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Welcome to the 14th lecture of the course Discrete-Time Markov chains and Poisson pro-

cesses. Recall that in the last lecture, we have talked about what is called recurrent state

and what is called transient state and to define those recurrent state or transient state we

need what is called first passage time. It defines first passage time which basically means

that after the time 0, times 0 is excluded when the chain will visit for the first time the

state i. And then if the probability of visiting the state i in finite time for the first time

given the chain is starting at the state i is 1 we call such states as a recurrent state if it is

strictly less than 1 we call such states as this transient state. And then we talked about

the fact that or in case of the recurrent state that basically means that if i is recurrent

then starting from i, I will come back to the state i again and again again and again. And

it was a basically if and only if condition that i is recurrent if and only if the probability

starting from i, Xn = i for infinitely many n is 1. So, I will visit the state i again and again

starting from i if i is recurrent, on the other hand, if it happens that starting from i, I am

keep on visiting the state i after sometime then i has to be recurrent. Those things we have

seen then we talked about what is called kth passage time which is nothing but after time

0 when the time at which the chain is visited the state i for kth time. And then we have

defined what is called the length of the excursion which is nothing but the time difference

between two consecutive visits to the state i and we see what is the distribution of Si, what

is the distribution of S
(k)
i that we have seen. With that, we start with today’s lecture and

today’s lecture, we are going to talk about what is called number of visits.

Number of visits is just what is basically mean that how many times the chain is visited

some state. Definition goes like that for a state i, we define the number of visits to state i

by this particular quantity just recall that we define δi(x) to be 1 x = i and it is 0 otherwise,

that means that number of times Xn = i occur. So, I am taking the collection of all possible

values of {n ≥ 0 : Xn = i} and I am taking the cardinality of that set that is basically

this one. That basically means number of times the chain entered into the state i that is

basically nothing but our Vi and Vi is called number of visits to the state i.



Now, what we are going to see is that what is the distribution of Vi, the distribution of

Vi is given here, which is basically that for k = 0, 1, 2, · · · . The probability that (Vi > k) is

given by fki and this is a conditional probability. So, this probability as we know it is nothing

but probability that (Vi > k), that starting from X0 = i that is basically fki and what is

fi?. fi is nothing but probability that starting from i, what is the probability of Xi < ∞.

Recall that, when we define that recurrence and transients in terms of fi, if fi = 1 we call

i to be recurrent, if fi is strictly less than 1 we call i to be transient. This is basically the

distribution of Vi and notice that if I know this quantity for all values of k, I know all kind of

probability for Vi. For example, I can easily calculate this probability also this probability

is nothing but as follows. Basically if this point is k, then basically what I have to do is that

I have to take probability in this side minus probability at k+1. That means, this is greater

than k− 1 minus probability of V i > k, i.e., Pi(Vi = k) = Pi(Vi > k− 1)−Pi(Vi > k). And

now, the first quantity from here is basically nothing but fk−1i − fki . So, in this way I can

able to find all the probabilities for Vi = k and if I get that I can able to find what is the

probability that Vi = 0 plus probability Vi equals to maybe 100. This now, I can easily find

out the first quantity will be Vi = 0 that basically 0. Because that is basically k start from 1

here. Because I take k = 0 there is a problem. So, I can write this probability as probability

of Vi is I make it 1 because that 0 is basically does not make much sense here. So, I make it

1 and then it is basically nothing but Pi(Vi > 0)−Pi(Vi > 1), this is basically the first part

plus I have the second part that Pi(Vi > 99)−Pi(Vi > 100). So, this way actually I can find

all the probabilities just 1 thing I by mistake, I have written 0 here, but 0 will not be there

because that Vi = 0 does not make any sense in this case, because the thing is that actually,

that probability you can take as 0 because I am starting from i and n = 0 is included here.

