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Welcome to lecture 9 of our course on, High Performance Computing. We have come a 

long way in these first 8 lectures. Just to remind you what we saw in the previous lecture, 

we had studied the MIPS 1 instruction set architecture. This is going to be the machine 

language that we will use in understanding the behavior of programs. And we have 

looked at a particular example of the example of how a C function call and return would 

be implemented in the MIPS 1 assembly language or machine language. 

(Refer Slide Time: 00:51) 

 

And let me just start off with the first slide where I just recap the sequence of events that 

have to happen to implement a function call. The function call, in this case, happens with 

in the function called A, I am circling the function call. And the function is a call to the 

function B, which is known as the Calle. So, the sequence of events that happens is 

shown by this column of MIPS 1 assembly language instructions.  



So, associated with the function call there are a number of instructions, which will 

appear inside the body of the complied function A. In addition to that, to implement the 

function call some of the instructions may be present in the body of the function B. So, if 

you will look at the complied or assembled version of B, you may find some instructions 

which actually relate to the function call. Similarly, in function A, you will find some of 

the instructions, MIPS instructions which related to the function call. 

Associated with the function return, one would find many instructions towards the exit 

point of the or the return point of the function, which is being called, in this case function 

B. And we understand both the individual instructions are from our study of the MIPS 1 

instruction set like the add immediate instruction, the store word instruction, etcetera. 

And we understood that the functionality of the function call and return is largely 

implemented through one special MIPS 1 instruction, the jump and link instruction, 

which makes it possible to transfer control to a function and simultaneously remember 

the return address to which control is to be transferred upon return. 

 We understood that lot of the things that happen during the function call or implemented 

through a stack in main memory. That is why as we ran through the sequence of events 

we ran through the updates that would happen to the stack. So, this was a good example. 

It showed us, gave us some practice in understanding MIPS 1 instructions as well as our 

important function and important functionality, which will happen frequently when we 

execute programs. In other words, function call and return would be implemented. 



(Refer Slide Time: 03:00) 

 

So, with this, we have a much clear understanding of what to expect when a program 

executes. And just to remind you that we clearly understand that when for program to 

execute, it must be present in main memory and that the different components of the 

program, which are required for its execution must all be present in main memory. Such 

as, its instructions, its statically allocated data, its stack allocate data, and its heap 

allocated data. This would all be present in main memory. In other words, for any one of 

the items, for example, for any one of the instructions of the program, that instruction 

would be present in 4 bytes of memory. Remember, that each instruction in the MIPS 1 

instruction set is a size 32 bits or 4 bytes. 

So, we could actually view the pictures that we have over here as describing the situation 

in memory, starting from memory address 0 going onwards. And we could assume 

without loss of generality that the lowest address, in other words, the first instruction of 

the text region of your program will be at memory address 0. And that at the other end to 

the last element associated with the program might be at the highest possible memory 

address. If it is a 32 bit machine, this might be 2 to the power of 32 minus 1.  



(Refer Slide Time: 04:26) 

 

Now, before actually moving ahead and looking how instructions are executed, I wanted 

to actually go back and fill in 2 gaps, which had been left in or understanding of the 

MIPS 1 instruction set. Specifically one relates to conditional branch instructions which 

we had looked at, but not adequately and secondly, I had made some comments about 

floating point. We had seen that the instructions of the MIPS 1, which we are studied all 

related to the integer operations or integer data and I did want to make comments about 

how floating point, could be dealt with, since some of more examples will have to deal 

with floating point operations. 



(Refer Slide Time: 04:50) 

 

Now, just remind you about the MIPS 1 branch instructions. I used the word branch and 

conditional branch. View the words, branch and conditional branch is being equivalent. 

So, there were the six instructions, B E Q B N E, branch if equal, branch if not equal and 

then branch if greater than equal to 0 etcetera, one example is shown. And in essence 

were these conditional branches allow one to do is to transfer control by changing the 

program counter, depending on whether a condition is true or not. And the various 

conditions, which could be checked, as listed by these six instructions or whether two 

registers are equal, whether two registers are not equal, whether a particular register has 

a value that is greater than or equal to 0, less than or equal to 0, less than 0, or greater 

than zero. So, these are the six conditional branch instructions that we have talked about. 

Now, as you would imagine, they are going to be conditions, which cannot be 

implemented using only these branch instructions. For example, consider a condition like 

R 1 greater than or equal to R 2. I may have situation where in a C program there is an if, 

statement of this kind. So, here I want to check whether the value the variable A is 

greater than or equal to the value of the variable B. And we realize last time that in order 

to operate on A or B, it is beneficial to have a copy of the variable in a general purpose 

register. And therefore, a condition like this would translate into a condition of this form; 

comparing two resisters R 1 greater than or equal to R 2. 



