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Hello everyone, welcome to the 18th lecture of the course Discrete-time Markov Chains and
Poisson Processes. So, in last class we saw the definition of stationary measure, so a stationary
measure is nothing but a row vector whose size is same as the size of the state space, its entries
are all non-negative and it should satisfy the condition πP = π. Now, when the sum of the
entries is equal to 1, we say that a stationary measure is a stationary distribution. And then,
we saw these three examples like, in example one, the Markov chain had a unique stationary
distribution. In example two, the Markov chain had infinitely many stationary distributions and
in example three, the Markov chain had no stationary distribution. The first two examples were
for discrete like finite space Markov chains but the third example was infinite space and that is
because we also saw this result that for a Markov chain with a finite state space there always
exist at least one stationary distribution. So, if you have to give an example of a Markov chain
which does not have any stationary distribution then it has to be an infinite state Markov chain.
So, today we will continue with some more properties, some more theorems about stationary
distributions. So, let us start.

So, the first theorem which says that let {Xn}n≥0 be an irreducible Markov chain that means
it has only a single communicating class. Now if π is an invariant measure such that πi > 0
for some i ∈ S, then πk > 0 for all k ∈ S. So, remember it is easy to see from the definition
of stationary measure that if you look at the 0 vector that is always a stationary measure. So,
there always exist at least one stationary measure which is the 0 vector but remember this 0
vector is not a stationary distribution. Now, if you take a non-zero stationary measure find
that means if there is at least one component which is strictly greater than 0 and if further
the Markov chain is irreducible then each entry should be positive. So, if it is a irreducible
Markov chain, either all entries should be 0 or all entries should be positive. The mixture is not
possible provided the Markov chain is irreducible, then if you have a stationary, if you take a
stationary measure either all its components are 0 or all is its components are strictly positive.
Now let us see the proof, the proof is very simple. Now we already know that πi > 0 for some
i ∈ S. We want to show that πk > 0 for all k ∈ S. So, we consider a state k 6= i. We want to
show that πk > 0. Now this is an irreducible Markov chain, so you can go from any state to
any other state in finite number of steps. So, there will exist an n such that p

(n)
ik > 0 because

k is accessible from i. So, there will exist an n such that p
(n)
ik > 0 and why is this true that is

because this is an irreducible Markov chain so any state is accessible from any other state. Now
πk since this is an invariant measure is equal to

∑
j∈S πjp

(n)
jk we have already seen this, so this is

not the original definition but the original definition implies this because it is not just πP = π,
it is also true that πP n = π, this is also true. So, that gives you that πk =

∑
j∈S πjp

(n)
jk ≥ πip

(n)
ik

but this is greater than or equal to this because all these terms are non-negative. So, this is
≥ πip

(n)
ik where i is this particular i for which you know that πi > 0, but now πi > 0 , p

(n)
ik > 0.

So, you get that this is strictly greater than 0 hence you finally get that πk > 0. So, we have
shown that if the Markov chain is irreducible then and you are given a stationary measure
where at least one component is strictly greater than 0, then all components should be strictly
greater than 0. And the proof is just this two lines prove, it is a very simple proof which uses
this irreducibility very crucially.

Now moving ahead to the next theorem, for that now you fixed a state k and now for each
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i ∈ S, in the state space. So, for each i ∈ S, the expected time spent in i between visits to k.
Now remember what is this Tk. So, recall this definition of Tk which was the first passage time,
what was it? It was infimum over n ≥ 1 such that Xn = k. So, the first time after 1 the Markov
chain visits the state k. So, now again we are looking at Ek that means you are starting from
k. So, what is this quantity? This quantity, so let us first look at this inside thing, so it is∑Tk−1