So, Vi has to be greater than 0 with probability 1. So, Vi equals to 0 there is no other option

for me, that is there, there is no other option for me. So, this way that my main point

here is that if I know this probability, I can actually all kinds of conditional probabilities

regarding Vi when x0 = i regarding Vi, I can calculate all the conditional probabilities if I

know this particular thing. Now we will go for proof, but to prove this one we are going to

use what is called mathematical induction. I know many of you know what is mathematical

induction, but just recall that or if it is new to anybody, that is for them to introduce to

what is mathematical induction. Let us first discuss what is mathematical induction is, and

then we will proceed to what is the proof of this particular theorem. The mathematical

induction can be stated as follows. Suppose, I want to prove the statement Pn holds for all

n equals to, maybe n = 0, 1, 2, · · · , or sometimes 0 may not be there or 1, 2 may not, or 0,

1 may not be there those kinds of scenario occurs, but I am taking the most general case.

For example, I may think of the statement Pn : 0 + 1 + 2 + · · ·+ n = n(n+1)
2 . The problem



is that I am trying to prove that P (n) is a statement which holds for all possible values

of n. Like Pn could be that statement, I may try to solve that the sum of first n natural

numbers is n(n+1)
2 . So, the way of mathematical induction goes like that we generally show

the step 1 which is called a basis is that to show that P0 is true that basically means, in our

example, P0 is basically nothing but 0 equals 0(0+1)
2 . So, I take n = 0 here and I need to

show this and this is trivially true, in this case. So, the first basis part is that I have to show

that if our n = 0 the statement is true. So, the first point that statement is true whatever

the first one if 0 is not here, if n start from here, then I have to show that this statement

is true for n = 1. So, basis is that at the first point that the initial point the statement is

true, that is that basic, then we go for the induction step. And which is basically to show

as in the induction step, the assumption is that P (k) is true. That basically means that

n = k. We assume that for n = k, the statement is true, we need to show that P (k + 1)

is also true. So, we assume that if n = k the statement is true, we want to show that for

n = k+1 the statement is also true. For our example that basically means that P (k), which

is basically nothing but 0 + 1 + · · · + k = k(k+1)
2 , we assume that this is the assumption.

Now, based on this assumption, we want to show that P (k+ 1) which basically means that

0 + 1 + · · ·+k+ (k+ 1) = (k+1)(k+2)
2 . And how we can show?. First part that note that this

part is basically from our assumption in that induction step this part says that, it has to

be k(k+1)
2 and then I have k+1, I add these 2 and finally, if you add this one to the algebra,

you can easily show that this turns out to be this one and that is that completes the proof.

So, the idea here is that first we will show that P (0) is true, then we assume that P (k) is

true and based on that assumption, we will show that P (k+1) is true. And then I am done

because 0 is true that I can take k equals to 0 and it says that P (k + 1) is true. So, P (1)

is true. Now, if P (1) is true, then using the induction step I can tell P (2) is also true then

because P (2) is true, I can also now show that P (3) is also true and so on so forth. So, that

is basically the idea of induction and to prove this lemma we will basically going to use the

induction so in our case, basically induction means that we will show that for k equals to

0 the statement is true then we assume that this statement is true for k and we will show

that for k + 1 also this statement is true. So, in the Layman’s word that mathematical

induction can be put in this way, suppose I am trying to climb a ladder and the way we

climb is basically step by step we go off. So, mathematical induction basically tells that if I

am in the bottom rung, then basically the basis part is that I am in the bottom rung that

is true I can stand on the bottom rung that is true and then induction step says that if I

am in the kth rung then I can move to the (k + 1)th rung. If these two is true that I can

be on the bottom rung and then if I am in any rung, then I can move to the next rung,

then using the mathematical induction this says that I can climb as high as I want that is



basically the mathematical induction in very Layman’s word. With this understanding, let

us now proceed to the proof of this lemma.

