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Review of Basic Probability I:

Welcome to the course Discrete Time Markov Chain and Poisson Process. So, this is a
MOOC NPTEL course, and duration of the course will be about 8 weeks. So, more or less,
we will have at least 20 hours of lecture material for the course. And, this is the first lecture
of the course.

We, myself Ayon Ganguly and Dr. Subhamay Saha are the instructors. I will teach
the first part of the course, whereas the second part of the course will be taught by Dr.
Subhamay Saha.

So, let us see the syllabus of the course. Brief syllabus of the course is as follows: we will
start with a review of basic probability. Which is basically some formulas and definitions
we are going to discuss. And then we will go quickly through this process because this is
a review, is a recap. So, we will go quickly and then we will enter to the main part of this
course. So, main part of the course started from the second point which is the discrete-time
Markov chain, then we proceed to exponential distribution, and finally, we will conclude this
course with Poisson processes. So, in discrete-time Markov chain, we will spend a lot of a
time and then gradually we will proceed to other parts.

So, as I mentioned, I will start with a review of basic probability. And as I already
mentioned that I will go little quick during this review part and as we entered into the main
part of this course, we will reduce our pace.

So, let us start with review of probability. So, let us start with the concept of countable
set. So, what is countable set, in Lehmans point of view it is nothing but a set where the
elements I can count. For example, if I take the collection of all the students of this class,
I can count. This is the first students, second student, third student, fourth student and so
on. So that collection or the set of all the students of the class is a countable set. So, that is
basically the intuitive idea behind the countable set whether I can count the element or not.
On the other hand, if I think of the interval [0, 1], then this is not a countable set because I
cannot count the elements in the interval 0 and 1. All the real numbers in the interval 0 and
1 I cannot count. So, intuitive idea of the countable set is as follows that, if I can count the
number of items in the inner set, we will call it is a countable set. If not, will not, we will
call it as the uncountable set. So, let us talk about the mathematical definition of countable
set now. So, most of the time I will write it is at most countable set to signify the fact that
there are two possibility in that. So, what is the basic definition? Definition goes like that,
if I am talking about the set S, if I have a mapping from the set S → {1, 2, ..., N} for some
value of N or some positive integer N or if I have a mapping from S to set of all-natural
numbers, so if any of this thing happens, we say that the set is at most countable. So, if I
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can find out a bijection from S to this set where the first set where this N is basically a finite,
a positive integer, and if, or if I have a bijection from S to set of all natural numbers, we say
the set S is at most countable. In the first case when I have a mapping S → {1, 2, ..., N} in
this case this set is called finite set, because in this case I have, finite number of points in
S. And in the second case when I have a mapping, I have a bijection from S to N, the set
of natural numbers, then we call it a countably infinite set. So, in these two parts they are
in the at most countable set. So, at most countable sets basically includes finite set as well
as countably infinite sets. And, that countable set has a lot of use in probability as well as
in Markov chain, in stochastic processes. So, that is why I start with this basic definition.
And as I mentioned that, intuitively this means that I can count the element of the set. So,
let us proceed.

