
High Performance Computing 
Prof. Matthew Jacob 

Department of Computer Science and Automation 
Indian Institute of Science, Bangalore 

 
Module No. # 08 
Lecture No. # 37 

 
 

Welcome to lecture number 37 of high performance computing. We are currently 

looking at file systems trying to understand the design principles inside the operating 

system in providing support for files, files being storage of persistent data typically on 

secondary storage devices such as disks. Now, we had understood the basic mechanisms 

of disk block management, name management and protection in the previous few 

lectures. Today, we are going to concentrate for much of the time on some file system 

performance ideas, in other words what is going to be important from the perspective of 

improving performance of programs that deal with files. And the fundamental reason 

that, this is important needs to be understood first. 

(Refer Slide Time: 01:00) 

 

So, let me start with the slide where we talk about the file system performance ideas. 

And why this is the concern? Why is it concern to us? Is it not just enough to know how 



file systems are designed and use the information correspondingly? Now, the main 

concern that we have in connection with file systems is the opening comments that I had 

made about disks. I have talked about the structure of our magnetic hard disk drive and 

we had done this clear understanding of how it is structured and how much time it takes 

to access a sector of the disk. The key components of that were the seek latency and 

rotational latency, but the bottom line was we estimated that a disk read or write takes a 

few milliseconds to complete. 

The number could be a typical number would be something in the nature of 10 

milliseconds for a current hard disk, 10 milliseconds for a disk read or write operation to 

complete. And in writing programs a deal with files therefore, I have to bear in mind that 

every time that my file does read or write to or from; I am sorry every time my program 

does a read or write to a file. Given that the file is stored on disk that particular operation 

within my program is going to take may be 10 milliseconds that read operation or that 

write operation is potentially going to take 10 milliseconds. And therefore, it is a great 

concern to us, if I have programs which are doing a lot of file input and output 

operations. 

This could dominate any concern that I may had about main memory. Remember main 

memory was only 100 nanoseconds compare to the 1 nanosecond speed of the processor 

when certainly talking about the file I/O operations where to read a byte from the disk 

could take 10 milliseconds. This is a formal series problem and therefore, very clearly of 

concern to us. And let us think about this in the connection of one of the common file 

access patterns. Now, I talked about one kind of typical behavior shown by programs as 

far as accessing files is concerned. 



(Refer Slide Time: 03:00) 

 

I refer to it as sequential access, the property of a program doing sequential access of a 

file is that it program opens a file and then reads the file byte by byte starting from the 

first byte in the file, going to the second byte in the file and bidding all the way through 

till the end of the file there is what we meant by sequential access. So, if I let suppose 

that I was writing a program, which had to do sequentially access a file, it is possible that 

I am writing a program. For example, I might have been given the task of writing a cat 

program, do you remember I have talked about cat, Catinate? It is one of the programs 

available on any Unix or Linux system using which you can calls the contents of a file to 

be printed out. 

Obviously, the cat program is opening the file and reading the byte starting from the first 

byte second byte so on, it reads the byte and then it prints the byte out let say on the 

screen. So, if I was ask to write such a program, I would very clearly have to worry about 

the fact that every read that I do, I have first read the first byte and that may taken 10 

milliseconds and I printed on the screen. Then I read the second byte and taken other 10 

milliseconds and printed on the screen and so on. 



(Refer Slide Time: 04:00) 

 

Therefore, this program could potentially take a huge amount of time to print a large file 

on to the screen. Now, that is just what would happened if I was using for example, the 

read system call, to read a byte at a time from the file. You will remember that the in the 

read system call or in the library function that was going to call the read system call for 

us, you had to mention the file descriptor. In other words that small integer that is 

writtened by the open system call to specify which file you want to read, then you had to 

specify a buffer into which you wanted the contents of that the byte information that was 

read from the file to be stored so, this a variable of your program. And then you had to 

mention the number of bytes that you wanted to read from the file. 

So, if I was doing the cat program, I could set number of bytes to 1 and read one byte 

from the file and then printed on the screen and then read the next byte from the files. So, 

I could have the read system call or the read library function call embedded in loop, each 

time through I read one byte from the file. Now, if this was the case, then I would have 

one system call executed for every read from the disk; I am sorry for every read from the 

file. And that one system call would actually end up doing a disk I/O operation and that 

disk I/O operation could take 10 milliseconds and therefore, this does not seen like a 

very good way of setting up the program. 

