
Discrete-Time Markov Chains and Poisson Processes Professor Ayon Ganguly Depart-

ment of Mathematics Indian Institute of Technology, Guwahati Lecture 2 Review of Basic

Probability II

Welcome to this lecture. In this lecture, we are going to talk about jointly distributed

random variables. (Refer Slide Time: 00:37)

As you recall that in the last lecture, we have talked about probability and random vari-

ables. We will recap the concepts of jointly distributed random variables in this particular

lecture. Now what is jointly distributed random variable?. It is nothing but a function

X : Ω→ Rn. And what is the useful of a jointly distributed random variable?. Just recall

that the use of the random variable is as follows that most of the times we have told that

the outcomes of some experiment are numerical. Moreover, if it is not numerical, I can

convert it into a numerical thing. If I map it into a real line, then I can able to use different

sophisticated tools of real analysis to analyze the data or to analyze the characteristics of

the probability distribution of a random variable. In this case that transformation is basi-

cally from Ω to Rn and Ω is basically our sample space. And here the idea is that, in some

scenarios I need to talk about more than one random variables at a time. For example,

maybe I am interested to see the relationship between height and weight. The intuition is

that if height is more weight is more. So, I want to check that whether probabilistically

that is true or not or with a high probability that statement is true or not that maybe I can

try to see. Now, in such scenarios, I have two numerical characteristics, one is height and

another is weight. So, naturally, we want to have two random variables together maybe X1

and X2, and if I clump them together that X = (X1, X2) that I can think of a function

from Ω to R2. And when you just generalize this one to Ω→ Rn, I have basically n random

variables there and I am talking about something about these n random variables. So, that

is basically the intuition behind jointly distributed random variables. And in this case, I

can again talk about joint cumulative distribution function. And what is joint cumulative

distribution function?. Just recall that in case of one random variable, the cumulative dis-

tribution function was that it is nothing but P (X ≤ x). Similarly, the same definition is

directly extended for a joint cumulative distribution function and the definition is given

by this. Clearly, this is a function from Rn to [0, 1]. And the definition is strict direct

generalization that the joint cumulative distribution function at the point (x1, x2, · · · , xn)

is same as P (X1 ≤ x1, · · · , Xn ≤ xn)

i.e.,

FX(x1, x2, · · · , xn) = P (X1 ≤ x1, · · · , Xn ≤ xn) for all (x1, x2, · · · , xn) ∈ Rn.

So, that definition is direct extension of the definition from one dimensional case. And keep

in mind that here I am basically talking about joint occurrence of each of the individual



events. And these individual events are basically {X1 ≤ x1}, {X2 ≤ x2}, and similarly, the

nth event is {Xn ≤ xn}. So, I have n events first one is {X1 ≤ x1}, second one is {X2 ≤ x2}
and so on and so forth, final one is {Xn ≤ xn}. So, these are the events we want to consider

and we will try to find out what is the probability of joint occurrence of these events

and that probability is basically nothing but my joint cumulative distribution function of

(x1, x2, · · · , xn). And here this extra term joint is incorporated just to understand that,

this is the cumulative distribution function corresponding to a random vector, not a random

variable. (Refer Slide Time: 05:46)

Let us proceed. And the next thing we are going to see is that some property of joint

cumulative distribution function. Just recall that we had for a distribution function F.

Now, the distribution function of a random variable, we have some property to be true. For

example, we have, of course, that F is non-decreasing, F is right continuous and then we

had that limx→∞ F (x) = 1, and finally, we had limx→−∞ F (x) = 0.

These are the properties are there. Now, so similar kind of properties we will try to see in

case of a two dimensional joint cumulative distribution function. And keep in mind that

in this case, of course, I have defined the cumulative distribution function for n variable in

this slide, but when we are talking about these properties, I am basically writing this thing

for only for two-dimensional thing. Basically my random vector X : Ω → R2 in this case.

That basically means that it is a two-dimensional random vector. And I am just talking

about the property of JCDF, Joint Cumulative Distribution Function for a random vector

which has two components in it. So, the reason behind this is nothing but this is much

easier to write it down, otherwise the writing it is cumbersome, but that these properties

can be easily extended to any general value of n. There is no problem about that.