So, next point is basically the axiomatic definition of probability. So, all of us know
the classical definition of probability. And classical definition of the probability goes like
this. It is nothing but the favorable number of cases divided by total number of cases. So,
if I try to find out the probability of a set A then it is nothing but number of favorable
cases to the set A divided by total number of cases that may be possible. So, that is
basically the classical definition but we further find out that there are some problem in case
of the classical definitions. So, people go for more general definition and which is called
the axiomatic definition. In case of the axiomatic definition, we try to define probability
as a function. Now, suppose you say that when I am trying to define a function, I have
to define its domain properly. Domain as well as codomain are two very important thing
when we try to define our probability or when I try to define any function. Now, if I try to
define our probability as a function, then of course domain is important in this case also.
So, first we will talk about the domain of the probability function and then I will go to
the axiomatic definition of the probability function. So, now to give you the definition of
domain, let us start with a Ω which is a non-empty set, and this Ω is basically nothing but,
you see that, we generally use probability to model some random experiment. So, having a
experiment where the all possible outcomes are known to me, but in particular, the outcome
of a particular trial or particular performance of the experiment is not known to me. So,
that kind of experiments are called random experiment and normally we will use probability
to model the uncertainty of that kind of experiments. So, this Ω you can think of as the
all possible outcomes of random experiment. So, Ω you can think of a all possible outcome
of a random experiment and then over omega we try to define something which is called
σ-field or σ algebra, which is basically nothing but will be used as the domain of probability
function. So, now let us talk about that what is the domain of probability function. So, we
take a collection of subsets of Ω, probabilities are basically defined for a set, so I take the
subset of Ω and I put them in F, but all the subsets may not be in Ω, so I take a collection
of subsets of Ω in the collection F or F , we say the σ-field or σ algebra has to satisfy these
three points. So, if the collection, F satisfy these three points, then we call the collection
as a σ-field or σ algebra. So, what are these three points? First point is that the null set
has to belong to F that is the first point. Then the second point is that, if A belongs to F ,
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then A complement has to belong to F . And the final point is that, if I have a sequence of
set from F , if I have a countable sequence of set from F , then if I take the union of all the
sets, it has to belong to F . So, what are the intuition behind these three points? Intuition
is as follows. See, first point says that ∅ has to belong to F. So, ∅ belongs to F that means
empty set belongs to F and the intuition is very clear. We know from our classical definition
that probability of ∅ has to be 0. So, that means we try to define probability of ∅. And if
we try to define probability of ∅, ∅ has to be in the domain. So, we keep ∅ in the domain.
Then again from the classical probability we know that if I know the probability of a set A,
then we also know the probability of A complement which is 1− P(A). So, clearly if A is in
the domain, A complement has to be in the domain. So that actually talk about the second
condition. Now, come to the third condition. Third condition basically comes from the fact
that if I know the probability of different sets, then I should know probability of all of them
occurring together. And, that means, if all the Ai ∈ F , that means I know the probability
of Ai’s because they are in domain, so I can find the probability of Ai. And in that case,
I should know all of them together that basically mean, union of all of them either this or
that kind of thing, and that basically mean that I should know the probability of union of Ai
and so ∪Ai ∈ F . So, these are basically the three points, three conditions that a collection
of F of subsets of Ω has to satisfy to become F to be a σ-field or σ algebra. And now,
we are going to define probability as a function and where the domain of the function is F .
So, we define like that a function P defined on F to positive part of the real line is called
a probability if two conditions are satisfied. The first condition is that probability of Ω has
to be 1. And you see that Ω has to belong to F . The reason is basically first two condition
here, because ∅ belongs to F . And if ∅ belongs to F , then ∅ complement has to belong to F
and ∅ complement is nothing but Ω. So, Ω belongs to F and I can talk about the probability
of Ω, and in this case, if P is a probability function, then P of Ω has to be 1. And the second
condition is that if I have a sequence of disjoint sets in F , then P(∩Ai) =

∑
P(Ai). So, if

I have a sequence of disjoint sets that means if I have countable number of disjoint sets in
F , then P(∩Ai) =

∑
P(Ai). And you will see that the range is from 1 to infinity in both

the case. So, basically, a function defined on F will be probability function it satisfies three
conditions; one is that it has to be greater than equals to 0, second is that probability of
∅ has to be 0, probability of Ω has to be 1, and final thing is that if I take a sequence of
disjoint sets, then probability of union is same as summation of the probabilities. So, that
is basically the definition of probability.

Now, let us move on probability space. In the previous slide, we have concept of three
things; one of them is Ω, which is a non-empty set, then a σ-field F , and then a probability
function P. So, if I consider these three things together, this triplet, this triplet is called
probability space. So, that some name is given to this triplet and the name is that it is
called probability space. So, what this mean in practice? As I mentioned that normally we
use probability to model a random experiment. And in that point of view, Ω is nothing but
the collection of all possible outcomes of a random experiment. And sometimes this Ω is
called sample space. For example, if I am tossing a coin, so if I toss a coin, I know either
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head or tail will come. So, in this case, Ω must be equals to either head or tail, all possible
outcome of a random experiment. If I am tossing a coin till I get the first head then Ω
will change and Ω turns out to be head, if it comes in the first toss, it is the head, if first
tail comes and then head comes, so head tail head, then maybe two tail comes and then
one head and so on and so forth. So, notice that in the first example I have a finite set,
but the second example I have a infinite set, though it is a countable, but it is a countably
infinite set. So, Ω is basically collection of all the outcomes of a random experiment. So,
it is called a sample space. Then F is basically collection of all possible events in this case
and P is basically the probability which basically model the chance of occurrence of those
events. So, it basically model the chance of occurrence of events which belongs to F . So,
that is basically the practical meaning of the probability or probability space. The first one
is collection of all possible outcome of a random experiment. The next one is the collection
of all the events on which I try to define my probability and probability, as you know, it is
nothing but the chance of occurrence of events in F . So, that is basically the probability
space.