So, rather than reading one byte from the file, it may make sense from me to try to read a 

1024 bytes from the file, one sector let say 1024 bytes from the file. So, I could improve 



on the operation of this cat program by increasing from 1 to let say 1024, if I knew that 

the sector size was 1024. Because by doing this I could read one sector from the file and 

then printed out in the rest of that loop execution. But even then the cost that I am paying 

is one system call for every one of those reads. And we had determined when we talking 

about system calls, that the system call itself is not an operation that comes for free. 

Because in inherent in the system call is this situation, where the operating systems 

switch is mode from running in user mode, to running in system mode and therefore, 

there is some over head in making a system call. And at one point, I had mention that the 

overhead could be on the order of microseconds. So, while this is not as bad as the 

amount of time that it takes to do a disk I/O, it is still much worse than the amount of 

time that it takes to read something out of main memory. Remember, that was only in 

our current estimation of things a 100 nanoseconds also, the microsecond is much worse 

than what we are talking about. 

 Therefore, using system calls in this way, where I making a system call every time 

through my cat loop does not seem like a very good idea. What you want to something 

better than that? Now, those of you who have actually done file programming with files 

on computer systems, may have known that is an alternative which is provided by the 

standard I/O library. 

(Refer Slide Time: 06:50) 

 



This standard I/O library is available on all the systems that you deal with is typically 

refer to as s t d I/O, s t d standing for standard, I/O standing I/O library. And the standard 

I/O library actually provides you with certain functions, which will themselves at some 

level refer to system calls. But the functions themselves will help a lot towards making 

the implementation of the cat program better. Essentially what many of the standard I/O 

library functions do and the standard some of those functions that I am referring to go by 

name such as, fopen() which can be use to open a file, fread() which can be use to read 

from a file, f()write which can be use to write to a file and so on so that, the collection of 

standard I/O library functions of this kind. 

And the common property that they have is that, they deal with not individual reads and 

writes directly from the disk, but they manage a buffer of data which has been read from 

the disk. So, in association with the program that I have written, if I am using this 

standard I/O library, then the first time that I use fread(), a lot of information will be read 

from the disk into a buffer which is manage by the standard I/O library. So, even if I am 

reading only 1 byte from the file, if I make number bytes equal to 1, then when if I am 

using fread from this purpose, then more than one byte would be read from the file and 

maintained by the standard I/O library in a buffer of its own. 

The first byte will be referred to the buffer will be writtened in the buffer that I am using, 

because that is the way I have set up my program. But the rest of those bytes will be 

actually will be available in memory in a buffer manage by the standard I/O library. 

Now, the advantage of this is that subsequent reads that my that my program made can 

actually be handle out of the buffer the standard I/O library buffer. So, this is the vast 

improvement of what we had tried before, the number of system calls can be kept down 

by the standard I/O library prudently it maintaining the buffer well, but there is still a 

problem in this scheme. In the problem with this scheme is that, they will be more 

copying of the data, that was read from the disk note that the data was read from the disk 

into the buffer which is maintained by the standard I/O library. 

Subsequently, the data will have to be copied from standard I/O library buffer into the 

buffer of my program and that would be two memory operations; a memory operation to 

read from the buffer of the standard I/O library. Another memory operation to write into 

the buffer of my program and so on. Therefore all of this copying of data is going to 

involve multiple operations at that 100 nanosecond main memory speed. And is 



therefore, still has to be viewed as being an overhead, because it involves copying from 

the standard I/O library buffer to the buffer of my program. 

Now, looking back at the system call alternative, the alternative of the standard I/O 

library is good, but it still has some overheads. And hence when we talk about file 

system performance ideas, we hopefully learn about mechanisms which are provided 

within the file system to reduce the times involved in accesses of the kind. That I am 

referring to here by programs, that I may write even more. Now, I am going to talk about 

four such ideas and I should just mention that the copying which I am referring to 

overhead. Refers to the fact that first of all every once in a while the standard I/O library 

is going to read data from the disk and that is going to involve copying it from the disk to 

the standard I/O buffer, that is the transfer at the transfer rate of the disk. 