n=0 δi(Xn) remember what is δi(Xn)? So, δi(Xn) equals to 1 if Xn = i; equals to 0, otherwise.
So, this inside summation counts the number of times starting from 0 to Tk − 1, the Markov
chain is equal to i. And you are taking the expectation of this so this quantity is basically
the expected time spent in i between visits to k. So, here because it is a discrete time, so the
number of times it visits i is basically the time spent in state i. So, this γki is the expected time
spent in i between successive visits to k or you can also think of the expected number of times
the Markov Chain visits the state i between successive visits to k. Now we have this theorem,
so what does it say? It says that, let {Xn}n≥0 be an irreducible and recurrent Markov chain.
So, it has a single communicating class and Ek(Tk) is finite for all k ∈ S, sorry not Ek(Tk),
starting from k you come back in a finite time with probability 1, that is recurrence. So, Xn is
irreducible and recurrent. Then γkk = 1. Now this is very easy to see because what is γkk? This
is the expected time spent in k between visits to k. Now you see why it is equal to 1? Now
remember TK is the first time after 1 it visits k. So, initially that means that n = 0, Xn = k,
why? Because you are starting from k and now in no other step it can be at k because this TK
is the first time after 0 it visits k so and since this sum is up to TK − 1, so the number of visits
to state k is just 1, which is at the zero-th step and in between the Markov Chain does not
visit the state k that is because TK is the first passage time. So, this γkk = 1 is trivial. Anyway
we will not see a complete proof of this theorem.

Now the second one says that this, now if I look at this, row vector which is γki . So, I can look
at this row vector γki where i ∈ S. Now it says that this row vector is a stationary, it satisfies
the stationary condition. Anyway see this is all these gamma is are non-negative because this
number of visits that is obviously is a non-negative thing. You are taking expectation of that
so anyway γki ≥ 0 that is not an issue. What this point 2 is saying is that it satisfies this
stationarity condition and also the third condition says it is not just greater than or equal
to 0 but each γki > 0 and also it is finite for all i ∈ S. So, what this theorem is telling you,
if you define γki in this way then this is a stationary measure or an invariant measure where
each component is strictly positive. So, γk defined in this way is a stationary measure or an
invariant measure and also one more property. So, you have this thing, that this γkk = 1, so it
is a stationary measure such that the k-th component is equal to 1. That is the content of this
theorem.

So, now we move. So, why did we define this spatial stationary measure? Now the next
theorem says that, let {Xn}n≥0 be an irreducible Markov chain. So, it has only a single
communicating class. Now fix a state k and let π be an invariant measure with πk = 1. So,
we saw in the previous theorem that this γk was an invariant measure with γkk = 1 or the k-th
component is equal to 1. Now suppose we look at some invariant measure, we do not know
whether it is exactly that γkk . It is some invariant measure with this property that πk = 1.
Then π ≥ γk, what does that mean? So, what is this meaning of greater than or equal to?
That means πi ≥ γki for all i ∈ S. That is the meaning of entry wise. So, what this says is that,
if you take any other invariant measure with the condition, so this condition is important that
πk = 1, then π ≥ γk. So, in that way this γk is what is called a minimal stationary measure.
Again it is just a terminology, you do not need to bother about that but the important thing
is this inequality that if π is any invariant measure with this constraint that πk = 1, then that
π has to be greater than or equal to γk entry wise or in other words this should be true. If in
addition, the chain is also recurrent. So, if in addition the chain is also recurrent then πk = γk.
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So, if you are working with if {Xn}n≥0 is irreducible and recurrent then what this theorem tells
you that this γk is the only invariant measure with γk = 1, with the k-th component equal
to 1. So, if it is just irreducible then you take any invariant measure with the property that
the k-th component in one then π should be that invariant measure π ≥ γk, if in addition the
chain is also recurrent then π = γk. Again, this equality means component wise that means
πi = γki for all i ∈ S. That means if {Xn}n≥0 is an irreducible and recurrent Markov chain,
then this γk which we defined here in this way is the only invariant or is the only stationary
measure with the property that the k-th component is equal to 1. So, if I give you a stationary
or invariant measure with and I tell you that its k-th component is 1 and also if you know that
it is an irreducible and recurrent Markov chain, then straight away you can say, this stationary
measure is actually this gamma k which we defined in the previous slide. That is what is the
content of this theorem. Now, this theorem gives us a kind of corollary which we write here
as a remark. So, let {Xn}n≥0 be an irreducible and recurrent Markov chain. Let π and µ be
two non-zero invariant measures, now what is the meaning of non-zero invariant measures, that
means each component is strictly greater than 0. See, just non-zero means it tells you that
there will exist at least one, so strictly speaking non-zero invariant measure means there will
exist at least one component which is strictly greater than 0, but since you have irreducibility
now from the first theorem what we proved today we know that if it is irreducible Markov chain
then if you take a stationary measure either it is the 0 measure or each component is strictly
greater than 0. So, the setup that we are looking here since it is irreducible, when we say π
and µ be two non-zero invariant measures that means each component is strictly greater than
0 but in general if I just say π is a non-zero invariant measure that means there is at least one
component which is strictly greater than 0 but irreducibility forces that each component has
to be strictly greater than 0. So, π and µ are two such non-zero invariant. So, suppose π and
µ are two such are two non-zero invariant measures then there exists c such that µ = cπ.

