integers, in the cache then, the 

number of 4 byte integers which could be stored in the cache is a few thousand, about 

8000, if the size of the cache RAM is 32 kilobytes. 
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So in short... From this, we understand that the number of instructions or data that can be 

stored in such a cache is just a few thousands. In our current example, if I am talking 

about 4 byte instructions or data and the 32 kilobyte cache RAM then, about 8000 

instructions or data, so numbers I describe as in the 1000’s, not in the 100’s of 1000’s, 

not in the millions, but in the 1000’s, a few thousands, which is something we will use in 

the discussion that follows. 

Now, we are going to start by concentrating on what the look up logic does and how it 

might do it to give us an understanding of how the cache operates? Remember, the look 

up logic is the circuitry within the cache itself, which given in an address A determines 

whether or not, the entity represented by the address A is present inside the cache and it 

does so by looking up among the addresses inside the cache directory. 
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The question which we need to get an answer to right away is, how do a cache look up 

logic do the look up fast? It is critical that the look up be done fast, because we want the 

entire operation of sending an address…, the processor sends an address to the cache and 

subsequently the instruction or data goes back to the processor, we want all of that to 

happen in a very small amount of time. In our discussion of the processor, we were 

assuming that this would take about 1 clock cycle, in other words, may be a nanosecond 

or a fraction of nanosecond, as suppose to main memory which is going to take a 100 

nanoseconds to provide a piece of data or instruction. Therefore, clearly the cache looks 

up itself much faster than the 1 nanosecond.  

The question is how can a fast look up are done? Now, this whole question of looking up 

is actually a specific instance of more general problem called searching and one learns 

about searching in an introductory computer science course on data structures. 

Essentially, in searching one learns about different algorithms or techniques to search for 

a specific value from among a large collection of data. This is a frequently occurring 

problem both in the application development, as well as, we now see in hardware, 

because there will be situations where searches… particular element has been look for in 

a large collection of elements. 

Now, a kind of example which might be used in data structures course, might be to talk 

about searching in the context of… let say, you have a very large text file and you want 



to search for particular word let us say the word phase in the large text file and searching 

could be used for this, so this is the typical kind of an example. 

Or if I have a large integer, I have written an application program in which there is very 

large array of integers, 10000 integers. I wish to determine whether or not the number 

10, integer 10 is present in the integer array and if so, at which index, where in the array? 

So, these are two examples of search problem, which as you can clearly see will occur 

from many different kinds of applications. 

Now, our specific search problem in the context of the cache look up, remember we are 

talking about how to do fast cache look up is, the address A has come to the cache and 

among all the addresses which are in the cache directory, the cache hardware has to 

determine whether or not the address A is present. From our calculation based on the 

typical size of the cache, we have determined that they could be a few thousands of 

addresses inside the cache directory not millions, not 100s of 1000s, but few thousands. 
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So, this is the size of the problem, a few thousands, in our particular cache example, it 

was about 8000 based on a current calculation, but remember that our requirement is that 

this search should have been extremely fast. So, we are trying to understand how search 

can be done quickly, and the requirement for speed comes from the fact that the entire 



cache operation starting from look up and ending with the data reaching, the processor in 

supposed to take about a nanosecond about a clock cycle. 

What are the different kinds of search algorithms that are conceivable another, the 

simplest search algorithms that you will hear about in, let us say, data structures course is 

something called linear search. In linear search, the picture that you should have in mind 

is one where there is, let us say, an array of integers as in the second example which I 

had suggested, searching for the number 10, the integer 10, in a large array of integers. 

So, I have this large array of integers and the way that I could do a linear search is.., I am 

looking for the address A in this large array of integers. So, I compare A with the first 

address in this array, which in our context will be the cache directory. The index of the 

first address in the cache directory might be 0 as the convention that I will use is for 

arrays as in C, the index of the first element will be 0 and the index of the second 

element will be 1, and so on. So, I start by comparing A, the address I am looking for 

with the first element in the cache directory and if I am lucky they match. 

If so the search is successful and I am done, and the search has been extremely fast, but 

if I am unlucky, they do not match, they are not the same and I have to continue. So, in 

linear search what I do next is, let compare A with the second address in the directory; in 

the other words, the 1 whose index is 1, and so on. So, I continue doing this until I either 

be successful in finding A within the directory, may be at location 35 alternatively is 

possible that I reach the end of the directory. In other words that I reach if the size of the 

directory is n elements then, the last element of the directory what I have an index of n 

minus 1. 