Now, if you look at the collection of six conditionals that are available, none of them 

actually satisfies this objective directly. We have a mechanism for checking whether we 

have a branch of greater than or equal instruction, but that compares with 0, not two 

registers being compared with each other. Therefore, this will require a little bit of 

thought, but it does not take too much time to realize that we could used the branch if 

greater than or equal to 0 to create the condition that I have underlined over here; R 1 

greater than or equal R 2 by the simple mechanism of rewriting the condition as R 1 

minus R 2 greater than or equal to 0. 

In other words, when if the compiler or if I had to achieve this condition check, then I 

could actually do the computation of R 1 minus R 2, and if R 1 minus R 2 is greater than 

or equal to 0 then I know that R 1 is greater than or equal to R 2. Therefore 

corresponding to this modified version of the condition, clearly I would need two 

instructions. The first would be a subtract instructions, which would compute R 1 minus 

R 2 and put the result into some other registers say R 3, and then a branch of greater than 

or equal to 0 instruction, which would check whether R3 is greater than or equal to 0. 

And if so then do whatever it would have done if R 1 was greater than or equal to R 2. 

To this, could be one way to get around the problem of the lack of the appropriate 

conditional branch instruction in the MIPS 1 instruction set. 

Unfortunately, this is not an adequate solution and the reason is that there is a possibility 

of overflow. In this particular example you will notice that in order to check the 

condition R 1 greater than or equal to R 2. I am doing an arithmetic operation. I am 

calculating R 1 minus R 2, and whenever an arithmetic operation takes place, there is a 

possibility that overflow will result. And if overflow does result, the program will not 

actually execute the way that we thought was going to execute. 

Now, when you, in your program wrote the if statement, you clearly just wanted that at 

execution time, condition to be checked. You did not want any arithmetic to happen. And 

therefore, there was no thought in your mind that there was the possibility of arithmetic 

over flow. But, this implementation of the condition checking could result in an 

overflow. For example, if the value of the variable A. let us go Let us talk about the 

resisters, so if the value of resister R 1 is very high, positive value and the value of the 

negative R 2 is an extremely high magnitude negative value. Then when I subtract R 2 

from R 1, I end up with situation where that value could well exceed the possibilities of 



what could be represented within the 32 bits of an integer or a register. And if also does 

occur then this program will not run as it should and therefore, this has to be viewed as 

being an unacceptable way to implement the condition. 

So, in general, in trying to implement the various conditionals, the various kinds of 

comparisons that we may want, we have to somehow make use of the limited set of 

branch instructions available without doing any arithmetic, and that in general is 

difficult. In all cases, it is not possible. Therefore, to help us in this particular kind of a 

situation, the MIPS instruction set actually has additional instructions, which I had 

eluded to when we talked about the arithmetic and logical instructions, but I had not 

talked about. At this point, it is it is important that we do. 

(Refer Slide Time: 09:48) 

 

So, this class of additional arithmetic and logical instructions and this particular table 

could be added to the arithmetic and logical table that we had. They are called as 

“Compare Instructions”, and there are four instructions, which I am mentioning. They 

are the S L T, S L T U, S L T I and S L T I U and in order to read and understand these, 

once again, I will just let you know what the abbreviations used are in general.  

The letter S in these instructions does not stand for store, but stands for set. The L T 

stands for less than as you would expect. I, stands for immediate, as we have already 

seen. U stands for unsigned and therefore reading the S L T, I might read it as set if less 



than. S L T U is set if less than unsigned. S L T I, is set if less than immediate and so on. 

The example that we have, S L T I R 1, R 2, R 3, the meaning gives a way the use of the 

instruction. So, basically what is going to happen is this instruction will cause R 2 to be 

compared with R 3 without doing any arithmetic. 

So, if R 2 is less than R 3 then R 1 will be set to 1, but if R 2 is not less than R 3 then R 1 

will be set to 0 or reset. Therefore, the correct way to read or read this instruction might 

be to say that it is set if less than R 1, R 2, R 3 or most specifically set R 1, if R 2 is less 

than R 3. In other words, set R 1 to 1, if R 2 is less than R 3. And this gives us a way of 

implementing conditions without doing arithmetic and raising the possibility of 

overflow. And that is the sole reason that these instructions are included in the 

instruction set. 

So, let us just look at the example which we had just seen. So, in a program that you 

have written you have an if, and you have to check a condition of the form R 1 greater 

than or equal to R 2, and I am fleshing it out a little bit more over here. Specifically, I am 

in a situation where I have this if, then, else. If R 1 is greater than R 2, I have to executes 

statements of the thenpart, (Refer Slide Time: 12:02) and I am not going into what the 

statements of the thenpart are, but could be any collection of statements. Otherwise, in 

other words, if R 1 is not greater than or equal to R 2, then I have to execute; I want to 

execute this statement of the elsepart. And I want to check the condition without doing 

any arithmetic, so I will be using the S L T.  

So, the way that this could be done is, first of all, I could see… Now one thing to note 

here is the condition that I can check is less than, so I can check if R 1 is less than R 2, 

but, specifically, here I am interested in finding out if R 1 is greater than or equal to R 2. 