And now let us see another very, very important topics in probability, which is called
the conditional probability. And I know that all of you have an idea of the conditional
probability. So conditional probability basically mean that, if I have some information in
hand and under the information I try to find out what is the probability of some event.
So, in those cases, we use the conditional probability and the definition of the conditional
probability goes like this. So, we know that the definition of the conditional probability
given by this. This is nothing but the fact that, well, I have the information that H has
already been occurred and now I try to find out what is the probability that A occur. So,
that notationally we will write in this form that, P(A|H) and that conditional probability is

given by P(A∩H)
P(H)

. Now, you see that we know that when I am dividing a number by another

number, then the denominator has to be positive otherwise the ratio is not defined. So, in
this case, if I try to define the conditional probability, I have to have that probability of
H has to be greater than 0. So, the P(A|H) is only defined if the P(H) is strictly greater

than 0 and in that case for a arbitrary event A, the P(A|H) is defined by P(A∩H)
P(H)

. So, now

come to the concept of mutually exclusive and exhaustive events. This concept will be very,
very useful in the next point. So, what is the mutually exclusive means? Mutually exclusive
means that, if I have a collection of events E1, E2, ..., and if I take any two events from here
Ei and Ej such that i 6= j and if I take the E1∩E2, if this is ∅, then we will call the collection
of events E1, E2, ... is mutually exclusive. So, mutually exclusive means that if I take any
two events from the collection, they have to be disjoint. So, a collection of events E1, E2, ...
is said to be mutually exclusive if E1 ∩ E2 = ∅ for all i 6= j. Now, what is exhaustive?
Exhaustive basically mean that, if I have this collection and if I take the union of all the sets
in the collection and if the union is equals to the Ω, the sample space, then we call that the
collection is exhaustive. So, we have two concept. One is mutually exclusive, which basically
mean that all the events in the collection are disjoint. And then we have another concept
which is exhaustive, which basically mean that the collection actually covers the whole Ω,
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whole sample space is being covered by the collection of events. So, now we have the next
theorem, which is a very, very well known and very, very useful theorem in probability which
is called the theorem of total probability. So, what does theorem of total probability says?
Theorem of total probabilities goes like that. Suppose I have a collection of events and this
is mutually exclusive and exhaustive, that means if I take the intersection, it will be ∅ and if
I take the union that union will be Ω, with the fact that P(Ei) > 0 for all i, then if I take any
event E, the P(E) can be written in this particular form and this form actually can be also
written in this way also that it is basically same as

∑
i P(Ei∩E). So, that diagrammatically

things are quite simple. So, basically suppose I have E is basically the set. And I have the
partition of this one so that are basically my Eis. So, this is E1, this is E2, this is E3, this
is E4 and finally this one is E5. So, suppose I have these events E1, E2, E3, E4, E5, and then
basically this statement says that to find out the P(E), I will calculate the P(E) along with
several different parts and then I add them up. So, that is why this is called the theorem of
total probability that I find out the partwise probability and then add them up to find out
the final probability. And you see that when I am writing this probability in this manner, I
actually do not need this one, this particular event to be true. But when I am writing this
in probability of the intersection in terms of the conditional probability, then of course this
condition has to be true, otherwise, I cannot define this conditional probability. So, that is
basically the idea or basically the intuitive thing of the theorem of total probability that,
to find out the probability of a, of an event I can see the mutually exclusive and exhaustive
events in that Ω and then basically I will find out the probability of each part and then I
will add them up to find out the final probability. So, let us proceed.