Subsequently, every time my program actually does in f read or in fwrite(), the data 

would be copied from the standard I/O buffer into the buffer of my program, which is 

multiple main memory operations. 

(Refer Slide Time: 10:27) 

 

Now, I am going to talk about four key ideas from the perspective of file system design 

that will be important for a user, who is writing programs that deal with files the first of 

these is something known as disk block caching. And we have come across this some of 

these terms before, disk block is our synonym for disk sector, And we come across the 

word caching from the word hardware cache, the hardware cache which was present 



between the main memory and the processor. Here, very clearly we are talking about 

something which is done by the operating system. 

And therefore, it must be referring to a cache like idea, maintaining something similar to 

how a cache hardware cache maintains data, but being done by the operating system. The 

basically a software idea, that is essentially, what disk block caching is. The idea here is 

that, the operating system will maintain within main memory so, that is a key 

observation, copies of the recently used disk blocks. So, when my program first opens a 

file and then it reads let say one byte from the file that may involve reading the first 

block of the file from the disk. But if the operating system is doing disk block caching, 

then it will in effect have a copy of that particular disk block somewhere in main 

memory. 

And therefore, subsequent reads of the bytes of that particular file will happen not out of 

the disk, but out of main memory, out of this structure in main memory which would call 

the disk block buffer cache. This is the commonly occurring name in Unix and Linux 

systems. So, this is our great idea, because it tells us that if for example, I have a 

program which reads a particular collection of data from a file and then reads the next 

data from the same file. Then, I can expect that, the accesses to the data need not involve 

each of the accesses to the data even if they take place through a system call, need not 

involves separate disk I/O operations. Each of them need not involve a 10 millisecond 

time of access to the disk. 

But rather, it may be possible for the operating system to satisfy that request out of the 

copy of the disk block which is present in the main memory. You now understand by this 

called caching, it is very similar to the benefit that one gets by having a hardware cache. 

Many of the times a piece of data which the processor is trying to access out of main 

memory, can be accessed out of the cache instead at a much smaller amount of time. So, 

here we get the same benefit hopefully many of the times the piece of data need not be 

accessed out of the disk, but can be accessed out of the disk block buffer cache, which is 

inside main memory. And therefore, accessible in let say 100 nanoseconds rather than in 

10 milliseconds, which would have been in the case with the disk. 

So now, the data will be available in this disk block buffer cache. In case, it is required 

again or in case neighboring data from the same disk block is accessed by the program. 



Such as, in our example of the sequential access through a file in order to write the cat 

program, we now see that it does would not have made much of a difference, if I had 

used one system call in which I read one byte of the file. Because the same information 

the entire block of the file would now be available, if the system uses disk block caching 

in the disk block buffer cache for subsequent system calls. And therefore, the benefits of 

disk block buffer caching are fairly evident to us. 

Now, the question which may arise at this point is, where is this disk block buffer cache 

going to be managed? And we must bear in mind that this is all coming out of main 

memory, you will recall that we have this general idea that the main memory is on the 

computer systems that we are dealing with could be something like 4 gigabytes. And 

until now, we were working under the assumption, that the main memory was used by 

the operating system to maintain the physical pages. In other words copies of virtual 

pages of many of the processes which were in execution, which were active. 

We now realise that some of the region of the main memory is going to be used for other 

purposes. For example, we understand that some of the region of main memory might be 

reserved by the operating system, for use as a disk block buffer cache and the more space 

that is reserve by the operating system for use as a disk block buffer cache. The more 

disk blocks can be copied into main memory and available at main memory speeds and 

therefore, the more benefit they will be to the programs which are doing a lot of file 

related input and output. And the other hand the trade off that is involved is that the more 

of main memory that is used for the disk block buffer cache. The less main memory will 

be available for other purposes, such as store in the virtual pages of the many programs 

that are in execution. 

And hence there will be more situations where those programs will suffer page faults and 

hence once again the disk accesses will have to be done to satisfy the page faults of those 

programs. So, there is a trade off that is being played here and the decision about how 

much space will be made available for the disk block buffer cache, is an important 

configuration decision that a system administrative will have to make in order to play 

this trade off. And they would be made based on a typical understanding of the nature of 

the different kinds of programs and there importance of having a large amount of disk 

block buffer cache to speed up the programs they do a lot of file input and output 

operations. 