The proof of this lemma goes like that as I already pointed out, we will basically use

the mathematical induction to prove this lemma. Now, the first observation in this lemma

is this one that see that Vi > k what is Vi?. Vi is number of time the chain visits the state

i. So, this part is saying that the Markov chain visits the state i at least k + 1 times. And

so, that obviously true now is that kth passage time has to be finite. If the Markov chain

visits the state i for at least k times then kth passage time has to be finite. That basically

if I for example, if I take k equals to 1 and what I am saying here is that the Markov chain

has visited the state i at least twice that basically mean that this is T
(0)
i then somewhere I

have T
(1)
i and somewhere I have T

(2)
i . And it has visited at least twice that means basically

it may be this or it may be this or if I start from something else, then these two has been

visited. Finally is that that if I take k equals to 1 then this time has to be finite there is

no question about that, this has visited at least twice. So, this time has to be finite there

is no problem I mean that this has to be true. And on the other hand, if this is true that

this one is finite, then the Markov chain has to visit the state i at least twice that means

that Vi has to be greater than 1 that is there. Of course, there one assumption is there

because always I am talking that I am starting from i. So, this observation is true under

the condition that X0 = i these two things are same. So, this is i of course, this is i. So,

Vi is greater than k that means, if k = 2, then Vi is at least 2. So, it has visited here it has

visited here. So, T
(1)
i has to be finite, which is basically this part on the other hand V

(1)
i

is finite that means i is here and then again it has visited the state i here, so, Vi has to be

greater than 1. So, under the condition that X0 = i that Vi greater than k and T
(k)
i <∞,

these two are same events. So, if I try to find out the probability of i here, and probability

of i here they have to be same, because the two events are equal. So, their probabilities will

be equal, but under this condition because these two events are equal under this condition

only. Now, let us go for now induction. First point is the basis point this is the basis that

statement is true for k equals to 0. Why statement is true for k equals to 0?. The reason is

as follows that for k equals to 0 what happens here is that Pi(Vi > 0). Now, as I mentioned

that what is Vi just let us write the definition of Vi here, which is
∑∞

n=0 δi(Xn). So, because

n = 0 is included here and these basically means that Vi > 0 given X0 = i. So, Vi is at

least 1. So, Vi is always greater than 0. So, clearly this is equals to 1. On the other hand, if

you take f0i because fi is the probability is always lies between 0 and 1. So, this quantity is

also 1 and now, I am done and our basis step is true that for k equals to 0 this statement is

correct. Now, we have to assume that for this statement is true for k. That means that we

assume now is that it is true that induction hypothesis is that for k equals to k it is true.



That means Pi(Vi > k) = fki we want to show that Pi(Vi > k + 1) = fk+1
i if based on this

assumption if we can show this one then we are done using the mathematical induction.

I can now claim that this particular statement is true for all values of k = 0, 1, · · · . Let

us try to prove that we assume that at k equals to k this is true, I want to show that for

k+ 1 this statement is true, which is basically given here. Let us go through it how we can

prove that. So, starting from i, Vi > k+ 1 is same as starting from i, T
(k+1)
i <∞ these two

events are same. So, their probability has to be same these two events are same because

of these, but this is basically conditioning on X0 = i and that condition is kept here. So,

these two probabilities are same. Now, this probabilities what? it is basically that I have

T
(0)
i here then T

(1)
i here and so on so, forth I have somewhere T

(k)
i and then I have T

(k+1)
i .

So, it says that T
(k+1)
i is finite that clearly means that T

(0)
i , T

(1)
i , T

(k)
i all of them has to

be finite there is no question about that this is finite means all of them has to be finite.

So, I can write this one as that this one is finite plus this interval this time difference is

finite and this time difference is nothing but fk+1
i . So, this one is finite, and then this time

difference is also finite, which is nothing but Sk+1
i . So, I can write the probability given

X0 = i that T
(k+1)
i is finite is same as conditional probability given that X0 = i, T

(k)
i is

finite and Sk+1
i also finite. And these two events are equivalent event in the sense that if

this one is true, then this one is also true. On the other hand when this one is true, then

this one is also true conditioning on X0 = i. Now, we know that P (A ∩ B) can be written

as P (A|B)P (B). So, in this case take this one as B and this one as A, this is A ∩B which

can be written as P (A|B)P (B). Only thing is that here the condition that X0 = i is there

that I have to keep everywhere, and we have this now, the next second part because of this

assumption, the second part is basically equals to fki because again that second part I can

write as Pi(Vi > k), because these two events are same under the condition that X0 = i.