The next thing is that random variable. And as you know that random variable is very,
very important thing in probability and we will see that this is also very, very important
in stochastic process, in Markov chain, in Poisson process everywhere this is very, very
important thing. So, now, let us talk about random variable. So, what is random variable?
Random variable is basically a function of Ω, function X : Ω→ R. And before going further
into it, please keep this thing in mind that this is a partial definition of random variable.
But for our course, this definition we will take, because this is a preliminary course. And to
know the complete definition of the random variable I suggest you to go for advance course
in probability. So, for our course, the definition of the random variable is it is a function
from Ω to R. Now, the question is that, why we talk about random variable. The first point
is that, say most of the cases when we talk about some random experiment, the outcomes
are some numerical values. For example, if I talk about heights of the students of some
class, that is a numerical value. If I talk about weight of the students of the class, that is
a numerical value. If I talk about income of households of India, then that is a numerical
value. If I talk about air pollution in a particular region, that is also a numerical value. So,
most of the cases when we talk about some random experiment, we say that we finally talk
about some numerical values. So that means X, random variable is a meaningful thing in
this case. Another point is that, in some cases, of course, Ω is, the outcome of the experiment
are not directly numerical values. For example, if I take Ω to be head and tail that I toss a
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coin, the random experiment is a tossing a coin, and then in that case basically Ω is consists
of head and tail. And in this case of course outcomes are not numerical values. But I can
define a function X from Ω to R such that X of head is equals to 1 and here X of tail is
equals to 0. Now, I have a function from Ω to R, so Ω is mapped to R, and I have a random
variable. So, this way I can map a arbitrary Ω to real line and once I map it to real line
I have a function and that function is basically our random variable. Now, second benefit
of the random variable is as follows that we know a sophisticated tool to analyze real line
which is basically our real analysis. So, if I have a mapping from arbitrary Ω to R, then I
can use all such sophisticated tools of real analysis to analyze the probability structure to
analyze the relationship between several random variables using those real analysis stuffs,
real analysis tools. So, that twofold benefit we have if we talk about random variables,
and that is why the random variable is very, very important in probability, in stochastic
processes, in statistics and in many fields of research, many field of practical uses. So, now,
let us go to the next concept, in case of the random variable which is a very, very important
thing which is called Cumulative Distribution Function or in short CDF. Sometime we will
also call the Cumulative Distribution Function as distribution function. So, we will call it
Cumulative Distribution Function or distribution function and say in short CDF or either
DF. So, what is the definition of CDF? The definition of the CDF goes like this. It is nothing
but a function F which maps R to the interval [0, 1], and the function definition is like that
F (x) = P(X ≤ x). So, the distribution function at the point small x is nothing but the
probability that the random variable takes values less than or equals to small x. So, it is
basically if this is my point x it is the probability of this side. The distribution function
is the probability of the side including the point x. The point x is included there. Now,
if I have a distribution function or cumulative distribution function it is going to satisfy
these three conditions. So, what are these conditions? F is non-decreasing, that is obvious,
because if I increase my x from this to that side, the probability will also, will not decrease.
So, that is why this F has to be a non-decreasing function. F has to be right continuous
function. And finally, if I take x → −∞, then the limit of F (x), the CDF is 0. And if I
take x → +∞, then the limit of the CDF is 1. And this is very intuitive from this graph,
because if x → −∞ that means this point actually goes to the side. When this point goes
this side that means nothing will be covered in the limiting sense so the probability is 0,
and when x→ +∞ this is basically goes to −∞ and x goes to +∞ basically mean that this
point goes decide and when it goes this side whole R will be covered and so the whole Ω
will be covered, finally, I have probability 1. So, these points are quite intuitive from the
definition of the cumulative distribution function. One point I should mention here is that,
see, if I have a CDF then these three properties has to be true. On the other hand, if any
function satisfies these three properties, then that function has to be a CDF of some random
variable. So, this is kind of a if and only if condition. If I have a CDF, then it has to satisfy
these three conditions. If I have any function which satisfy these three conditions, then that
function has to be a CDF of some random variable. This point is very useful because you
see that this basically can be written as P(X = x) is same as F (x) − F (x−). And what is
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x−? x− is basically left-hand side limit. So, here we have seen that F is right continuous,
so F is right continuous as well as F is non-decreasing. So, that too actually tells us that
F can have only jump discontinuity. These two points that F is non-decreasing and F is
right continuous these two together tells us that F can have only jump discontinuity. And
in this case the jump discontinuity will come from left hand side. So, this one basically tells
us that, if I try to find out the probability that is P(X = x), then that is nothing but the
amount of jump, the distance of jump at the point small x. So, if the distribution function
is continuous at the point small x, then this probability has to be 0. If the distribution
function is not continuous, I have a jump from the left side, then the length of the jump is
basically the P(X = x). So, that shows that if I know the distribution function, I can find
out what is the P(X = x). Let us proceed to the next slide.