So, it looks like the disk block caching idea is the clear winner. We should bear in mind 

that since there is a trade off to be played in deciding how big the disk block buffer cache 

can be. There is a possibility that a replacement policy will have to come into play in 

managing the current disk block which are maintained within the disk block buffer 

cache. And off hand one might say that in other situations in hardware and in software 

where replacement had to be done in L R U like policy made sense because of the 

principle of locality of reference. But unless, we have a reason to believe that files and 

disks and the disk blocks show locality of reference. It would be difficult to just assume 

that an operating system could use an L R U like policy, but in the absence of any model 

of how file I/O at the localities are the assumption of L R U like policy would not be out 

of place. 

Now, there is one problem, which the idea of disk block caching does raise and we do 

need to be aware of this. And this problem arises, because until now our picture of the 

file systems was that a file is stored on disk. And it is stored on disk, because it is 

important that the data of the file be available in a non volatile and a persistent fashion. 

And they were two aspects to this, one aspect of it was there could be a program that 

opens a file and writes into the file. And after the program seizes its execution, the file 

data still continues to exist. But there was another aspect that I had raised and that was 

while the program is in execution and reading or writing the contents of a file. 

It is possible that, the power is which is keeping the system up and running fails or in 

general that the system might crash. The system might suddenly terminate correct 

execution and may be in a power down mode. 

Now, if this happens unfortunately, we still want to have files having let me take back 

the unfortunately even if this happens, we would want the files to have the property that 

the data that they contain survives. In other words, they should be able to survive the 

power of the system going down. And that is the reason that we stored the files on 

something like a disk a non volatile persistent form of storage, which does not require 

electricity in order for the data to continue to reside correctly on the disk. But if the 

system crashes and we have a situation where some of blocks of the file are actually 

available in a buffer cache, then the situation is dangerous. 



Because it is quite possible that, the buffer cache contains versions of the file, a blocks of 

the file which have been modified by the program in execution. And that therefore, the 

copy of the disk block in the buffer cache could be different from the copy of the disk 

block on the disk. And the copy of the disk block in the buffer cache might be the more 

recent one the correct one and the copy of the disk block on the disk might be an older 

one the wrong one. Hence, when the system crashes and the contents of everything in 

main memory disappears, the correct copy of that particular file has gone away and what 

we have on disk is no longer the most recent version of that file. 

Hence, it is important to have some kind of a mechanism through which the contents of a 

file can be cause to be present on the disk despite, the fact that the system has crashed. 

And one could imagine that; one could try to apply an idea similar to the corresponding 

situation in the case of the hardware cache. Now, you remember that in the case of the 

hardware cache, we had the C P U, we had the cache and we had main memory. And we 

had a problem where they could be a block which was present in main memory which 

was copied into the cache. And the copy in the cache might get modified by a store 

instruction. Therefore the copy in the cache is different from the copy in the main 

memory, the copy in the cache is correct the copy in the main memory is the old copy. 

And we talked about how caches could be designed to try to make the cache copy and 

the main memory copy consistent. And one possibility there was the write through main 

memory update policy where every time the c p u modifies copy of data inside the cache, 

immediately the main memory copy is updated. The alternative was the write back 

policy, but could we use a write through policy in trying to avoid the problem that we 

have now identified, that arises in file systems, because of disk block buffer caching. In 

other words whenever the disk whenever the file is modified in its cached copy could be 

simultaneously modify the copy on the disk. 

Now, this may not be that good an idea given that every disk access takes potentially 10 

milliseconds unlike the situation in the in the main memory cache relationship where the 

difference in speed was only 100 nanoseconds to a few nanoseconds. Therefore, using 

write through may not be a feasible option in this context, but the question then arises, 

what about just using write back? In other words just before a particular disk block has to 

be replaced updated in the write its current version on to the disk. Now, unfortunately we 

are not too sure about how frequently elements will have to be replaced out to the disk 



cache. If the disk cache is fairly large is conceivable that blocks may not have to be 

written back and replacements may not be necessary very often. 

And therefore, it may be necessary to have mechanism which tries to keep the 

consistency between the disk block, a disk buffer cache copy and the disk copy more 

frequently. In something which many of the operating systems do is that, they will 

periodically flush or write back the contents of the cache to disk. And by periodically 

they will be a parameter of the operating system, the default value may be something like 

30 seconds. So, about twice every minute, the contents of the disk block buffer cache 

would be written into the cache I am sorry would be written back into the disk. 