So, one has to think a little bit carefully about this, but let us just see what code I have 

written and we will check if it sounds correct. So, this S L T instruction that I have 

written is going to set R 3, if R 1 is less than R 2. Here, I have written a comment, just to 

explain what the intent of this instruction.  

The intent is that if R 1 is less than R 2, then R 3 will be set otherwise R 3 will be reset. 

We will have a value of 0. What is it mean if R 1 is less than R 2? This means that R 2 is 

greater than or equal to R 1. And therefore, if R 1 is less than R 2 and that is the situation 

where I actually want to execute the elsepart. Bearing this in mind, if R 3 is actually set 



equal to 1, I want to execute the else part, which means that if R 3 is not set to 1 by this 

instruction, I really want to execute to thenpart. 

So, with little bit of thought, we realize that I can use the check for less than, in order to 

handle this particular condition, but depending on whether in this particular case if R 3 is 

equal to 0, I want to execute the thenpart, and if R 3 is 1, I want to execute the elsepart. If 

I invert follows I check whether R 3 is equal to 0, using the branch of equal instruction, 

and if R 3 is equal to 0, I transfer control to the thenpart, as we had just reasoned. 

Therefore, this is again, I suggest you to try to look at this more carefully. Look at the 

various possibilities and satisfy yourself that this is a correct implementation of if, then, 

else and further there is no danger of overflow happening, as a result of the condition 

checking. So, in general, the S L T, the compare instructions, were included for this 

purpose. I should mention that there is no additional set of set if greater than instructions. 

These are the sole compare instructions that are available. Suggesting that with this set of 

instructions, in other words, just the capability of setting if one register is less than 

another, one can actually achieve all the possible condition checking that could be 

required along with a branch instructions listed in the previous slide. 

 (Refer Slide Time: 15:10) 

 

There is also the possibility of the comparing a register with an immediate value. So 

much for complete understanding of the branch instructions, the second issue relating to 



the MIPS 1 instructions, which I wanted to complete before moving forward relates to 

Floating Point. You will remember that our discussion of the MIPS 1 instruction set 

discussed only integer operations, integer registers, and so on. But I had mentioned in 

passing that their extensions are in MIPS 3, MIPS 4, MIPS 5 instruction sets, there was 

floating point arithmetic available. 

So, for the moment we are going to assume that where that the MIPS 1 implements 

floating point instructions, is using a separate set of floating point registers. In other 

words, the floating point values are not loaded into the registers that we called R 0 

through R 31, those of used only for integers, the floating point data will be loaded into a 

separate set of registers. And regarding the separate set of registers, we will understand 

that there are 32 bit floating point registers, just like they were 32 bit general purpose 

registers called R 0 through R 31. There are 32 bit general purpose floating point 

registers and we might hence for prefer to R 0 through R 31, as the integer general 

purpose registers or as the integer registers. 

So, we have F 0 though F 31, each of which can contain a 32 bit floating point value 

represented using the I triple e floating point representation. And in this case we … So, 

now we do know that there is a possibility of double floating point values, to the question 

does arise of what about a 64 bit floating point value. Such as would have resulted, if I 

had a C program in which there was a variable called X declared as double (Refer Slide 

Time: 16:49). In this case, the way that things are implemented in the MIPS 1 would be 

that that value would be loaded into a pair of registers; two registers adding up to 64 bits 

and the way that this would be done is that an even, odd pair of registers will be used. 

What I mean by this is the pair F 0, F 1 with F 0 being register that is used to name the 

pair.  

So, one can also handle double precision or 64 bit floating point values using this 

convention, and this could be what is implemented by the hardware, which takes care of 

the programs. So, that is about the registers. There will obviously have to be additional 

instructions, because I cannot add two floating point values in registers F 0 and F 1, 

using the add instruction for integers, because the add instruction for integers, related to 

hardware that could do integer addition, so it must be additional instruction for floating 

point. 



Now, let us mention a few of them. First of all, there must be load and stored instruction. 

Just as we had related to the integer general purpose registers R 0 through R 31, they 

must be a separate set of load and store instructions, relating to the floating point general 

purpose registers. In our examples, I may refer to them as load, float, which will load of 

32 bit value from memory into one floating point register or load double, which will load 

a 64 bit floating point value from memory into an even-odd pair of registers such as in F 

0, F 1. 

So, there will be have to be loads and stores, because frequently used data will still have 

to be copied into registers for the benefit of our program. Then, in addition to this, they 

must be arithmetic instructions and the kind of notation, which I will use is that I will 

assume that there is an additional add instruction for floats, which I will call ADDF and 

since we will also concerned about doubles, there might be additional add instruction for 

doubles or 64 bit floating point values, which I will refer to as ADDD, which you can 

read these as add float and add double. In some books, you may find different notation 

used. For example, we might use in notation add dot d for add double or add dot f for add 

float. (Refer Slide Time: 19:02) But, bearing in mind that these are just assembly 

language type notations, it does not really to matter too much what we use in our 

examples. Since, I have not used this dot notation in our examples; I did not want to add 

it at this point. 