Now, let us see the proof of that. Before going to the proof of that, so what is it saying that
if you are having an irreducible and recurrent Markov chain then and if π and µ be two non-zero
invariant measures, then one is a scalar multiple of the other. So, if you have a reducible and
recurrent Markov chain, then you take any two non-zero invariant measures one is a scalar
multiple of the other. So, this c actually will be not equal to 0. Now what is the proof of
that, so for that again fix a state k. Now by this above theorem remember it says that if you
have an irreducible and recurrent Markov chain and you are given an invariant measure whose
k-th component is equal to 1, then that is equal to γk. Now you are given these two invariant
measures π and µ but you do not know whether their k-th component is equal to 1 but there
is a way to make their k-th component equal to 1. You divide by πk. So, you look at the
measure so each component you divide by πk. Then since each component you are dividing by
πk so the k-th component now will become 1. Because it will be πk over πk and hence the k-th
component will become 1. So, π over πk now initially we did not know whether π for π the
k-th component is equal to 1, but now if we look at this modified slightly modified invariant
measure pi over π over πk, now remember if something is an invariant measure so if π is an
invariant measure then cπ is also an invariant measure. This you can easily check, if you take
an invariant measure then any scalar multiple of that is also an invariant measure. So, if I
divide by 1 over π over πk, it still remains an invariant measure but now the advantage is this
modified measure for this the k-th component is equal to 1.

Now, here {Xn}n≥0 is an irreducible and recurrent Markov chain and this pi over π over πk
is a stationary measure with k-th component equal to 1. So, by this theorem this has to be
equal to γk. Now similarly if I look at µ, then again if I look at µ over µk, that is again an
invariant measure whose kth component is equal to 1 but again by this theorem this µ over µk
should be equal to γk and remember like we can easily divide by this πk or µk because these
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are two non-zero invariant measures so each component is strictly greater than 0. Since we also
have irreducibility. So, π over πk is an invariant measure whose k-th component is 1,µ over µk
is an invariant measure whose k-th component is 1. So, the chain {Xn}n≥0 is irreducible and
recurrent, so by this theorem above we get that both of them should be equal to γk but now
from this, you just take this πk to that side what we get is µ = µk