And this is done largely to ensure that at least for files which are not modified more than 

once every 30 seconds the copy in the disk block buffer cache and the copy on the disk 

will be exactly the same. And therefore, certain amount of non volatility and persistence 

of the contents of the file will be ensured. So, this is an important setting; important 

property of the operating system, for any operating system which is implementing disk 

block caching. Now, you can assume that all the operating systems that you are dealing 

with Unix, Linux, windows and so on do use disk block caching. Because the alternative 

of not using disk block caching would mean that every access to a file would take that 10 

milliseconds that we were worried about. 

Therefore, this it is quite fair to assume that the system, that you deal with do have disk 

block buffer caches and therefore, it is an important idea. 



(Refer Slide Time: 22:13) 

 

Now, with this one idea let us move on to another interesting idea. Now, the second idea 

is something which is known as disk block pre-fetching. And that is an interesting term, 

because if come across the word fetching before we had this notion of part of the 

instruction execution pipeline we refer to as instruction fetch. And it was the instruction 

fetch hardware that fetched an instruction from main memory into the instruction 

register. Here we have; so, we understand that fetching must be getting something from 

one place and copying it into another place. In this case we are talking about disk block 

so, we suspect that disk block pre-fetching must refer to copying it from the disk 

possibly into a disk block buffer cache, but here the word pre or the prefix p has 

appeared. 

And the immediately what comes to mind is, the concept of before there is a need to 

fetch a particular disk block from the disk into the main memory. In other words before 

there is a need to fetch it actually bring it into the main memory. In other words this is 

some kind of a preemptive or speculative kind of an activity where even though the 

program has not ask for a particular disk block, the operating system if it is doing disk 

block pre-fetching, the operating system may initiate the fetching of a disk block into the 

main memory even before the program requires it. So, that seems to be the implication of 

the of the term disk block pre-fetching. 



And that is in fact what I am going to define it as, pre-fetching is the operation of reading 

something into a cache or buffer before it is actually required in this case before it is 

actually requested by the program which is doing the file input and output operations. 

Now, the question which will arise is under what conditions could the operating system 

profitably pre-fetch a disk block from the disk into the disk block buffer cache? And the 

answer is if you think about sequential access. In other words, if there is remember the 

sequential access was one of the two common modes, the common access patterns that 

we talked about. 

The idea of sequential access was that, there is a program which is reading a file, it starts 

for reading the first byte, then the second byte, then the first byte it goes to the file, 

sequentially from beginning to end. Now, if there is a program which is sequentially 

accessing a file, then it should be quite clear that, by the time the first block of the file 

has been read the is fairly sure that the second block of the file will be required. And 

therefore, the operating system could have initiated a pre-fetch for the second block in 

the file, while the accesses to the first block in the file would happening out of the disk 

block buffer cache. 

And in fact the operating system, if it has information, if it is able to keep track of the 

nature of operations on the disk remember, that the operating system is in some cases 

involve with scheduling the disk arm movements. It knows what are the different request 

which have piled up for the disk. So, if it notice that there is not very much activity as far 

as the disk is concerned, in other words the programs which are currently in execution 

are not doing a lot of I/O operations required the disk. Then the operating system could 

use that as an opportunity to pre-fetch additional blocks from the disk into the disk block 

buffer cache. Anticipating the sequential read requirements of the programs in execution 

based on the disk block which they have currently accessed. 

Assume that, they are in the near future going to access the neighboring disk blocks out 

of the disk so, that is the premise of the idea. And any operating system which is able to 

do this will be able to provide substantial benefits to the programs which are doing 

sequential access. The net effect is going to be that the program may never see a 10 

millisecond gap during which a disk I/O operation is taking place. Because the operating 

system may have consistently been able to pre-fetch the blocks before the program 



actually indicates a need for accessing those blocks. And therefore, sequential access 

could conceivably take place without ever seeing the disk I/O over heads at all. 

So, disk block pre-fetching seems to be a good idea and they will be certain operating 

systems in which it will be possible for the programmer to specify in the forms of hints 

to the file system. Information about whether or not the program is going to be making 

sequential access, these would be known as hints. Since, the operating system cannot be 

sure that the programmer is going to have detail knowledge about how the program is 

behaving, but sophisticated programmers may be able to give the appropriate hints. And 

then, the operating system could use those hints by doing pre-fetching. 