The next this part is basically same as fki . I have written this one here this probability is

same as fki . Now, I have to find out the first one just recall the distribution of this S
(k)
i

we have pointed out that given that T
(k)
i is finite, the distribution of S

(k+1)
i is same as the

distribution of Ti starting from i. We have proved this thing earlier that this lemma we

have seen in the last lecture that if the distribution starting from i that S
(k+1)
i is equals

to n given that T
(k)
i is finite is same as distribution of starting from i, I have T

(1)
i which

is Ti also is equals to n. This distribution of this one is actually given same as this one it

is basically using the previous lemma I mean last lemma we have discussed in the last last

lecture. Using that we can get this one. Now, it is true for all values of n. So, if I take the

sum over n on both the side that basically mean that this side is nothing but it is basically

all possible values of n so, it is nothing but Pi(S
(k+1)
i < ∞|T (k)

i < ∞). Because if I take

all possible values of n here, so S
(k+1)
i takes all possible value and so, S

(k+1)
i takes value



1, 2, · · · . Finally, that means that S
(k+1)
i takes all finite value. So, S

(k+1)
i < ∞. Similarly,

if I take the sum in this side that turns out to be Pi(T
(1)
i < ∞), because this part is this

one and this probability we have taken to be fi here. That means, the first part of the

probability is fi. So, finally, we get fk+1
i . So, we have shown that under the assumption

that the statement is true for k we have shown that the statement is true for k + 1 also

and that completes the proof using the mathematical induction. So, we have proved that

starting from i, the probability of Vi > k is same as fki , fi is nothing but Pi(Ti < ∞) and

it is true for all values of k = 0, 1, 2, · · · . This is the distribution of Vi.

Now, let us again revisit the transient just recall that in case of the recurrent we have

shown this result. i is recurrent if and only if starting from i, I keep on visiting the chain

keep on visiting the state i throughout the expcursion of the chain throughout that process

of the chain. Throughout the I mean when chain goes to the future times the ith state come

back again and again again and again. That statement we have seen earlier, that basically

means that if a state i is recurrent I will see the state again and again if one state is seen for

seen again and again after some time, then that state is recurrent one. Very Layman’s word

or very loosely speaking that is basically the recurrent state. Now, in case of the transient

the scenario is just opposite is the statement is exactly same here probability statement

only difference is that here it is 0, here it is 1. It says that a state i is transient if and

only if Pi(Xn = i for infinitely many n) = 0 and both of them are necessary and sufficient

conditions that means, if I can able to show that that i is transient then this is true similarly

in this case also if i is recurrent this is true on the other hand if the statement is true then

it has to be recurrent. These two things actually give me the intuitive idea behind transient

and recurrent state; recurrent state when it will keep on visiting but for the transient state

I mean surely I will not visit the state i for infinite number of times that is the statement

means. That means that for transient state after some finite value the state will not be

visited. The proof is very simple. Notice that this statement is basically equivalent to write

the statement that means that number of visit to state i is infinity. Now, this probability

is same as this limit that the reason behind that if you take k goes to infinity that Vi is

greater than any finite thing. That means Vi is infinity, that is why this probability is

same as the this limit of this probability Pi(Vi = ∞) is same as limit k goes to infinity

Pi(Vi > k). Now, because we know that Pi(Vi > k) is same as fki . So, this quantity is same

as limit k goes to infinity fki . And in case of the transient state we know that fi < 1 that

is the definition because fi is nothing but probability Pi(Ti < ∞), and we know in case

of the transient state by definition this quantity is less than 1 that means this limit is 0.

That means that Pi(Xn = i for infinitely many n) = 0. So, the main takeaway from this

corollary and remark is that the intuitive idea behind the rcurrent state and transient state.



Recurrent statement means these will keep on coming after some times but transient state

after some finite time that state will not be visited again.