πk
π = cπ where c is equal

to this and since this µk and πk are both non-zero, so this c 6= 0. So, what it basically says
that µ = cπ at the same time you can write it as π = 1

c
µ. So, if you are having an irreducible

and recurrent Markov chain and if you have two non-zero stationary measures then they are
actually scalar multiple of one another. So, in this way you have kind of uniqueness. See, if you
have an invariant measure its scalar multiple is again an invariant measure. That is in general
true. But what this theorem is telling is that if you have an irreducible and recurrent Markov
chain, then any two invariant measures and you take any two non-zero invariant measures then
one is a scalar multiple of other. So, in that way again, there does not exist a unique invariant
measure but if you take any two invariant measures one is a scalar multiple of the other. So, in
that sense, so you have this kind of weak uniqueness that one is a scalar multiple of the other
provided the chain is irreducible and recurrent. So, you need these two additional conditions on
the Markov chain. If it is any Markov chain then such a thing is not true but see what is always
true is that, if you have an invariant measure any scalar multiple is again an invariant measure.
But what this theorem is telling is that, if you have an irreducible and recurrent Markov chain
then any two non-zero invariant measures are scalar multiple of one another. But remember
the two important assumptions are required irreducibility and recurrent.

So, moving on, now so till now we have classified states as recurrent and transient. For
recurrent starting from i the probability that it will come back to i in a finite time is 1. So,
with probability 1 starting from i it will come back to i in a finite time and if it is transient then
there is a positive probability that starting from i it will never come back to i. So, for recurrent
you have Pi(Ti < ∞) = 1 and for transient Pi(Ti < ∞) = 1 for recurrent and for transient
Pi(Ti < ∞) < 1. So, there is a positive probability that Pi(Ti) = ∞. So, just let me write it
here, Pi(Ti < ∞) = 1 and Pi(Ti < ∞) < 1. So, this is recurrent and this is transient. Now,
we will see that we will further classify recurrent states into two more sub-categories what are
those? So, a recurrent state i is said to be positive recurrent, if mi = Ei(Ti) < ∞ that means
that the expected time in which it will come back that is also finite and if i is not positive
recurrent then it is called null recurrent. So, see if I give you a non-negative random variable
which is finite valued it is not guaranteed that its expectation will be finite. Its expectation
can be both finite as well as infinite. So, now if I look at this Ti which is the first passage
time to i or the first return time to i, now recurrent means it is a finite random variable with
probability 1 but just finite random variable with probability 1 does not guarantee that its
expectation is also finite. So, if its expectation is also finite then you say it is positive recurrent
and if it is not then you say it is null recurrent. And how you should think about it or what
is the intuition? So, positive recurrent means, that it will come back, so recurrent means it
will come back starting from i it will come back to i in finite time with probability one. But
null recurrent means it might take actually a very long time with high probability. So, that is
why when you look at this weighted, what is expectation? Expectation is basically weighted
average so null recurrent means, it is finite but its expectation is not finite. So, the intuition
is that it will come back in finite time but it will, see finite does not mean how big or small
it is just finite means, it is not infinity but null recurrent means, that again that this is the
way or this is the way you should think about it, this is the intuition that it will come back
in finite time but with a substantial probability it will come back, it will take very long to
come back. That is why the expectation is not finite. So, if Ei(Ti) is finite, we say that it
is positive recurrent, if Ei(Ti) is not finite or it is equal to ∞ we say it is null recurrent. So,
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recurrent states we have further classified into two subcategories namely positive recurrent and
null recurrent. So, the initial division was recurrent and transient and now we further divide
recurrent into positive and null. So, initially we divided it into recurrent and transient and
now we further subdivide it into positive and null. So, that is the definition of recurrent state
but now why suddenly we have brought in this positive recurrence and null recurrence, because
it has very close connection to this stationary distribution. Now that brings us to the last
theorem of today’s lecture which says that let {Xn}n≥0 be an irreducible Markov chain, then
the following are equivalent. What is the meaning of the following equivalent? That means, all
these things so 1 implies 2, 2 implies 3. So, all these are equivalent if and only if one implies
another. So, again so it says that 1 implies 2, 2 implies 3, 3 implies 1. So, all these like, if
you assume 1 then the other is true. That is the meaning of that the following are equivalent.
So, let {Xn}n≥0 be an irreducible Markov chain then the following are equivalent. What are
those statements which are equivalent? Every state i is positive recurrent? Some state i is
positive recurrent, the Markov chain has a stationary distribution π. So, that means if every
remember we are in an irreducible, we are working with an irreducible Markov chain, it says
that if every state i is positive recurrent then some state i is positive recurrent. Now this is
kind of trivial if every state is positive recurrent but some state i is positive recurrent but it is
also saying the other way is true, that if some state i is positive recurrent then every state is
positive recurrent not only that these two statements are also equivalent to the statement that
the Markov chain has a stationary distribution. So, for example, if you know that every state
in an irreducible Markov chain is positive recurrent then you know that the Markov chain has
a stationary distribution. So, this gives you a sufficient condition. Not only sufficient because
this is an if and only if condition. So, if you are in an irreducible Markov chain then if you can
show that each state is positive recurrent then you know that it has a stationary distribution
but not only that it is not that it just has a stationary distribution, it says that moreover when
3 holds πi = 1