So, we will use notation like this ADDF, ADD D and so on. Now just coming back to 

our assumption over here assuming that there is a separate floating point register file I 

had again mention this in passing when we talked about general purpose registers, I did 

want to make specific comment about this. 



(Refer Slide Time: 19:39) 

 

Addressing the issue of why is there or why is it a good idea to have separate floating 

point register file? In other words, one side of general purpose registers for integers R 0 

through R 31, and in other set of general purpose registers F 0 through F 31 for floating 

point values. And I will just show you this in terms of some pictures. So, let us suppose, 

I did not have a separate register file for floating point values. Since, I know that a single 

program might use both integers and floating point registers; I might assume that the 

people who are designing the machine would include more than 32 registers, may be 64 

registers. And that all of these 64 register could conceivably be used for either integers or 

floating points, and this is one possible way to design the registers, if one wants to have 

both integers and floating points supported. 

The alternative is as we had seen the MIPS 1 does a separate set of 32 registers which we 

call R 0 through R 31 for integers and another one for floating point values, which we 

are calling F 0 through F 31. So, these are the 2 possibilities. Let us think about the 

possibility on the left (Refer Slide Time: 20:57). Now, if there is a collection of 64 

registers, which could be use either integers or floating points inventively, then as far as 

the integer A L U is concerned, the inputs to the integer A L U, which is the piece of 

hardware does the arithmetic, associated with the integers, they will be have to be 

connections from the register file into the integer A L U. And the same holds for 

different floating point pieces of hardware. 



For example, the piece of hardware, which does floating point addition, takes it operand 

out of the floating point, out of the registers and therefore, they will have to be 

connections into the floating point ADDF from the 64 registers. Similarly, for the 

floating point multiply.  

What about the result from the A L U? So, the A L U takes two values from registers, 

add R 1 R 2 R 3 and put the result back into the register file. The same will have to be 

true of the floating point adder and of the floating point multiplier. So, we see that there 

is large number of connections. The connections between the floating point register 

between the register file and the different functional units and they could be additional 

functional units. For the moment we are looking only at three and A L U, which does all 

the integer functions, the floating point adder and a floating point multiplier. 

And if I had a situation where I separated the integer and floating point registers, then the 

connections into the A L U would come only from the integer register files and the 

connections into the floating point pieces of hardware will come only from the floating 

point register file. And therefore, as far as the designers of register file is concerned, 

things become a lot simpler, the complexity of the interconnection becomes a lot simpler. 

And therefore, from the hardware designers perspective, the second option is the winner 

(Refer Slide Time: 22:43) and this is actually the reason that we find the idea of separate 

floating point register file being done.  

So, we seen that in the MIPS 1, we are going to assume that there is a separate integer 

and separate floating point collection of registers, in both cases 32, in both cases the 

width of the registers is 32 bits and what the different kinds of instruction in float might 

be available in floating point.  
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We quickly go through an example. Just make sure we have already seen examples using 

the integer MIPS instructions. Therefore, I thought would be good to do one using the 

floating point MIPS instructions. 

So, here we are going to look at what code might result from this kind of collection at 

declaration in for loop in C. So, this particular piece of code is dealing with two double 

position, in other words, 64 bit floating point arrays, array A of size 1024, array B of size 

1024, and then there is this for loop, which is basically adding element by element. An 

element of A to an element of B and that sum is the new value of the element A, and this 

happens for all the 1024 elements of B arrays. 

So, this is a vector sum operation. The size of the vector is 1024. Now it has happen is 

this piece of code could be implemented using this kind of sequence of MIPS 1 floating 

point instructions. You will notice that there are floating point instructions, the load 

double, load double, add double, store double, but the remaining instructions are from (( 

)) integer instruction set, which is why we need to comment on this a little bit. Even to 

do floating point operations, to implement this piece of code, which looks like purely 

floating point code, some integer instructions may be needed. In other words, instruction 

from our previous discussion of the MIPS instruction set with a little bit of thought, you 

will realize that much of this must be coming from the for loop. 



Because to implement the for loop, I must have a conditional branch instruction. As long 

as the condition of for loop is true, we have to branch back to the beginning of the loop. 

So, we are not too surprise to see a conditional branch instruction and similarly, to 

implement the iterations of the loop, in other words, in a sense, incrementing of the loop 

count, we will obviously need some add instructions and that is approximately where the 

additional add instructions are coming from this. I will describe this example in more 

detail later. 

But, this is a typical kind of an example using floating point instructions to implement a 

floating point loop, and since it is a floating point loop, they will also be some integer 

instructions in it. So, the entire MIPS instruction set will be of use to us in many of our 

examples. So, with this, well it might actually make sense for me to go through this little 

bit because of the addressing mode issue. So, you notice that this piece of code seems to 

be starting with some assumptions. The first instruction is loading at double, which must 

be loading the value of A (I), into register F 0, F 1.  