If I reach the last address in the directory without having found a match along the way, 

then I know for a fact that the search was unsuccessful, in the sense that the address A is 

not present in the directory and that is the end of the search. So, the search either ends 

successfully or it ends unsuccessfully and either is ok, the cache hardware can be built to 

proceed depending on which of these is the case. So, this is the possible way to setup a 

search. 

The problem with this particular technique, in other words linear search, is that if there 

are 1000’s of addresses in the cache directory, in other words, in our example n minus 1 



could be 8000 and something, 8195 or something like that. Then, in the worst case this 

number of comparisons that would have to be made in this procedure of a tutorial 

checking consecutive elements of the cache directory could be a few thousands and this 

would have to be done one after the other. Therefore, this cannot be viewed as a fast 

operation, cannot be done quickly therefore, one should eliminate linear search as a 

possibility for our context, the context of doing fast cache look up. 
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Now, as an alternative to linear search, much faster search technique is something called 

binary search. The idea in binary search is that once again I have this array of values may 

cache directory let us say, but instead of just starting to search, I start by ensuring or 

sorting the array of data items, say in increasing order. If the array of already in sorted 

order then, I need not do anything about it, but otherwise I rearrange the elements of the 

array, so that they are in increasing order, let say, increasing from left to right which 

means that the element with index 0 is the smallest value and the element with index n 

minus 1 is the largest value. That is what means by sorting in increasing order, it could 

alternatively be sorted in decreasing order, it does not really matter. 

Now, how do I proceed with the search for address A? I start by comparing A with not 

the first element, but with the middle element in the array and if n is odd, the middle 

element in the array will be n by 2, somewhere in the neighborhood of n by 2. 



So, I compare A with the element at the middle of the array and if they are the same I am 

done, on the other hand, if they are not the same, then I could have determined during the 

check of comparing A with the middle value, whether A is less than or greater than the 

value at the middle of the array. If A is less than the element of the middle of the array 

then I know that my continued search for A can be restricted to the elements to the left or 

less than the element at the middle of the array. 

On the other hand, if when I compare A with middle value, the value x, I found that A 

was greater than x, then I could restrict my search to the upper half of the array, thereby 

eliminating half of the array from consideration for subsequent comparisons. So, I could 

repeat the procedure that I have just described for the appropriate half of the array and 

what I mean by repeat is, let suppose, that I had determent that A was less than n by 2 at 

the element at n by 2, in other words x, then I could forget about of all these elements, I 

just need to search among the other elements of the array and I could compare A with the 

element, which is at the middle of that half of the array and so on. 

With each comparison I would be eliminating half of the elements that I have in 

contention for possible locations, where the address A could be. So, very clearly this is 

going to be faster than linear search, in the context of looking up, in the worst case, and 

not only that, I could say that it could take rather than 1000’s of comparisons, it might 

just take 10s of comparisons. And technically, what I am talking about here is that it 

could take on the order of the logarithm of n base 2, which is in this case a few 10s of 

comparison. 
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Remember that linear search was taking 1000’s of comparisons which was definitely 

much too slow to be satisfactory for our hardware fast cache look up. Binary search is 

taking only 10s of comparisons which was 100 times faster, but requires that the 

addresses be in sorted order, which may be difficult for us to ensure, you do not if you 

know that is going to be possible, but the 10s of comparison themselves may not be fast 

enough for the context that we are in. Therefore, once again unfortunately, we may have 

a good technique much better than linear search, but not good enough for our fast cache 

look up. 
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Basically, what we need is some kind of a search technique that will be able to do the 

search in a number of comparisons which is not related to the number of elements in the 

array. Remember that it look like a linear search, in the worst case was going to take n 

number of comparisons whereas, the case of binary search it look like it was logarithmic 

in an n, but we want something which is not dependent on n, the number of elements in 

the array at all. 

One such technique is something known as hash searching, the property of hash 

searching is that it may in fact, typically, just take 1 comparison for the…, typically not 

in the best case, but typically may just take 1 or 2, a very small number of comparisons 

independent of n. The number of comparisons required does not depend on the number 

of data values that we are searching among. So, this is clearly a much faster than the 

binary search technique and let me just explain how hash search works. 