You will notice that pre-fetching of a disk block into the buffer cache it is not a going to 

effect the correctness of a program, the program would have run correctly. In other 

words would you have produce the same results whether or not the pre-fetching was 

done. But the pre-fetching may have a substantial impact on the performance of the 

program program may be able to run substantially faster if the operating system was able 

to successfully pre-fetch the blocks that the program is going to access from its various 

files. So, disk block pre-fetching seems like a simple idea something that an operating 

system could quite easily do and something which would be a read benefit to the 

programs. Further it is conceivable to imagine that the operating system could be 

keeping track of the order in which the bytes of a file are being accessed. 

And therefore, anticipate whether it would be beneficial to pre-fetch subsequent blocks 

of that particular file. 



(Refer Slide Time: 27:30) 

 

So, disk block pre-fetching seems like a good idea and somewhat easy to implement. It is 

allied to the idea of disk block buffer caching which we suspect is going to be present in 

any operating system, certain aggressive operating systems are also likely to do disk 

block pre-fetching. Now, moving on to another idea, I am going to talk about an idea 

which is known as the idea of memory mapped files and again just looking at this term 

from a distance without technically. We understand that this has something to do with 

the file operations, but it seems to be a situation where there is an attempt to map the 

contents of files into main memory. In other words to somehow have the files present in 

main memory rather than having to read the files of disk. But that is that was the idea as 

far as disk block buffer caching was concerned. Therefore, this must be as some other 

twist on the use of main memory for holding the contents of files. 

Now, the general idea behind memory mapped files is the following. We know that 

associated with any processes is a virtual address space. Now, if a process is actually 

handling data which is available within a file and the programmer is aware of this. Then, 

the programmer should be able to indicate this by mapping the contents of the file into 

the virtual address space of that process explicitly. If such a facility is provided by the 

operating system, what does it mean to map the contents of the file into the virtual 

address space of the process that is accessing it? 



(Refer Slide Time: 29:00) 

 

Now, let us just look at this pictorially over here I have a drawing of a disk I am showing 

the disk in this form, because remember we think of a disk as being made up of many 

platters each of which has cylinders. Hence, this cylindrical kind of representation for a 

disk, it is a fairly standard kind of a representation showing a cylinder for a disk. So, let 

us suppose that I have a disk, which contains one particular data file that a program that I 

am interested in is going to accesses. And I am not sure if the program is going to access 

this file sequentially or whether it is going to access it randomly. And in fact the idea of 

memory mapped files will be able to satisfy both of these requirements very well. 

Now, I know that when the program executes as a process, this going to have a memory 

image, which is going to include its text, its data, its stack and its heap. And we know 

exactly what each of these components of the memory image of the process is. Now, the 

idea of the memory mapped file as describing the previous slide was that the contents of 

the data file would be mapped into the virtual address space of the process. Remember, if 

the virtual address space of the process goes from some minimum address to some 

maximum address. And talking about mapping the contents of the file into the virtual 

address space essentially means that, for all attains a purposes, the range of addresses 

into which I have done the mapping. 

If the program reads from any of those addresses will end up reading the contents of the 

file that is, but this is the picture that one should have in mind when one things about a 



memory mapped file. So, that is the file which exists on disk, but the programmer has 

somehow managed using facilities provided by the operating system to cause the 

contents of that file to be associated with some region of the virtual address space of the 

process corresponding which is the program in execution. Now, what is going to be the 

benefit of doing this? Now, if this had not been done, in other words if one had not done 

this memory mapping, then the situation would have been like this. 

And when the program had to access the data file, if I looked at the program, I would see 

it would have had to open the data file and then it would had to read from the data file or 

write from the data file or lseek from the data file. And after having done that whole 

thing, it would have close the data file after doing multiple read writes and lseeks. And 

each of these was in the worse case, a system call which would take a few microseconds 

in the better case it could have been library calls. But in both cases they would have been 

the need to copy data from one place to another. For example let suppose that I had 

implemented my program using system calls then every time there was a read, data 

would be read from the disk into a buffer cache. 