With that let us start what are the properties. See the first property is that if I take the

limit limx→∞ limy→∞ FX,Y (x, y) = 1. And the idea is very simple. So, this is basically

corresponds to the property, limx→∞ F (x) = 1, in case of one dimension and that becomes

this one. The idea is very simple. The idea is basically nothing but, suppose I have the

point (x, y) here, and joint cumulative distribution function is basically a probability. So,

this is the probability of which region. This is the probability of all the points here I

calculate the probability of this region and that is basically nothing but our CDF. So, the

probability of this region is basically joint CDF at the at the point (x, y). Now, if I take

x→∞ and y →∞, so x goes this side, y goes this side. So, finally, what will happen, I will

cover whole R2. So, when I cover whole R2, the probability has to be 1. That is why this

particular condition actually some correspondence to thie condition, limx→∞ F (x) = 1, in

case of one-dimensional random variable.

Let us move to the second condition which is also corresponds to one of the condition in case



of one dimensional. limx→−∞ FX,Y (x, y) = 0 and limy→−∞ FX,Y (x, y) = 0 both correspond

to this condition that limx→−∞ F (x) = 0.

So, from that we got it. And the idea again the same. If you see that again the cumulative

distribution function at the point (x, y) is the probability of this region. Now, if I take

x → −∞, this straight line actually is moving to this wards, and finally, when it moves to

the side, then I have no points on which I try to find out probabilities. So, basically, it

is something look like probability of ∅ and that is why the probability, that limit actually

equals to 0 and note that this is true for all y ∈ R.

And similarly, the same thing happens with the third property when this straight line goes

to minus infinity, I basically have to find out the probability of ∅ so that is why basically

this property also comes into the picture. Then I have this right continuity thing, but in

this case note that this is the function of two arguments. So, the right continuity thing

look like that it is the right continuous in each argument keeping the other fixed. So, if I

fixed x then it is the right continuous function with respect to y. If I fixed y then it is a

continuous function with respect to x. And where I am fixing x or y?. I am fixing anywhere

I can fix, but it will remain right continuous with respect to the other one. That is basically

next condition and it is clear that next condition corresponding to this condition here. And

the final condition, the fifth condition corresponding to the first condition in case of the

one dimensional random variable. And notice that the first condition actually comes from

the fact that if you have, a ⊆ b then P (a) ≤ P (b). So, if I have a ⊆ b, then I have that

P (a) ≤ P (b). This condition I have. And this particular one actually coming from that.

Let us see how we get this one. Idea behind getting this one is nothing but, suppose I have

a rectangle here and I try to find out what is the probability of the rectangle. Note that

I can easily write the probability of this rectangle in terms of the distribution function.

How?. That I can do in this way that suppose I just take this one. This is the distribution

function at this point. Call this point as (b1, b2). Now, from that, everything here is now

incorporated into the probability. So, what I have to do?. I have to basically subtract all

the points outside this particular rectangle, but already incorporated. So, if I try to do that,

you see that I can just subtract this part which is basically nothing but the distribution

function at this point and this point maybe I call it (b1, a2), and then I am subtracting this

part, which is basically cumulative distribution function at this point which maybe I call

(a1, b2). And finally, what I have done this part I have actually excluded two times. So,

I have to add the probability of this part and this point is basically nothing but (a1, a2).

And the thing is that now you see that exactly what I have written here that is what I got

that, I have taken the cumulative distribution function at this point. I have subtracted the

cumulative distribution function of these two points. And finally, because these areas are



subtracted twice, I have just finally added to that and this one basically nothing but the

point (a1, a2), so I added this one here. Now, the point is that, the expression

FX,Y (b1, b2)− FX,Y (b1, a2)− FX,Y (a1, b2) + FX,Y (a1, a2),

is nothing but the probability of this rectangle, and we know that probability is always

greater than or equals to 0 for all −∞ < a1 < b1 <∞ and −∞ < a2 < b2 <∞.