The idea of hash search is frequently use, so it is now available as a verb one talks about 

hashing and basically, hashing is a search technique that uses a hash table, it uses a table 

and it indexes into the table using a hash function. So, the specific idea is that there is 

something called a hash function and the value which was searching for will be 

computed on by the hash function to generate an index, which is use to look in to the 

hash table at one specific location of the hash table. So, the hash function is a function 

which is computed on the search string, the thing that you are searching for in the table. 
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Let me just give you an example of how this operates. For this example, I will use the 

first search example that I had used earlier, where I am searching for a particular word, 

let say, I am searching for the word ‘phase’ as I had mentioned earlier. So, over here, I 

need to view the word phase not as the word, but let us say as a string of characters just 

to generalize this. So, in general, the elements which I am searching for strings of 

characters that, say, in general the string could be of length len. 

So, len is the length of the string and I could talk about the individual characters of the 

string as being S sub 0, S sub 1 up to S sub len minus 1. In the case of phase, this is a 

string of length 5 and I have the elements p which is the S of 0 h, which is S of 1 and so 

on. 

In general, if you are searching for a string of length n and you wanted to come up with a 

hash function, there many possible hash functions, I will just mention one particular hash 

function which is shown over here, you will notice that what I am doing is, I am first 

computing the sum of all the S sub i's. 

So, S sub i going from i equal to 0 up to i equal to len minus 1; in other words, I just add 

up all the characters in the string what does it mean to add up characters? Characters do 

not have values that can easily be summed, if you view them as characters we do not 

think of adding the character a to the character b, but knowing that the characters are 



likely to be represented in ASCII, we will recall the ASCII code, which is an 8 bit code, 

which is use for representing characters. We could actually do the summation of the 

characters by summing there ASCII values, in the ASCII values are can be viewed as 

unsigned integers. So, an unsigned integer addition will give us a sum and then we could 

divide this by the length of the string of characters. 

In this particular example, I would add the ASCII value of p to the ASCII value of h 

etcetera, adding to the ASCII value of e and then, divide that by 5. Then, what I get 

would be in integer value, an unsigned integer value, and I would use this integer value 

to index into the hash table. So, the hash table itself is some kind of a table and array let 

us say, in which these different strings that I have come across will be stored. 

For example, it is possible that the word ‘phase’ is present in my text that I am searching 

for in which case the word phase will be present in the hash table, where will it be 

present in the hash table? It will be present in the hash table entry corresponding to the 

value that I had computed by summing the elements as S of 0 p plus h plus a plus s plus e 

dividing by 5 and I would find it in that element of the hash table. 

Now, over here, I have written that the minimum and maximum value in this is into the 

hash table might be 0 to 255. You will notice that this might be coming from the fact that 

I am assuming an 8 bit ASCII code, may be extended ASCII in which the values can 

therefore go from 0 to 255. Hence, when I add all the values and divide by the number of 

values, I will get a value which is between 0 and 255. Now, you can immediately see that 

if the value that I am looking for like phase is present inside the hash table. 
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So that the very should to look at it is, if you are looking in a large text file, then before 

we start searching for words, you would take the individual words from the text file and 

put them into the hash table by computing, for each of the words, computing its hash 

value and then, putting that word into the corresponding element in the hash table. Of 

course, this would lead to a small problem in that… very clearly, if I have only 256 

elements in the hash table, then I can only have 256 distinct words remembered in the 

hash table. This could be readily seen from the fact that, using the hash function which I 

have suggested both the word ‘phase’ and the word ‘shape’ will have the same hash 

index, because they have exactly the same characters in them just in a different order. 

Therefore, when I sum the characters together, I will get the same sum and when I divide 

by 5, I will get the same value. Therefore, phase and shape, and in fact, a large number of 

other words which may have completely different alphabets, may all hash to the same 

entry in the hash table. This could be a problem and this is in fact, what is called the hash 

table collision and the implementation of the hash table would have to take care of 

collision by ensuring that alternative locations in the hash table could be used or some 

such mechanism. But in our context of the cache directory that may not be an issue in 

terms of the look up speed, we may be able to handle collisions or collisions may not be 

a problem to us as far as the look up speed is concerned. Therefore, from the perspective 

of speed of look up, we must view the hash table as really being such technique which 



will return yes or no, with the single comparison, just comparing the word that you are 

looking for with… 

So, you take the word that you are looking for, you compute its hash function you then, 

index into the hash table and compare the word that you are looking for with the word 

inside the hash table. If they are the same, with 1 comparison I get successful, and if they 

were not the same then, with 1 comparison I would say not successful, if I assume that 

there are no collisions. Therefore, in some sense this is the fastest possible search 

technique and therefore, this must be the one that is use for fast hardware look up which 

is in our context. 
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We now understand that in order to do fast cache look up, the cache hardware must be 

using a hash function. Now, a hash functions on what? In our cache situation, the cache 

look up hardware is doing a search for an address A and therefore, the hash function 

must be computed on the address A. 