Remember, these are double values. So, whenever I refer to F 0, it is actually the pair F 0 

F 1. F 2 is a pair F 2, F 3; F 4 is the pair F 4, F 5 etcetera, which is why you find only 

even numbered floating point registers used in this example. The first load double 

instruction is loading the value of A (I), into the register F 0. And the starting assumption 

of this piece of code is that the address of A (0), is available in register R 1, which is why 

we just start by loading from base-displacement at 0 of R 1 into register F 0. Later, in 

this loop, you notice that we increment R 1 by 8, and the effect of the incrementing R 1 

by 8, is that R 1 will now contain an address which is 8 more than what is use to contain 

and therefore, it now contains the address of A (1) and this is how we are actually setting 

through the loop. 

We increment from A (0) to A (1), using this ADDI instruction, changing the address 

inside register R 1. Similarly, the other instruction increments us or steps us through 

array B and finally, there is another assumption at the bottom, which is that we set up the 

termination condition of this loop using register R 3 and therefore, it is sort of piece of 

suppose that register R 3 contains an address toward the end of array A, possibly the last 

element an array A and in fact, now register R 3 contains an address beyond the last 

element in array A. So, that we I am sorry yeah. So, that as soon as we find out that R 1 

is not equal to R 3, as long as R 1 is not equal to R 3 we know how to keep looking back, 



but as soon as we have incremented R 1. So, that it becomes equal to R 3. We know that 

we have just gone past the last element in the array 

So, R 3 is initialized to contain the address just beyond the end of array A. So, there were 

these base assumptions that we made in writing this piece of code and this base 

assumption would be implemented by 2 or 3 instructions just outside the loop, which 

initialized R 1, initialized R 2 and initialized R 3 as appropriate, so much for this 

example. Now, with this we have a much better understanding of the MIPS 1 instruction 

set and we will go back to our discussion of what happens when an instruction has 

executed. 

(Refer Slide Time: 28:12) 

 

So, we are back to our picture of the hardware. We are trying to understand what are the 

sequences of steps which must be done by the hardware, in other words, what is the 

control hardware do in order to execute an instruction. 



(Refer Slide Time: 28:26) 

 

And towards the end of the previous lecture we had outlined the series of steps. We saw 

that the instruction is initially present in main memory; it must be fetched into the CPU. 

After that it must be completely understood. Then the operation associated with that 

instruction can be done and finally, the result of the instruction can be return back to its 

destination. 

And the fetching of the instruction will involve communicating the address of the 

instruction, from the program counter to the main memory. Main memory will return the 

instruction bits, which can be stored into the instruction register, inside the processor. 

After this, we will increment the program counter and in other words, when I say we, I 

am referring to the control hardwares, so that the next instruction in memory will by 

default be executed next. So, the program counter will be incremented. The instruction 

decoding involve understanding the bit pattern inside the instruction and interpreting 

them as the operation like what addresses, what operand, what addressing modes are 

associated with this particular instruction, using information from the instruction format 

section of the instruction set architecture manual.  

Subsequently, if there is a memory address and it is an addressing mode, which requires 

some computations, such as the base-displacement addressing mode, the calculation will 

have to be done, such as adding the contains of the base register to the sign displacement 



from the instruction and the operands will have to be fetched. Subsequently, the required 

operation can be executed and the results can be return back. 

(Refer Slide Time: 29:51) 

 

So, we had outlined this in a little more detail, these 4 steps in this form and I will just 

try your tension to the fact that in this executing the operation will involve triggering the 

appropriate functional hardware. For example, if it is an add instruction, the A L U must 

be triggered, to do the particular operation, the add operation. Note that typically an A L 

U, as from its name arithmetic and logic unit, the A L U is capable of doing many 

different kinds of operations and therefore, when I say trigger appropriate functional 

hardware, I mean, the appropriate functional hardware with the appropriate operation 

clearly specified. 

Now, some of the instructions as we have seen may be instructions, which do not have 

specific hardware of this kind, circuitry associated with them. For example, the load and 

store instructions through which data values are copied from main memory into registers; 

do not have functional units or pieces of hardware associated with that. So, executing the 

operation in the event of a load or store, involves sending the address of the piece of data 

to memory and that is a specific part of executing a load or store instruction.  
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Now, let me just run through this series of events on a timeline. This will be useful 

exercise, and to start this of, forget that we are currently concerned about the MIPS 1 

instruction set. Let us think about more general instruction set or specifically a CISC like 

instruction set. Now, in a CISC instruction set, remember the operations could be 

arbitrarily complicated, the instruction could be arbitrarily complicated, and the 

particular example that I am going to show, I am going to assume that this is a CISC 

instruction set where all the operands are specified using memory addressing modes. 

In other words, there is an add instruction which may have add x y z. Three Memory 

operands as it is, operands two source operands in memory, one destination operand in 

memory. Now, what I mean by a timeline of events is I am actually going to show the 

sequence of events in terms of the order which they might happen.  

We are going to draw this timeline, showing intervals for the above appropriate amount 

of time in any one of these steps might take so that the first thing that happens is that as 

we saw the program counter value has to be sent to memory, and since memory is 

operating on a time scale which is two orders of magnitude slower than the processor, it 

will take a fair amount of time, which I am showing by this large interval in the timeline. 