mi
, for all, where mi = Ei(Ti). So, again let me try to explain this because this

is a very important theorem. So, it says that if {Xn}n≥0 is an irreducible Markov chain, then
all these statements are equivalent. So, if you assume one then the other is true so all these
are if and only. So, it says that every state i is positive recurrent, some state i is positive
recurrent, the Markov chain has a stationary distribution pi. Say for example, if you know
every state i is positive recurrent and it is an irreducible Markov chain then the Markov chain
has a stationary distribution. Similarly, you do not actually need that every state is positive
recurrent. If you know that just some state i is positive recurrent and it is an irreducible
Markov chain then also you know that the Markov chain has a stationary distribution. But
not only that under reducibility it also tells you that this stationary distribution is, so it tells
you what that stationary distribution is or in other words if it is an irreducible Markov chain
then there can exist at most one stationary distribution. So, it says that when three holes that
means when the Markov chain has a stationary distribution, say suppose you are having an
irreducible Markov chain, now then just look at this statement 3, it says that the Markov chain
has a station, if the Markov chain has a stationary distribution then it is necessarily 1

mi
where

mi = Ei(Ti). So, it tells you that, if it is an irreducible Markov chain then there can exist at
most one stationary distribution. So, remember for any Markov chain, I said three possibilities
are true. Either it is 1 or either it is 0, 1 or ∞ but if it is an irreducible Markov chain, the
only possibilities are 0 and 1, infinity is not possible. If it is an irreducible Markov chain, there
will exist at most one stationary distribution. It also tells you, if it exists what that stationary
distribution is, so πi is 1 over m i where m i is nothing but E i of T 1

mi
where mi = Ei(Ti).