Now, a simple hash function would just be to select some of the bits of the address A, 

rather than trying to add all of the bits of address A, if you add all the bits of address A, 

you will end up if the 32 bit address you will end up with a value which is the sum of the 

1’s or the number of 1’s in the address in that might not be a very meaningful hash 

function. 



So, rather than that it might be interesting to think of a hash function which computes a 

value based on just selecting some of the bits of the address A. The picture we could 

have in mind is, so I have the address A, I am showing you the address A in binary, if the 

address A is a 1000 then, we think of it as the binary representation of 1000. 

We are talking about an address A which is sent from the processor to the cache and is 

therefore going to be sent in binary form. So, we think of the address A in its binary form 

least significant bits it is most significant bit if the 32 bit address, the bits would go from 

0 to 31. 

The question now is, in doing the fast cache look up using a hash function, which bits of 

the address could be used to do the fast cache look up, in other words which bits of the 

address define the hash function. 
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Now, there are a few possibilities, one possibilities is that I could use the most significant 

bits of the address A and other possibilities that I could use least significant bits of the 

address A and of course, the third possibility is that I could use some of the intermediate 

bits of address A. 

Let us consider the two extreme possibilities first; the first suggestion is that I could use 

the most significant bits of address A in order to do the look up into the cache directory. 
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Let us try to think about to what extent this is a good idea. Now, consider your typical 

program, so over here what I have drawn is, I have drawn your program and it is 

addresses go from 0 to some maximum value may be 2 to the power of 32 minus 1 some 

maximum value. 

Now, just consider the text part of your program, we understood that these are virtual 

addresses we are talking about. We understood that the text occurs from the whether we 

were drawing the memory image of a process, we understood that each process assumes 

that it starts with address 0 goes up to some maximum address 2 power 32 minus 1. The 

text instructions, the code, the program part of this images occupies the early addresses, 

in other words the program occupies addresses 1, 2 etcetera. 

Now, if this is the case and I have a medium size program then very clearly all of the 

instructions of my program will have the same most significant address bits. If I consider 

the two most significant addresses bits, then you should notice that everything of the first 

quarter of this address space will have the same two more significant address bits. 

Similarly, if my program is not 32 kilobyte 64 kilobytes or something like that, it will be 

the case that almost all of the instructions will have the same most significant address 

bits. 



The different instructions will differ in the least significant bits, but they will have most 

significant bits which are pretty much the same, very minor difference between the most 

significant bits depending on the size of the program. 

What this is going to mean is that from the perspective of instructions, pretty much all 

the instructions will have the same hash function, if I use the most significant address 

bits, has the hash function. What is happening? It means that almost all the instructions 

will end up occupying the same entry in the cache directory, which means that there is 

going to be a lot of situations which we call collisions, which means that the cache 

cannot be too successful in its operation as far as instructions are concerned. You can 

stretch the same argument for the stack. Once again, the bulk of the stack is going to 

have the same address bits over for the data, over for the heap; in other words, with in 

any region of memory, the different entities are going to differ very little in the most 

significant address bits. 
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Therefore, using the most significant address bits does not seem like a good idea in the 

special case of small programs, it would be the case that pretty much everything would 

index into the same place in the hash table, they would have the same hash function. 

Therefore, it is not a good idea to use the most significant bits for the fast cache look up. 



Second alternative that we were going to take into account was using the least significant 

bits of the address. Now, let us think about this a little bit, the ideas that we will rather 

than using the most significant bits, if eliminated this as being a good idea, but rather we 

could use some of the least significant bits of the address, this is the address A we were 

talking about to index into the cache directory, in order to do the look up to determine if 

it is in the cache or not. Now, let us think about the least significant bits a little bit. 
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Once, we will look at a picture of the memory image and let us consider a particular… 

this is the address A that I am concerned about, and I know that address A has some 

address, but this could be the address I am just putting down some, this is not 32 address 

it is only a 16 bit address, and in red I have shown you the least significant bits of the 

address A. 