With that, let us proceed and let us now see another set of necessary and sufficient

condition for recurrent and transient. This is one set of necessary and sufficient condition

for transient. This corollary and this remark another set of necessary and sufficient condition

for recurrence and transients are given here. It says that a state is recurrent if and only

if,
∑∞

n=0 P
(n)
ii = ∞, just recall that we defined P

(n)
ij = P (Xn = j|X0 = i) and we define

P
(0)
ij = 0 if i 6= j and 1 if i = j. This way we have defined. So, it basically says that a state

i is recurrent if and only if
∑∞

n=0 P
(n)
ii =∞ and i is transient if and only if, the same sum

is less than infinity. So, they sum in this time is finite. i is recurrent means that the sum

has to be infinite, on the other hand i is transient implies that the sum has to be finite on

the other hand if the sum is finite then the i is transient. So, this is one way to show, to

check whether i is recurrent or i is transient or not and the way basically we need to find

out all the values of P
(n)
ij and then I need to take the sum and if the sum is finite, we can

directly tell that i is transient and if the sum is infinite I can tell that i is recurrent. Now,

let us go to the proof. Proof is not very difficult actually, what we going to do is that we

are going to prove the first one and if I can prove the first one the second one automatically

follow from the first one, how?. Suppose that we have already proved the first one. Now,

I have to prove two things that if given condition is that i is transient we have to show

that this sum is finite; that is to show that summation P
(n)
ii is finite and n runs from 0 to

infinity. Now, I can go in this way. i is transient given I have to show this one suppose

if possible assume the sum n equals to 0 to infinity P
(n)
ii is less than infinity. What I am

doing is that if possible suppose this is not true. That means this quantity is infinite and

if now, I can prove the first one this one is infinite implies that i is recurrent. And that is

the contradiction because I start with i is a transient I get i as a recurrent. So, that is a

contradiction that means what I am assumed here is not true and that means this one is

true. So, i is transient implies that this one is finite. Similarly, if I assume this one is finite,

then if possible I take i is recurrent and if i is recurrent then this one has to be infinite

and that is a contradiction. So, clearly if this one is finite then i transient. So, that means

that if I can able to prove the first statement, I am done with both the statement, because

the second statement automatically follows from the first statement you can prove it by the

contradiction . Let us look into the proof of the first one. First part we have start with

that suppose it is given that i is recurrent and I want to prove that the sum is infinite;

suppose that i is recurrent, we want to show that P
(n)
ii = ∞ when I am taking the sum n

equals to 0 to infinity. Let us recall the definition of recurrent state which is nothing but

fi = 1. Now, you see that in this case Pi(Vi =∞) that means, I keep on coming to the state



i again and again again and again that probability is 1. That means Vi takes the infinite

value with probability 1. So, if I now try to calculate what is the expectation of Vi under

X0 = i that is nothing but the value multiplied by the corresponding probability which is

basically infinity. So, conditional expectation of Vi given X0 = i is infinity if i is recurrent.

So, I write this one exactly here that infinity is equals to Ei(Vi). Now, I just plug in the

definition of Vi here and because expectation is a linear operator I can take this expectation

inside the summation sign and I get this one this is nothing but the generalization of this

kind of thing that if I have X1 +X2 that I can write as expectation of X1 plus expectation

of X2 and this is of course, for finite one and this is for infinite one. So, you can take this

particular thing is basically nothing but some kind of generalization of this particular kind

of statement what we know. Now, if I take the expectation here recall what is δi(Xn)?.

δi(Xn) is nothing but taking value 1 if Xn = i and it takes value to 0 if Xn = 0. Now if

I try to find out what is the expectation of δi(Xn) that is nothing but 1 multiplied by the

probability that Xn = 1 because the condition will be the X0 = i and then Xn = i plus

0 times probability that Xn 6= i. This δi(Xn) = 1 if Xn = i and it is 0 if Xn 6= i. That

means that when if I try to find out the expectation of δi(Xn) which is the value of δi(Xn)

multiplied by the probability plus value of δi(Xn) multiplied by a corresponding probability.