So, this might be the hundred nanoseconds that I was talking about. So, at the end of a 

hundred nanoseconds, hundred nanoseconds after the program counter value has been 



sent to memory, the memory will respond with the instruction and the instruction will 

end up in the instruction register. 

The next thing that can be done is the program counter can be incremented and that is not 

going to take much time therefore, I show it by a very small interval on the timeline. This 

could be that one nanosecond as well as the instruction being decoded. So, both of these 

might happen in this much amount of time. So, the way you should look at this, is this 

small time interval, may be about 100, the time interval to its left.  

What happens next is the instruction at the end of this point in time the instruction has 

been understood. Therefore, it operands can be fetched. Now, for each of its operand 

given at this is a CISC instruction set, they may be the need to calculate its address. Each 

of the operands might is a memory operand and it is possible that the operand has to be, 

address has to be calculated using a base-displacement addition. So, there is this small 

amount of time to do the operand one. In other words, the first source operands address 

calculation that might be the amount of time to do an addition of base register value plus 

displacement. And it might take that much time because its approximately the amount of 

time to do a signed integer addition. 

 Subsequently that address can be sent to memory and memory will respond with the 

value of the first source operand. So, that is that 100 nanosecond time interval that we 

talked about. The same thing will happen with the second source operand. So, its address 

will have to be calculated. It too might be specified in base-displacement addressing 

mode. A long time in which the operand is fetched once again the hundred nanoseconds 

for the memory to respond, then there is at this yeah then the operation itself will happen. 

If this was an add instruction then amount of time do the add, which is a small amount of 

time, because it is happening at its CPU speed. Subsequently, the result will be written 

back to the destination and once again the destination is in memory. Therefore, it takes a 

large amount of time. 

So, just remember this is a timeline, which is drawn assuming that we have about two 

orders of magnitude difference in the speed of the processor and the memory. That factor 

of a hundred; one nanosecond versus hundred nanoseconds that I have just referred to. 

So, this is approximately what the previous outline would mean in terms of the sequence 

of events on a timeline.  
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We could draw something similar for RISC scenario. In the RISC scenario, the base 

assumption would be the timeline (( )), I am showing the timeline much small. But the 

base assumption would be that the less it is a load or store instruction, the operands 

would be coming out of registers. 

And that the only situation in the execution of an instruction where memory would be 

involved, would be in fetching the instruction from memory in the first place. Therefore, 

here we are considering something like an ADD R 1 R 2 R 3 RISC instruction. So, 

associated with the operands there is no need for any memory operation, but associated 

with fetching the instruction, there is a need for memory operation and therefore, the 

sequence of events would initially look very much like they did for the CISC instructions 

machine. In other words, in the beginning the program counter value does have to be sent 

to memory and memory will respond a 100 nanoseconds later with instruction, but 

subsequently, the instruction can be the program counter can be incremented and the 

instruction can be decoded at processor speed, very small amount of time. The operand 

address calculation can be done. In this case, the operand address calculation is actually 

done as part of the decode, just determining that the first source operand is R 2, and 

reading R 2 out of the register file, which may take about this much file ( Refer Slide 

Time: 36:31).  



So, instead of calling this address calculation, I might call it as operand one, operand 

fetch. In other words, the amount of time that it takes to read the value of register R 2. 

So, this interval of time would not be necessary. Let me just quickly correct this. So, just 

forget about this interval of time. This is not necessary. So, shortly after operand one has 

been fetched, which will happen over here. Operand 2 will be fetched, which will happen 

somewhere over here. So, just ignore that large graph that is a mistake and very soon 

after the operation will be done. 

So, in effect, when I look at the timeline, I will redraw the timeline over here. We started 

off with a large interval of time for fetching the instruction from memory. After that 

there was a small interval of time for fetching, for incrementing the program counter and 

decoding the instruction. The small interval of time for fetching R 2, a small interval of 

time for fetching R 3, possibly. A small interval of time for doing the operation, and then 

a small interval of time for writing the destination register R 1. As suppose to the CISC 

timeline which looked well beyond the edge of the screen. 

So, just to compare the two, even with this error in this particular diagram, the amount of 

time to execute the one RISC instruction was much smaller than the amount of time to 

execute that very complicated CISC instruction, which gives us a little bit of an idea 

about why the RISC instructions set is, as I had indicated is little bit more popular than 

CISC instruction sets today. Let us just think about this a little bit more. The only way to 

think about this is to actually look at some pieces of code or piece of code, which is 

written both in the RISC and in the CISC instruction set and trying to see what happens, 

because from these timelines all that we can understand is that we might expect that the 

amount of time to execute a simple RISC instruction could be much less than the amount 

of time to execute a complex CISC instruction that is largely dominated by the need to 

access memory multiple times, but could be due to other factors as well. 
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So, as a quicker side, let us just look at a small code segment and try to look at the CISC 

versus RISC equivalents, in terms of what might the result of compilation of the code 

segment might be. I am taking a somewhat odd example. Here, we have 2 C instructions, 

which relate to operations on an array A and an array B. The first instruction is adding 

the ith element, the first statement is adding the ith element of A to the ith element of B, 

and making that the new value of the ith element of A. As the side effect it increments 

the index into A. It increments the variable I and I plus plus, the second instruction takes 

the Bth element, the ith element of B, subtracts one from it. Decrements the index I and 

makes this the new value of B ( i ).  