Now, we know that from the perspective of spatial locality of reference, we know that in 

connection with address a some of the addresses which are important in terms of likely 

addresses which you reference in near future are the neighbors of A. What are the 

neighbors of A? The neighbors of A are the memory locations which are A minus 1, A 

minus 2, A plus 1, A plus 2 etcetera. If I look at the addresses of the neighborhood of A 

or the neighbors of A, I have put them down over here. You notice that the addresses of 

the neighbors of A are actually similar to the address of A in the most significant bits and 

in fact, they differ only in the least significant bits. If I just look at the least significant 



bits of A and it is neighbors, I notice that they are all different, what does this means? 

This means that if I had used the least significant bits of the address A to look into the 

cache and then next, I was to use a least significant bits of address A plus 1 to look into 

the cache and so on, because address A plus 1 is likely to be reference soon after A, then 

I would find that each of these objects index into a different cache location. 

Now, in general, we understood that from the perspective a spatial locality of reference, 

we really want to treat A and its neighbors as 1 entity, because if there is spatial of 

locality of reference then, we what them to come in as whole into memory. In the case of 

paging we talked about A and its neighbor should be coming into the main memory 

together. That is why we had this notion of a page, the same concept should hold in the 

case of the cache. We do want to treat A and its neighbors A and A minus 1, A plus 1, A 

minus 2, A plus 2 etcetera, as a single entity, but if you use a least significant bits of an 

address to do the look up then we are treating A and its neighbors as different entities 

most definitely, because they will occupy different locations in the look up table. 
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Therefore, once again this does not look like a good idea, because if I use a least 

significant A and its neighbors typically differ may be only in the least significant bits in 

the consequence would be that they will not they would hash into different hash table 

entities and this would not be a good idea. 
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In a sense, we considered using the most significant bits of the address, we consider 

using the least significant bits of the address, rather them was any good. What we are left 

with is we have to use bits from elsewhere; in other words, some of the intermediate bits 

of the address for the fast cache lookup as the hash function. In other words, when we 

think of how the cache hardware looks at a memory address. If I consider the address A, 

once again, I am showing you the address A in binary, then I am showing you the 

address a binary with a least significant bit of the address shown on the right and the 

most significant bit of the address shown on the left. 

Then, from the perspective of how the cache is going to look at it, the cache is going to 

use some of the intermediate bits to index into the cache directory, because the 

intermediate bits define the hash index, which is why I refer them as the index bits. They 

defined the hash function which is going to be used to look into the cache directory. 

What we are left with is the most significant bits and the bits which are less significant 

than the bits that we use for the computation of the index. If we just to look only at this 

region of the diagram, this will remind you of what we had in the case of paging, so for 

the moment just ignore the region of the diagram to the left of this line. 

If you look at the region of the diagram to the right of the line this looks very much like 

what we had in the case of paging, wherein address was viewed as a virtual page number 

and what we call a page offset and this looks very much same. The virtual page number 



was used to index into a page table; here, the index that we have over here is going to be 

used index into the cache directory. Therefore, the remaining bits are plain very much 

the same role as the page offset bits were playing in the case of paging. 

Since, I need to use a different term from page, I will use the term block in the context of 

caches and I will refer to the lesser significant bits, in other words the bits which are less 

significant than the bits which are used for indexing as formulating a block offset, where 

the term block is being used for a concept like the page, but in the context of caches. So, 

I formally introduce the word block as a concept in caches, which seems to serve the 

same purpose as the page did in virtual memory. In some sense, it is providing the 

exploitation of spatial locality of reference, in addition to that it is providing a 

mechanism by which I need not maintain the translation information for each address, 

but rather you can be maintained a single piece of translation information can be 

maintained for a large number, a region, contiguous block of addresses. 

These are the two objectives that the block is going to serve in the case of caching, the 

same objectives that are served by the page in the case of paging; it reduces the 

translation table size. In other words, it reduces the size of the cache directory, rather 

than having to have one cache directory entry for each byte in terms of addresses, I need 

to have one cache directory entry only for each block. Similarly, it causes exploitation of 

spatial locality of reference, because very clearly the cache is going to be organizing in 

terms of blocks not in terms of individual bytes. 
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The bottom line is we now figure out that from our understanding of how the hashing is 

going to happen that the cache is likely to be organized with the cache directory having 

one entry for each cache block, just like the page table contains one entry for each virtual 

page. We are going to find out that there is a great deal of similarity between the 

operation of the cache and the operation of virtual memory. The time that we spent in 

understanding virtual memory will be a benefit to us and getting a quicker understanding 

of how cache is operate. 
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Just we sum up what we seen up to now, we figure out that from this discussion about 

how the fast look up is done, it let us do this conclusion that a cache is organize in terms 

of blocks and the blocks are basically memory locations that share the same address bits 

other than the least significant bits. So, they are memory locations which differ only in 

the least significant bits, in some sense defining a neighborhood around the middle 

address of the block. 