So, that terns out to be this and this tern do not contribute anything this 1, I can remove.

Finally, I get it the conditional expectation of δi(Xn) given X0 = i is same as Pi(Xn = i)

which is written here. And this quantity is nothing but our P
(n)
ii . This shows that if i is

recurrent we have shown that
∑∞

n=0 P
(n)
ii = ∞. So, one side is done that if i is recurrent,

we have shown that the sum is infinite. Now, I have to show the other side that if this sum

is infinite I have to show that i is recurrent let us look into that.

Now, suppose that summation is infinite we want to show that i is recurrent. The way

to prove this one is again by contradiction that if possible, let us take that i is transient.

So, if i is transient then fi < 1 this is by the definition of the transient state. So, what I

have now is this one that this quantity is same as this that, we have exactly shown here

forget about whether it is a finite or infinite, we have shown that this is same as this does

not matter whether i is recurrent or i is transient only thing is that if i is recurrent, then

this expectation is infinite and that shows that this expectation is infinite. This is the same

process I can use and I can claim that this equality holds true. Now, we have used a fact

which the proof I am not giving here, but I use this one as a fact that tells that for a non

negative integer values random variable X the expectation of X can be written in this way,

this is nothing but
∑∞

n=0 P (X > n), that is what we are going to use here. Because Vi

is the number of visit to state i and that has to be a non negative integer valued random

variable this Vi is a non negative integer valued random variable. So, I can use this fact on



Vi only thing is that I have this condition with respect to i here, I have to keep that one

here also. Now, it can be written that Pi(Vi > r) and I have to take the sum over r in this

case I have written in terms of n here I have written in terms of r. This probability I have

already found out this is nothing but equals to f ri these probabilities basically f ri and when

I do this sum that is basically nothing but a geometric progression and fi < 1. So, it is

the infinite geometric progression and the sum we know it is nothing but 1
1−fi because fi

is strictly less than 1 and because fi is strictly less than 1 this quantity is finite. So, this

shows that if i is transient then this summation has to be finite and that is a contradiction

because we have started with that summation P
(n)
ii is infinite that is a contradiction of the

fact that the summation P
(n)
ii is now finite if I assume i is transient so i has to be recurrent.

So, this assumption is wrong and i has to be a recurrent state. That completes the proof

and as I mentioned that these two conditions are very very helpful to prove different kinds

of results regarding Markov chain to check whether for a given Markov chain, given state

is transient or recurrent these two results can be used.

Now, we are going to talk about a theorem which basically deals with finite state Markov

chain. What this theorem says?, the theorem says that, suppose I have a Markov chain Xn

which has finite states, S which is the state with which is finite. That means that number

of states in the state space S is finite and I can write in this manner that they are maybe N

number of states if I assume that there is N number of states, then basically the state space

can be written in this particular form. Now, in that case, when I have a Markov chain with

finite state space S then the theorem tells us that there has to be at least one recurrent

state. So, that theorem says that, for a finite state space Markov chain, there at least one

recurrent state and there could be many there could be more than one, but at least one

state among the state space has to be recurrent. And the basic intuition behind this is very

very simple. The intuition is as follows. See, when I have finite number of states, suppose,

for example, suppose I have 5 states. Now, when the Markov chain actually evolving with

time, then as the time increases Markov chain has to be in some one of the state at least

it cannot be go out of this 5 state because this is the whole state space. So, it has to take

value from this 5 states. So, that means, at least 1 state has to be visited infinite number of

time, the reason is as follows that if all the states are visited finite number of times suppose

the state 1 is visited in n1 times step 2 is visited n2 times and so on so, forth state 5 is

visited in n5 times, then if you think this number that n1 + n2 + n3 + n4 + n5, then I know

the state that the Markov chain will be the state space up to that time. Now, I add up 1

more time to that that means n1 + n2 + n3 + n4 + n5 + 1 where the Markov chain will be

Markov chain will have to be in some state into the inside the state space. So, that means,

it is not possible that the all the states are visited only a finite number of times. So, that



is basically the intuition behind this particular theorem. Now, we will see that how we can

write this one mathematically. The proof goes like that, let us start with that the state

base is given by this where the N is finite, N is integer and a finite positive integer, that is

our state space. Now, look into this expression, let us first decode this right hand side. Let

us talk about the inside one. If I take i equals to 1 the inside summation is
∑n

j=1 δ1(Xj).