So, sum 2 instructions I am sorry sum two statements. Now, in a RISC instruction set, as 

you will imagine there is the need to load each of the operands. In other words, A ( i) 

will have to be loaded into a register, B ( i ) will have to be loaded into a register. After 

that the addition can be done, after that the result can be stored into A ( i ) and so on. So, 

we expect that each of these references to an array element will cause either a load, if it 

is on the right hand side or a store if it is on the left hand side, instruction to be generated 

in the case of the RISC instruction set. 

And briefly, the net result might look something like this (Refer Slide Time: 40:25). Two 

load instructions corresponding to the references to A ( i ) and B ( i ) in the right hand 

side of the first statement. Then there is the ADD corresponding to the add of those two 



values. After this, there is a store corresponding to the storing into A ( i ) and other store 

corresponding to the storing into B ( i ), and the updating of the values of, well in this 

particular case, the values of the array (( )). So, this may not be entirely necessary, but 

some sequence of instructions, as you would quickly understand. Whereas, in the case of 

the CISC instruction set, as I indicated, if each of the instructions can have multiple 

Memory operands, then the first instruction might just be an add, and over here, we have 

the notation that we had used for post increment addressing mode (Refer Slide Time: 

41:24) and the post increment addressing mode might be useful for the i plus plus 

operation over here. 

Similarly, the post decrement addressing mode might be useful for this i minus minus 

addressing mode over here. The net effect in spirit is that there may be very few 

instructions that have to be executed in order to achieve these two statements in a CISC 

instruction set. So, in the previous slide, we had seen that the amount of time to execute a 

single RISC instruction is going to be much less than the amount of time to execute 

single CISC instruction. But we now learn that if you look at the piece of code, C code, it 

might compile into much larger number of instructions in RISC instruction set, then 

instruction in a CISC instruction set. Therefore, the question of which of these two kinds 

of architectures will cause the program to run faster still remains open, less time per 

instruction, but no instructions for RISC more time to instruction, but less instructions 

for CISC. 

So, just give us some idea of where this is heading. In this particular example, there are 8 

instructions, as far as the RISC equivalent is concerned. They are only 2 instructions as 

far as the CISC equivalent is concerned, but I will point you to another attribute of these 

2 pieces of code which is the number of memory access is involved in each of these 

species of code. Now, in the case of the CISC instruction set there are 2 loads, and 2 

stores, so that there are 4 memory operations involved. In the case of the CISC 

instruction set there are 1, 2, 3, 4, 5 memory operands, which are involved in this piece 

of code. In other words 5 memory accesses which have to happen in addition to the 

instruction fetch. 

And therefore, it is not entirely clear which of these will result in a faster program. Many 

more instructions for the RISC, but fewer memory accesses as far as data is concerned. 

So, that is why people often talk about the RISC versus CISC debate, and we would not 



delve into that, but for the purpose of simplicity of our examples, we will from this point 

on not talk about CISC any more, we will exclusively talk assuming that with dealing 

with a RISC instruction set and a RISC implementation of the instruction set or RISC 

implementation of the instruction set.  
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Our next subjective is to understand more about what happens when the instruction is 

executed, in terms of what kind of hardware will be associated with that, and what kinds 

of properties we can expect that hardware to show. We do need this understanding 

because we want to understand adequately what happens inside the hardware, inside the 

software when our program executes. So, I am going to make some assumptions at this 

point. These assumptions we stand pretty much for the reminder of the course.  

Now, for the first assumption which we will make is that in the implementation of the 

hardware, wherever possible, if there are two activities they can be done simultaneously, 

in other words, overlapped in time, in other words happening at the same time; then we 

will assume that the implementation of the hardware will do that.  

So, if activity can be overlapped in time. In other words done at the same time, then we 

will assume that is done. Please consider a simple possibility. Now, we saw in our 

description of the steps involved in execution of an instruction, we saw that in the very 

first major step may be you are trying to fetch the instruction from memory instruction; 



the program counter value was send to the main memory. Memory responded by 

providing the instruction and then the program counter was incremented. 

So, the question is it possible to do the incrementing of the program counter and the 

fetching of the instruction from memory at the same time? In other words, can these two 

activities be overlapped in time? Until now, when we do the timeline we were showing 

all the activities is happening one after the other, the timeline progressed to the right. If I 

can overlap two things in time then instead of the sequence of events taking four, if two 

of them can be overlapped in time then they will happen at the same time and therefore, 

the amount of time for that sequence of steps will be reduced. Therefore, this is actually 

a very important issue whether activities can be overlapped in time. 