Secondly, from our understanding of how virtual memory operated, we knew that the 

concept of pages was useful for the virtual address space, but the consequence was that 

main memory as well as virtual memory both had to be organized in terms of pages. The 

consequence in terms of caches now is going to be that if we assume that caches are 

organized in terms of blocks, since the data or instructions are going to come into the 

cache out of main memory, it must be the case that main memory also is organized in 

terms of blocks. 

In other words, in continuing or summing up, we figure out that the cache is organized in 

terms of blocks not in terms of individual bytes, but in terms of blocks. Main memory 

also is organized in terms of blocks not in terms of individual bytes, but in terms of 

blocks. Finally, we understand how the cache hardware views an address, it views an 

address as actually being made up of the some of the intermediate bits which are used as 

look up value, which defined the hash value for indexing into the cache directory. 

What I mean by directory here is the cache directory, do I have it table which is present 

inside the cache, the least significant bits formulate a block offset, they tell you within a 

particular block, which particular byte or word is actually required by the processor and 

then there are the most significant bits, I will talk about that shortly. But given for a 

particular cache, then we should give details about the cache, the most significant bits we 

will for the moment refer to as the tag, but for a particular cache if I give you details 

about the cache, you will be able to calculate how many bits are present in the block 

offset. In other words, how many address bits are used as block offset and how many 

address bits are used as index into the directory and as consequence, you will be able to 

calculate how many address bits are used as the tag whatever the tag is used from. 
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Now, moving right along, I just wanted to remind you about something that we had seen 

briefly earlier about the different kinds of memory present in a computer system. Now, 

in our high level diagram about organization of the computer system, there was the 

registers which where a form of memory; inside ALU there was more special purpose 

registers, I am sorry inside the control there was more registers, even inside the ALU 

there was some special purpose registers such is ALU out conceivably. 

Then, the cache is a form of memory, main memory is a form of memory, in addition to 

that many of the IO devices are a form of memory such as the hard disk over VCD's, 

DVD's, and so on. And I won’t say much more about the IO device memory which are 

often refer to a secondary storage, once again I will defer discussion of that for until a 

later lecture. 
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But, what we have seen about the different kinds of memory that I have sub listed in 

other words, registers, cache, and main memory is that these are all made out of circuits 

that can remember things. They made out of electrical circuits, digital circuits that are 

capable of remembering things and the way that the circuits remember is either by the 

state of a circuit, some of the circuits are known as flip-flops. 

So, people talk about the state that a flip-flop is in; flip-flop is a name of a particular kind 

of circuit capable of remembering. Alternatively, the circuit might remember by the 

amount of charge stored in a capacitor. So, the different kinds of circuits they could be 

used in registers, cache and main memory, but in both cases, the information that is 

stored will be lost when the power source is turned off. 

In other words, when you turn of the computer, the contents of the registers, the contents 

of the cache, and the contents of the main memory are all lost, why? Because the circuits 

that are used in the registers, the cache and the main memory all depend on their being 

power available. And they keep on remembering either by the state a circuit is in or the 

amount of charge stored and when the power is turned off, the charge dissipates and the 

state that the circuit is in disappears because a machine is in a non-powered upstate and 

therefore, the information is lost. 



This is of course not the case with the hard disk, DVD and so on; unfortunately, but for 

the moment we understand that these are the kinds of circuits which information is lost 

when power is turned off. 

And basically, the registers cache in main memory will all be made of potentially 

different kind of circuits, but the different kinds of circuits will all contain a sub circuit 

or a very simple version which is capable of storing 1 bit of information. And then, that 

kind of circuit will be replicated a large number of times in order to create adequate 

storage for the requirement. For example, if I am talking about one 32 bit register, then 

they might be a simple circuit which can be used as a 1 bit register and I have 32 of them 

together which forms a 32 bit register. Similarly in the case of main memory, the scale 

would be much larger, they could be Gigabytes of information that have to be stored and 

therefore, much larger replication of the simple circuit which could remember 1 bit. 
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Now, one term which is used in connection with main memory and which I have also use 

in this class is to talk about RAM, R A M. I used in this every lecture because, when I 

talked about, when I replaced, when I give you the block diagram of cache and I started 

by saying cache has fast memory, but then when I went to a technical mode, I replaced 

the word fast memory by cache RAM, R A M and I never told what R A M was. 