So, you see how the stationary distribution and positive recurrence is connected. So, all these
statements are if and only if. So, another implication of this is, so if I tell you {Xn}n≥0 is an
irreducible Markov chain and it has a stationary distribution i then from that you can straight
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away say that all states are positive recurrent, that is like 3 implies 2, 3 implies 1 sorry. So,
because all these are if and only if, so if it is an irreducible Markov chain and I say that the
Markov chain has a stationary distribution π that straight away tells you that every state is
positive recurrent. So, if it is an irreducible Markov chain then there can exist at most one
stationary distribution. But remember if it is a finite state Markov chain, we have already
proved that there will exist at least one stationary distribution. So, if it is an irreducible finite
state Markov chain, then there exists a unique stationary distribution. So, if it is finite state
Markov chain, that implies a plus irreducible sorry, so finite state Markov chain plus irreducible
implies existence of unique stationary distribution. So, if it is an infinite state but is irreducible
there can exist either 0 stationary distribution or 1 stationary distribution. If it is a finite state
Markov chain plus irreducible then there exists exactly one stationary distribution. So, you
now know a case where you have, you know both existence and uniqueness. So, if you take a
finite state irreducible Markov chain, then it has a unique stationary distribution but if it is not
finite, if the state space is not finite but infinite but still irreducible then you know that if there
exists a stationary distribution then there will that will be unique. I am not, for infinite state
Markov chain, existence of stationary distribution is not guaranteed. But if it exists, there will
be unique. For example, you saw this. So, we will come to one example slightly later, but if
it is a reducible infinite state Markov chain, then existence is not guaranteed but uniqueness
is guaranteed. So, if there is one, there will be exactly one, but if it is a finite state Markov
chain then there can be, then there will be exist exactly one stationary distribution. So, finite
state Markov chain plus irreducible implies existence of a unique stationary distribution. That
is one implication of this theorem, another implication is this remark. What it says? That this
positive recurrence and null recurrence are class properties because why? Again, so if it is an
irreducible Markov chain then that means, so it because that is coming from 2 implies 1. So,
it says that if some state i is positive recurrent then every state i is positive recurrent. So,
it is not possible that, again, why I am saying class property, irreducibility here it says about
irreducibility but again if I can say, for example I start with a positive recurrent state. Now I
look at the class of that, now since it is positive recurrent so it is recurrent. So, if I just look
at the class of that, that is a closed class so I can think so, I can restrict my Markov chain on
that so it will be just an irreducible Markov chain on that class. So, now it tells you that in
that class there cannot be any null recurrence state why because of this theorem. It says that if
some state i is positive recurrent then every state i is positive recurrent. So, till now we knew
that this transience and recurrence are class properties but what we get from this theorem is
that both positive recurrence as well as null recurrence is also class property. So, if you have a
communicating class of recurrent states then either all the states will be positive recurrent or
all the states will be null recurrent.

Now we will finish today with two examples, first recall the simple random walk. Now we
have proved that asymmetric simple random walk is transient, we have proved that. Now thus,
by previous theorem it cannot have a stationary distribution. Why? Because the previous the-
orem said that if you have an irreducible Markov chain, remember asymmetric simple random
walk is also irreducible. So, if you have a reducible Markov chain then if it has a stationary
distribution then all states has to be positive recurrent but for an asymmetric simple random
walk, we also irreducible, forget positive recurrent we know that all states are transient. So,
it cannot have a stationary distribution. So, you see for an infinite state Markov chain, even
if it is irreducible it is possible that it may not have a stationary distribution. But if it has,
then it has to be unique and it is given by 1

mi
. So, here is an example of an infinite state

Markov chain which does not have a stationary distribution which is this asymmetric, simple,
random walk and why is that because each state is transient and the previous theorem already
told us that, if it has a stationary distribution then each state has to be positive recurrent.
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So, that is example, the first example which was of asymmetric simple random walk. Now the
second example, here we look at the simple symmetric random walk. Now for simple symmetric
random walk, we know that all states are recurrent but now the question are whether they are
positive recurrent or null recurrent because now we have also know that positive recurrence
and null recurrence are also class properties so either all states will be positive recurrent or all
states will be null recurrent because a simple symmetric random walk is irreducible. Now, let
us try to examine what those states are positive recurrent or null recurrent. Now for simple
symmetric random walk, we have shown that all states are recurrent. Now if I look at this πi,
so I am looking at this vector of all 1’s. So, it will be an infinite vector. So, it will go to both
sides because in this case for a simple symmetric random walk, the state space is the set of all
integers which is an infinite set. So, if πi = 1 or in other words if I look at this infinite vector
of all 1’s then it easily, it satisfies this πi = 1

2
πi−1 + 1

2
πi+1 and why this? Remember, so this is

precisely the stationarity condition for simple symmetric random walk because again what is,
so πi what it should be so I said. So, in the summation is over only those things like from where
you can come to i. So, now in a simple symmetric random walk, you can come to either from
i− 1 or from i+ 1. So, you come from i− 1 with probability 1