So, next slide talk about discrete random variable. So, this is a classification of random
variable. And in this course we are going to see mainly two classification, one is discrete
random variable, another is continuous random variable. And intuitively speaking the dis-
crete random variable means that when the random variable can take discrete values, like if
I talk about marks of the students and, if the marks are given in integer values only, then
marks of the students, is a discrete random variable, because it takes the discrete values.
On the other hand, the continuous random variable means that it takes continuous values.
For example, if I am talking about the weight of a student, the weight can take any value
maybe in some range. So, that means, weight is a, the random variable, in this case, it
takes some continuous values. So, that is a continuous random variable. So, this is basically
the intuition behind the discrete random variable and continuous random variable. Now, let
us see the mathematical definition. So, the mathematical definition of the discrete random
variable goes like this. If I have a atmost countable set S ⊂ R, so S is a subset of R here, if
I have a atmost countable set S such that P(X ∈ S) equals to 1, then we call it is a discrete
random variable and the corresponding distribution we call the discrete distribution. So,
the definition goes like that. A random variable X is said to have a discrete distribution if
there exist an atmost countable set S such that P(X ∈ S) equals to 1. So, in the previous
case when we talk about that head and tail thing and if I map it to 0 and 1, if I take S
equals to 0 and 1, then P(X ∈ S) equals to 1. So that random variable is a discrete random
variable. And in case of the discrete random variable we define a function F which is nothing
but P(X = x) and that one is called probability mass function or PMF. And then using the
PMF I can define the CDF of a discrete random variable which is nothing but you need to
take the sum up to the point x. You need to take the sum of PMF up to the point x. And
finally, I give here is a definition of a function which is a basically PMF and it will have some
use in stochastic processes so that is why this definition is given here. It is basically nothing
but called Kronecker delta which basically means that for some real number c this function
takes value 1 if x is same as c, otherwise it is 0. And this is basically a PMF of a random
variable X which takes constant value c. So, P(X = c) equals to 1 that random variable has
this PDF. So, this notation we will going to use later. So, keep this thing in mind and it is
called Kronecker delta.
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Now, continuous random variable. The definition of the continuous random variable goes
like this. If I can find out a non-negative function f such that

∫ x

−∞ f(u)du is same as the
CDF for all x then we call the corresponding random variable has continuous distribution.
And just keep in mind that this x is here. So, whatever x value I take here, that will come
in the upper bound of the integration and it has to be true for all x ∈ R. So, the definition
goes like that. A random variable X said to have continuous distribution if there exists a
non-negative function f on R such that F (x) =

∫ x

−∞ f(u)du. And in this case this function is
called PDF that is Probability Density Function. This function is called Probability Density
Function. And of course, because I can write the CDF as an integration, the CDF has to be
continuous in this case. And because CDF is continuous the P(X = x) will be equals to 0 for
all x belongs to R. So, this is basically the continuous random variable. Just keep one thing
in mind, see that PDF, Probability Density Function is only defined for a continuous random
variable whereas probability mass function is only defined for discrete random variable. So,
probability density is only for continuous variable and it is not defined for discrete random
variable. Similarly, probability mass function is only defined for discrete random variable
and not for continuous random variable.

Now, we will go for the expectation. The expectation is basically kind of average. It is the
average of all possible values that can be taken by a random variable. So, expectation for a
discrete random variable is defined by this particular formula that expectation of x is same
as summation value of x multiplied by the PMF. And you just keep in mind the PMF is
basically the probability. So, it is basically (X = x) and (X ∈ S). So, this is the expectation
provided by that if this condition is true. Why this condition is kept? This condition is kept
here so that this summation is finite. And so, I have this definition that expectation of a
discrete random variable X is defined by this provided this one is finite. If this condition
is not true, we call that the expectation do not exist or expectation is infinite. For the
continuous random variable what we have. We basically need to replace the summation
with a integration sign. So, for a continuous random variable with PDF f, the expectation
is defined by E(X =)

∫∞
−∞ xf(u)du. And in this case this condition has to be true. Again,

this condition is kept so that the expectation is finite. And in this case also if the condition
is not true we say that the expectation do not exist or expectation is infinite. So, with that,
I stop in this particular lecture. In the next couple of lecture, we will see some more review
of probability. Thank you for listening.