Further, those who you have read advertisements are for computers you may have come 

across the term RAM there. For example, an advertisement which says that, this 

particular personal computer is provisioned with 2 Gigabytes of RAM, what does the 

RAM stands for? RAM actually is for Random Access Memory. So, it is a form of 

memory and the form of memory has a property of something called random access and 

let me just give you a rough idea, what it means to be random access. Essentially, what 

random access memory is a kind of memory which is able to handle arbitrarily ordered 

requests without favoring any particular request. 

In other words, as far as RAM is concerned, each memory access is equivalent to each 

other memory access; memory accesses are not in any sense - one memory access is in 

no sense preferred over in other memory access, in terms of getting preferential 

treatment, right. So, that essentially what RAM could mean, but we just understand that 

when one hears about RAM, it is a form of circuitry which remembers and has the 

property that this property in some sense. And we understand that the memory inside the 

cache is likely to be of this kind as well. 
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Now, I would like to introduce one more term before getting into the nitty-gritty details 

of cache. This term is memory hierarchy because, we have seen many different kinds of 

memory in our quick look back at computer organization starting from the CPU registers 

to the cache memory to the main memory and even the secondary storage like disk or 



DVD and very clearly, they all form some form of storage within the computer system, 

they can all be used to store information within the computer system. And I am shortly 

going to explain why I use the word hierarchy, but let us just refresh our memories about 

how these different forms of memories differ from each other. 

Now, one way in which they differ from each other; well, let us just spell out the 

properties of each of these, what do we know about CPU registers? We know that there 

are typically a small number of CPU registers; for example, in the MIPS 1 instructions 

set, we found out that they were 32 integer registers and 32 general purpose registers. 

So, the number is on the order of 16 or 32 or 128 a few 10s or few, at most a few 100s of 

CPU registers, but did not know that they could be accessed in a very small amount of 

time. We used our definition of the clock cycle based on how fast one could access a 

CPU register and the assumption was that a CPU register could be accessed in much less 

than a clock cycle, which is why I talk about sub cycle access time, it takes less than 1 

clock cycle to access a register. 

So, it is on the order of less than a nanosecond. Now, we have not learned a lot about 

cache memory, but we do know from the whether I can draw things and from comments 

I made in the previous lecture that the cache memory has to be viewed as being part of 

the processor. So, if there is the processor is on 1 integrate circuit chip, then the cache 

memory is lightly to be on the same integrated circuit chip, it is integral with the 

processor. 

I have already mentioned that the typical size of the cache is something like 32 

Kilobytes. So, let just generalize that to a few 10 of Kilobytes and in the extreme case, 

they may be caches with a few Megabytes, but this is a reasonable generalization. Just as 

I generalize, CPU registers as being a few 10s in numbers, I could talk about the cache 

memory as being of size a few 10s of Kilobytes; 32 Kilobyte is a number which we have 

in mind as a typical cache. 

And we have this understanding that, the access time of a cache memory is likely to be 

may be a cycle. Until now our assumption was that the access time of cache memory was 

1 cycle; I would now extended that little bit, it might be one more than 1 cycle, it could 



be 2 cycles or something like that, but we talking about something which once again is 

on that nanosecond time scale, may be 1 nanosecond, may be 2 nanoseconds. 

Registers were a fraction, a part of a nanosecond. What we know about main memory? 

We know that main memory is much larger, we could be talking about a few Gigabytes, 

2 Gigabyte main memory in the advertisement that I refer to in the previous slide, may 

be fortune to have 4 Gigabytes of main memory in your PC at home or those may be less 

fortunate, I have only half a Gigabyte 512 Megabytes of main memory and from what 

we seen the access time is several 10s of cycles, may be 100 nanoseconds are there 

about. 
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Finally, secondary storage like disk we do know that, I have talked about disks which 

could have 100s of gigabytes or even a few terabytes of capacity. And that the access 

time is not on the nanosecond time’s scale at all, but in fact, on the millisecond time 

scale. 
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So, these are numbers that we have encountered until now, I am making only minor 

adjustments to that, the kind of minor judgment is that, they may be caches which take 

more than 1 cycle to be accessed, other than that it is pretty much the same numbers that 

we have been talking about before. 

Now, if I had to actually represent this information on a single diagram, the way to 

represent that diagram might be in the form of a triangle. The general idea here is that, if 

I wanted to represent both all of registers, cache memory and secondary storage devices 

on a single diagram, I would give very little important to registers because, there the 

registers provide so little storage they may only be 32 registers which might be able to 

contain only 4 bytes of information. 