So, can be operation in the memory and the incrementing of the program counter happen 

overlapped in time? So, I end this with a question mark. Because, they cannot be entirely 

overlapped in time, in the sense that we know that the fetching of the instruction from 

memory starts by reading the value of the program counter and sending it to memory. 

And the incrementing of the program counter involves modifying program counter value 

and therefore, the incrementing of the program counter causes the increment to happen 

before the addresses gone to the memory then the overlap cannot be done safely. 

The two operations cannot be initiated at the same time. But we know that the amount of 

time to do an increment, incrementing by 4, in order to do the increment, the value of the 

program counter will have to be read and then 4 will have to be add to it. And at the time 

that the value in the program counter is being read, it can be used both for incrementing 

or adding 4 to it and for sending to the main memory. 

So, the sending of the address to the main memory can be done with the same read from 

the program counter and therefore, it is the case these two can be safely overlapped. 

There will actually no risk involved. Let me just look at one more example. In the second 

stage of the instruction processing, there was a need to fully understand the instruction, 

which I described as instruction decode and subsequently the operands had to be fetched. 

But there is a possibility that one of the operands is a memory operand for such as in the 

case of a load or stored RISC instruction. 



In this case, an address calculation would have to be done, adding the contents of the 

base register to the displacement from the instruction. So, can the understanding of the 

instruction happen in parallel with the competition of the effective address? Now, we 

note that what it means by understanding of the instruction, which is examination of the 

instruction while it is inside the instruction register. In order to calculate the effective 

address of the operand, the fields of the instruction are necessary. In other words, the 

identity of the base register, the value of the displacement and those are likely to be read 

from the instruction at the same time that the instruction is being decoded. Therefore, 

both of these activities are using the instruction as it resides in the instruction register and 

it does not conflict with each other. Neither of them modifies the instruction as it reside 

resides the instruction register. 

And therefore, once again these two activities can safely be overlapped if so desire. So, 

in each case where the person, who is building the hardware, has to make a decision 

about how soon he can initiate the next step, these kinds of questions have to be asked, 

but, we will always make an assumption of possibility of overlapping operations if in our 

mind they will seem to be independent of each other, and by doing this, we will 

hopefully have an implementation of the processor, which is faster than the otherwise be. 

Now, second assumption that will make is going to assume that we have a RISC 

instruction set, which is load store. In other words, the only instructions they take 

memory operands a load or store instructions. 

We are not going to talk about CISC instructions sets at all, in terms of studying the 

instruction processing, the implementation of the hardware. Now, another somewhat that 

assumes that will make is that we will assume that main memory delays are not typically 

seen by the processor. Now, this is a significant assumption, and may not be a realistic 

assumption, because main memory delays are significant. Main memory, as we have 

seen, could be a 100 times slower than the processor and even to fetch an instruction 

from memory into the processor is going to take that amount of time. 

Therefore, this assumption seems to be unrealistic. Let me just point out that if we do not 

make this assumption then as we have seen the timelines are going to be dominated by 

the memory delays and therefore, talking about how fast a processor could become point 

less. Ultimately, everything will be decided by how fast the memory is. The timeline for 



CISC and in fact, even the timeline for RISC was dominated by the 100 nanoseconds 

they did to take to fetch the instruction from memory. 

Therefore, this turns out is an important assumption that we must make and that raises 

the question of why make an assumption? The assumption might be important for the 

speed of the efficiency of our ideas. If it not realistic, how can you make such an 

assumption? Fortunately, it is a realistic assumption. We are not going to see how for the 

movement, but I will just state that if we assume that there is some kind of a hardware 

mechanism through which most memory access requests can be satisfied the processor 

speeds. Note the word, most. We do not need a guarantee that all the memory access 

requests are satisfied at their processor speeds. 

Then this assumption turns out to be more or less ok, because the assumption must that 

main memory delays are not typically seen and that relates to our most over here. So, for 

example, if we have some kind of an idea that 95 percent of the time memory request can 

be satisfied their processor speeds, then the assumption is actually to some extent 

justified and therefore realistic and therefore justified. 

Now, the name of the hardware mechanism, which is going to make this possible, is 

cache memory and we will be studying more about cache memory later. But, we now 

understand why there was a box labeled cache as C A C H E. I will pronounce that as 

cache inside our block diagram further A L U. Right one of the two blocks, which I had 

added in one of the earlier lectures inside the not inside the A L U, but inside the 

processor was a box labeled C A C H E or cache and we now realize that it is a very 

important and integral part of the processor, which makes this set of assumptions 

possible, reasonable for us to make.  

Now, at this point, we are ready to start looking at the implementation of the hardware 

inside a processor, and we will be continuing with these three assumptions, and we start 

looking at what kind of simple hardware and what module of the hardware that might be 

present in the processor, will give us a good enough understanding of how this steps in 

the execution of an instruction would be achieved towards a better understanding of how 

a program executes. 

Thank You. 