So, that is one read into the buffer cache which is within main memory, but outside the 

virtual address space of the process so, that is one copy of data. Subsequently, they 

would be a need to copy data from the buffer cache into the buffer associated with the 

read call. So, two copying two need; two situations where data has to be copied, one 

from the disk into the buffer cache and one from the buffer cache into the buffer. One is 

of course, at the disk latencies, but the other is at main memory latencies, but there is 

data copying that has to be done. 

Now, even if I had setup the program to operate using the standard I/O library fopen 

fread etcetera. Data copying would have been involved not from the disk to the buffer 

cache and from the buffer cache to the buffer, but from the standard I/O library buffer 

into the buffer of my program. So, once again data copying would have been involved 

and that would have been in the case if I had not used memory mapping. 



(Refer Slide Time: 29:00) 

 

So, the problem with not using memory mapping is, that I would if have to use a 

traditional open, lseek read write or f open f read f write fseek etcetera. But all of them 

are inefficient either because they use system calls which is the case with open lseek read 

and write or because they involve data copying which is the case with fread fopen 

etcetera. What is the advantage of using this memory mapped file? If I use the memory 

mapped file, then I am actually have a situation where the data of the file is available in 

the virtual address space of the process. As shown by the diagram, the data of the file is 

available using certain addresses of the virtual address space of the process. 

And therefore, the program can access the data contained in the file using memory 

addresses, in other words using variables or pointers. And you could easily see that in 

setting this whole thing up the program may have a single pointer which points at the 

first element of the file and that if it wanted to read the thousandth element of the file it 

could just move the pointer ahead to the correct byte read that byte and so on. The 

program could manipulate a pointer in order to do lseeks reads writes etcetera, but just 

operate on main memory. Therefore, this would actually simplified things from the 

perspective of the need for copying there is no longer any need for copying data from a 

buffer into a buffer of the program. 

The program is directly accessing the contents of the file from its virtual address space, 

because of the management of the virtual address space. Now, what happens if a 



particular part of the file has not been copied into memory because of the equivalent of a 

page fault? Then, this would be have to be handle much like a page fault. And the copy 

of the disk may have the copy of the disk block may have to be transferred from the disk 

into the disk block buffer cache. And subsequently handle; it gives to handle the page 

fault on that part of the virtual address page corresponding to the mapping of the file into 

the disk or into the main memory. 

So, they could be something equivalent to the page fault, but that could be handled very 

much like the page fault is handle for any part of the virtual address space of the process. 

Therefore, there is substantial benefit from using a memory mapped file, if one thinks 

about the data copying and other aspects of manipulation of the contents of a file. Now, 

the question which will be arise in your memory is this facility which is available 

typically on provided by operating systems? The answer is yes, it is provided by every 

operating system that we have talked about in this course. And in Linux and Unix 

systems, the corresponding system call is referred to as mmap. And in the mmap system 

call one must mention which file one is interested in mapping, that is why there is a file 

descriptor parameter in the mmapped system call, mmapped stands for memory map. 

So, one specifies which file one is interested in mapping. One specifies where in memory 

one is interested in doing the mapping too, in other words the start address and various 

other parameters. So, the facility is available, the next question that you will ask is or 

come I have in heard about it before, is it because programs typically do not use mmap? 

Now, to answer that question, let me just point out that in many of the systems that you 

use, it may well be the case that the programs that you refer to as cat or c p may benefit 

from using mmap, rather than using the traditional mechanisms fopen or open read write 

etcetera. 

And that if you actually check to see what mechanism is used by cat or by c p, c p is the 

program which is used to copy one file into another file. You may well find that these 

programs are using mmap, because that is the most efficient mechanism for dealing with 

the kinds of file access patterns that they are handling. And therefore, mmap may be one 

of the better kept secrets, but it is a facility which is provided widely provided and 

certainly a value to many kinds of programs. 



(Refer Slide Time: 36:00) 

 

Which is why I have included it as a very important performance idea from the 

perspective of file systems, it is something which we should be aware of you can bet 

that, the operating systems that you deal with provide disk block buffer caching. And 

they may be doing good deal of pre-fetching from which your programs that do 

sequential access will benefit. But most certainly one could think about writing 

programs, which do memory mapped files in order to get additional benefit. Since, this 

facility is available on the computer systems that you deal with. Now, there is one other 

aspect relating to file systems that I do want to talk about in terms of performance and 

that relates to something which is called asynchronous I/O. unfortunately we have not 

come across this word before. 