That is just 128 bytes of information as oppose the cache, which can store 32 Kilobytes 

of information or the main memory, which can store 4 Gigabytes of information or the 

disk which can store 1 Terabyte of information. So, the registers occupy very small 

amount of the area of this triangle. The main memory being that Gigabyte capacity 

occupies a reasonable amount the area whereas, the secondary storage occupies the bulk 

of the area and if one had to scale this properly, the line for main memory would be 

much further up, but this will give us a little bit of clarity in the description. 



Now, what are we talking about in this diagram, it looks like the area occupy relates to 

the capacity of the device. But, if you look at the diagram from another perspective, we 

realize that, at the top we have the registers which can be accessed in sub nano sub cycle 

in between, there is a main memory which takes 10s of cycles, at the bottom there is the 

secondary memory which takes essentially 1000s of cycles. So, in some sense, if I had to 

draw a line over here, which takes about the amount of time that it takes to access 

something from that kind of memory, then the access time increases as I go down the 

down this triangle, registers are very fast, memories are less fast, secondary memory is 

least fast. Therefore, the access time is increasing; by the same token the capacity 

increases the size or capacity, as I go down this diagram that is why the diagram serves a 

purpose. 

Now, given the diagram, we can sort of fit the cache memory into this diagram, we 

would put the cache memory somewhere over there; towards the top in that, it has much 

faster access time the main memory, but marginally slower than registers and it has 

larger capacity then the registers, but much smaller capacity than the main memory. 

Hence, this is the kind of diagram we would end up with, a diagram which gives us this 

idea about the differences between the capacities and the speeds or access; if I had to 

draw arrow for speed, the arrow for speed would be in this direction increasing speed as I 

go up the hierarchy, registers are the fastest, cache memory is the second fastest and so, 

on. 

So, this kind of diagram is useful, it is still not clear as to why it is labeled with the word 

hierarchy, but very clearly this kind of a diagram will be useful for us in understanding 

the interplay between the different components of different kinds of memory in a system 

and we know that there is significant interplay. Recall that when we talked about virtual 

memory, we realize that we were talking about the use of main memory, but since main 

memory was not began off to whole the virtual address spaces of all the processes, which 

might be running. We had to resort to secondary memory to actually store the virtual 

address spaces of all the processes and then at any given point in time, some number of 

pages from those virtual address spaces would be present in the main memory. 
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So, there was interplay between main memory and secondary memory from the 

perspective of virtual memory. We are now talking about cache memory and we realize 

that what the cache memory is containing in its cache RAM is, some blocks out of the 

many blocks that are present in the main memory and not all the contents of the main 

memory can be present in cache memory at a given point in time, given that the cache 

memory is so much smaller than the main memory. 

So, once again we are talking about interplay between the cache memory and the main 

memory in terms of what happens when the processor initiates a request to access 

something out of memory. The request could be made to the cache memory, the cache 

memory might provide the data or instruction, alternatively it may be determined that the 

data or instructions is not in the cache, in which case it will have to be fetched from the 

main memory into the cache memory, before it can to given to the processor from there. 

And this is similar to the relationship that, we saw between the main memory and the 

disk. When the processor generate a request and it went to the main memory, the way 

that we discussed it when we are talking about virtual memory, if it was the determined 

that they was a page fault, then the request had to be satisfied like copying the page from 

the disk into the main memory before the data could be accessed in main memory and 

provided to the processor. 



So, the interplays between these different levels of memory present in a computers 

system is clearly integral to understanding what happens when our program executes. 

We do need to understand how the hierarchy word fix end and we proceed to do this in 

the next lecture. 

So, I will stop here for today. In today's lecture, you will recall that we have started 

looking at the operation of cache memory; cache memory is an integral part of any 

computer system as we had found out the basis for our understanding of how a processor 

works. Without the presence of cache memory, our understanding of processors were 

conceivably have be quite different, because any time an instruction or a data had to be 

fetch from main memory, they would be in (( )) it delays and therefore, the cache 

memory is an integral part of the processor. 

In today's lecture, we have looked at how cache memories even though they are small, 

can be built to do very fast look up or in fact, as a consequence of being small, can be 

built to do very fast look up, in order to determine which of the few main memory blocks 

are actually present in the cache. We proceed to look at other intercruises of cache 

hardware in the lectures to come, thank you. 