What is that recall that we defined δc(x) = 1 if x = c and is the 0 otherwise. That way that

δ1(Xj) = 1 if at the time step j, I visit the state 1, then basically this quantity will take

value 1 otherwise, this 1 to 2 take value 0. Now, when I take the sum that basically going

to give me number of times the state 1 is visited after time 0, 0 excluded after time 0 till

time n, in between time 1 to n, how many times the state 1 is visited that can be written

in this particular form. Similarly, when I take i equals to 2 that is basically nothing but

δ2(Xj) which is basically again nothing but number of times the state 2 is visited between

times [1, n]. And so on so forth finally, I have summation
∑n

j=1 δN (Xj) = 1 that is basically

the number of times the state N is visited between times [1, n]. So, these are the quantities

inside for different values of i taking here the first quantity is nothing but number of times

state 1 is visited second quantity is number of times state 2 is visited and so on and so

forth. Finally, the last quantity here when i = N this quantity is nothing but number of

times state N is visited between the type [1, n]. Now, if I add up this thing that is nothing

but total number of times the state 1 is visited state 2 is visited state 3 is visited state 4

is visited so on and so forth. Finally, the state N is visited between time [1, n]. And that

is nothing but n because the state has to be any one of the state in the time [1, n]. So,

that means if I add up how many times the state 1 is visited how many times the state 2

is visited dot dot dot how many times the state N is visited that will is going to give me

the number of state that I have taken. So, that is why basically if I make this sum that

double summation in this side that is going to give me n which is basically nothing but

number of steps I have taken from time 1 after that time n which is basically nothing but

n. So, we have this particular quantity. Now, you see that if I take the limit on both sides

of this particular expression, I have limit n tends to infinity double summation the first

summation is over i equals to [1, N ]. The second summation is j equals to 1 to n for δi(Xj)

i.e., limn→∞
∑N

i=1

∑n
j=1 δi(Xj). Of course, this side is infinity because I am taking the limit

of n, n tends to infinity so, this side is infinity now, look into this side you notice that N

is finite here because the state space is a finite state space. So, N is a finite integer. So,

easily I can interchange the limit and the first summation and I can write these quantities

equals to limit n goes to infinity summation j equals to 1 to n for δi(Xj). That means that

if you look into this part this part is nothing but I am taking the limit on each of these

quantities as n goes to infinity. Now, this summation has to be infinite and this is a finite



sum. So, that means, at least 1 of these quantity has to be infinite. This means that if I

take the limit on both of them that at least one of the limit has to be infinite because this

equality has to true. So, this whole summation need to be infinite and because this n is

finite that says that at least one of the inside quantity has to be infinite. Now, let us call

the corresponding i for which this quantity is infinite to be i0. I say that it is at for at least

one i is there for which this one is infinite and call this i is i0 of course we can have multiple

i for multiple i this quantity is infinite that can happen. But I can tell for sure that at least

for one i this inside quantity has to be infinite and call this i to be i0. It says that taking the

limit on both the sides we get they are must exists an i0 such that this quantity is equals

to infinity the limit I just replaced this n with infinity here that by writing the limit there,

so, basically this quantity has to be infinite. Now, what is this quantity?; this quantity is

nothing but number of visits to the state i0 starting from 1 up to the time infinity. So,

total number of visits to the state i0 this is basically this and that quantity is infinity with

some positive probability that means, the state i0 will be visited again and again again and

again again and again. And that says that the state i0 has to be a recurrent state. So, this

theorem gives us a very nice thing that if I have a finite state Markov chain, I can directly

tell that there exists at least one state in the Markov chain, which is recurrent. With that,

I stop and thank you for listening.