So, I will just have to get into it without any guess any attempt to guess what this might 

be? Which is what we did with each of the previous terms? Now, the idea in 

asynchronous I/O is based on the observation, then in ordinary file I/O the kind of file 

I/O that we were talking about up to now, such as doing a read or a write. We assume 

that the process would have to wait or get blocked for the disk operation to complete 

before it could proceed to use the data that had been read. So for example, you think 

about read, the default for read was that you read from a particular file and the data will 

be available in a buffer, but that could take ten milliseconds. 



Depending on whether in the worst case it could take ten milliseconds if a file I/O disk 

I/O operation actually had to take place. And in that particular situation it would be 

necessary form of the program which did the read to not try to access the buffer for that 

period of time. Or better still the operating system noting that this was an operation 

which might take 10 milliseconds would block the processes. If would no longer be the 

running process what would be a ready process, but the net effect is going to be that the 

amount of time that my program takes to execute. If I look at the elapse time rather than 

the virtual c p u time would increase. 

And that if I had more control over what happens in I/O then I could actually cause my 

program to use to do other activities while the buffer was being filled with a data that I 

need. And that I would like to have that kind of control so, this is exactly what 

asynchronous I/O provides. It provides a mechanism through which the user can write 

programs, which can do other activities while something like a file I/O is completing. So, 

the idea of what you might call non-blocking I/O, the disk I/O operation like a read. In 

the traditional kind of I/O, that we talked about may be a situation where the operating 

system will put this process into the waiting queue. But if one has special I/O calls 

through which one can let the operating system know that one has other things that the 

program can do. 

Then they could be this notation of non-blocking I/O and this is what I will refer to as 

asynchronous I/O. 



(Refer Slide Time: 39:19) 

 

So, in general the objective of an asynchronous I/O mechanism would be to allow the 

programmer to write his or her program to perform I/O without blocking. In other words 

to assume that there are other activities which could be done while the disk I/O operation 

is completing and this is provided by many operating systems through a special set of 

calls. For example in the sun operating system, there are the asynchronous I/O read and 

the asynchronous I/O write calls they are known as a I/O read and a I/O write. And they 

look very much like the system calls that we know before, they require of file descriptor 

a buffer a num bytes etcetera. And the property that they have is, they cause a number of 

bytes of data to be read from a file descriptor into a buffer without blocking the process. 

In other words, the process which does in asynchronous I/O call will continue to be the 

running process that is the guarantee that the operating system unless the process is 

preempted. If the process could be preempted, because at the end of it time class has 

arrived, but the activity of doing a file I/O operation by itself will not cause the process 

to get blocked if one uses an asynchronous I/O call. Now, of course, there is a 

requirement that the user; the program should not attempt to access the data out of buffer 

until the I/O operation has completed. Because the data will not be available in the buffer 

until the I/O operation has been completed. 

And therefore, they should be some mechanism by which the program can be written so 

that after they called a I/O read. It does some other useful work, but it has to be able to 



do enough other useful work until the buffer has been successfully filled. And the 

program should have some mechanism by which it can check whether the buffer has 

been filled with a data or not. And therefore, some mechanism must be provided for the 

process to able to be notified of the actual completion of the I/O operation and put 

together this provides the user with sufficient additional control. So that, the fact that an 

I/O operation may take even 10 milliseconds can be overcome to do other useful activity 

that may have to be done by the program instead of just yielding the c p u and getting 

blocked. 

So, asynchronous I/O was another much more sophisticated kind of a feature, it will 

require a complete rethink on how you write a program. Because you will have to write 

the program to do the asynchronous I/O and then to start doing activities which do not 

relate to the data which is going to be provided from the file as a result of the completion 

of the I/O. 

(Refer Slide Time: 41:40) 

 

Now, in short then we have seen four interesting and very aggressive kinds of ideas. 

Some of which will be present in pretty much any operating system, some of which one 

would have to look to see whether the operating system supports. But all of which can be 

use by a programmer to aggressively cause the programs that he or she writes to more 

effectively use files in a performance effective fashion. And we stop here today with our 

discussion of file system performance ideas. Thank you. 