2
and you come from i+ 1 with

probability 1
2
. So, the stationarity equations become this πi = 1

2
πi−1 + 1

2
πi+1 and if I take this

πi = 1 for all i ∈ S, then these equations are satisfied. Or in other words, this is a stationary
measure for simple symmetric random walk. Also, this is a non-zero stationary measure. Now
again either you, so, 0 is always an invariant measure. Now remember we are trying to, so what
we are initially trying to see that whether a simple symmetric random walk has a stationary
distribution or not? Now what is a stationary distribution? A stationary distribution is also
a stationary measure with the added condition that the sum of the entries has to be 1 but
now if the sum of the entries has to be 1, it cannot be the 0 stationary measure. It has to
be a non-zero stationary measure. Now non-zero stationary measure, the simple symmetric
random walk is irreducible so non-zero means each component has to be positive. So, now we
already have a stationary measure which is the vector of all 1’s. So, if there exists a stationary
distribution or an invariant distribution then that also has to be a stationary measure which
where each component is strictly greater than 0. But now this is an irreducible and recurrent
Markov chain. Now we have seen this that if it is an reducible and recurrent Markov chain,
then if we have two invariant measures or two stationary measures then one is a scalar multiple
of other. So, if you have a stationary distribution that should be a scalar multiple of this. So,
again it should be of the form say [c, c, c, . . .] it should be a vector of all c’s for some c > 0.
Obviously, c cannot be 0 because then the sum will not be 1. But again, if every component is
same then the sum will not be equal to 1. So, and then another way of saying this that since
any invariant measure must be a scalar multiple of π but now π is all 1, so this sum is ∞.
So, if you and now there has to exist a stationary distribution, it should be some cπi. So, the
components should be of the form cπi but then the sum that simply c will come out but since
this series or this sum is infinite by multiplying by any non-zero c you cannot make it equal
to 1. So, the thing is that if there has to be a stationary distribution in this case, all these
components has to be equal but if all its components are equal then that sum cannot be equal
to 1. In fact that sum will be equal to ∞. So there cannot exist a stationary distribution. So,
the main thing that we are using here is that since this is an irreducible and recurrent Markov
chain and we have already found out a stationary measure which is the vector of all 1’s. So, the
stationary distribution has to be a scalar multiple of that so it has to be of the form of all, so it
has to be a vector where all components are equal, if all components are equal, then the sum of
the components cannot be equal to 1, it will be equal to ∞. We have seen this thing before as
well, so that if all components are same the sum cannot be finite. Or other words sum cannot
be equal to 1, so forget 1, it cannot be even finite. So, in this case also, there cannot exist a
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stationary distribution. So, for a asymmetric simple random walk, it is very simple, we can say
very easily that there does not exist a stationary distribution because all states are transient
but for simple random walk we need to do a little more how we are claiming, but we finally see
that for even for a simple symmetric random walk there does not exist a stationary distribution
but since there does not exist a stationary distribution, all states are null recurrent. Why?
Because, if the states are positive recurrent, then again if I go back to this theorem it says that
if every state i is positive recurrent then the Markov chain has a stationary distribution. But
we have shown that the, for a simple symmetric random walk there does not exist a stationary
distribution. So, the states all has to be null recurrent because if there exists. If both the states
are positive recurrent then the theorem that we just saw in previous slide tells you there has
to exist a stationary distribution. In fact, there will exist, because we are in this irreducible
setup, there will exist exactly one stationary distribution but we know that there exists. But
we have shown that there cannot exist a stationary distribution, so all states of a simple sym-
metric random walk are null recurrent. So, for both simple symmetric random walk as well as
asymmetric simple random walk, there does not exist a stationary distribution. So, both these
are examples of infinite state irreducible Markov chains where stationary distribution does not
exist. So, when it is infinite state then either, so it is possible that stationary distribution does
not exist but if it exists and we also know that it is irreducible there will be exactly one. So,
existence is not guaranteed but uniqueness is guaranteed, but for finite state Markov Chain,
both existence as well as uniqueness is guaranteed, if it is irreducible. So, that is all. So, we
will stop here today. Thank you all.
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