And that is why we have that this particular expression has to be greater than or equals

to 0 for all possible values of (a1, b1) like this and (a2, b2) like this. So, that is why that

fifth condition has to be true. So, these are some property of joint cumulative distribution

function at two dimension. Of course, I can extend it to any higher dimension, but writing

this condition will be little complicated in that case. So, that is why I am not discussing

this one here. But a very important point I should mention here that if any two-dimensional

function from R2 → [0, 1] satisfies all these properties, then that function has to be a joint

cumulative distribution function at two dimension. So, these five properties are kind of a if

and only if condition. If I have a two-dimensional joint CDF then they has to satisfy this

point. On the other hand, if any function from R2 → [0, 1] satisfy these five conditions, then

it has to be a two-dimensional joint CDF. With that, let us proceed. (Refer Slide Time:

17:10)

Discrete random vector that is what basically we are going to talk now. In case of

that random variable we talked about is discrete random variable. Same definition we have

extended here to discrete random vector. How the definition goes like?. The definition goes

like I have to find out a countable set Sx,y and this is a set in R2. So, I have to find out

a subset of R2 such that it is at most countable. And if P ((X,Y ) = (x, y)) > 0 for all

(x, y) ∈ SX,Y and P ((X,Y ) ∈ SX,Y ) = 1, then we can say that the random vector is having

a discrete distribution. So, a random vector (x, y) is said to have a discrete distribution if

there exists an atmost countable set Sx,y ⊆ R2 such that I have P ((X,Y ) ∈ SX,Y ) = 1.

In this case, generally the set SX,Y is called support. And in case of a discrete random

vector we have the notion of joint probability mass function and the joint probability mass

function fX,Y : R2 → R at the points (x, y) is nothing but

fX,Y (x, Y ) =

{
P (X = x, Y = y) if (x, y) ∈ SX,Y

0 otherwise.

And of course see that if (x, y) does not belongs to the set SX,Y , then of course that

probability has to be 0. There is no other option. And this function is defined from R2

to R2 and this function is called joint probability mass function. So, it is again the direct

generalization of that of probability mass function PMF in case of one-dimensional random



variable and that has extended to two dimensional or three dimensional, even you can write

it for any general n dimensional random vector. (Refer Slide Time: 19:23)

Next one is basically how I can find out the expectation of a function of discrete random

vector. And the definition is exactly the same before. So, I try to find out the expectation

of the function h(X,Y ) which is nothing but the summation

E(h(X,Y )) =
∑

(x,y)∈SX,Y

h(x, y)fX,Y (x, y)

provided ∑
(x,y)∈SX,Y

|h(x, y)|fX,Y (x, y) <∞.

And that sum I have to need to take over the support just like in case of the discrete random

variable and in this case I have to check this property and this property again needed so

that this summation is a meaningful summation. (Refer Slide Time: 20:20)

Now, let us move to continuous random vector. And again, the definition of the contin-

uous random vector goes exactly the same way that of the continuous random variable. In

this case what do we have?. We have basically if I can find out a function fX,Y : R2 → R
that is non-negative integrable function and if I can write the joint cumulative distribution

function as the integeral of this non-negative integrable function i.e.,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (t, s)dsdt

for all (x, y) ∈ R2. Note that this x is here, this y is here. So, if I can write in this particular

form then I can say that the corresponding random vector has a continuous distribution.

So, the definition is exactly same. And in this case the function f is called joint probability

density function. That function f(X,Y ) is called the joint probability density function.

(Refer Slide Time: 21:35)

Let us proceed with that definition and let us see how I can find out the expectation.

The idea of finding out the expectation, again same as that of continuous random vector.

And in this case, if I try to find out the expectation of h(X,Y ), I take the double integration

of h(X,Y ) multiplied by the density function. And this condition again need to be checked

so that this integration is a meaningful integration. So, we have to check whether this

integration is finite or not. Again, note that the same thing we have mod here and the rest

of the things are same as before. (Refer Slide Time: 22:20)

With that let us proceed. Now, let us talk about something called independent random

variables. Independent random variables plays a major role in probability and statistics.

What is the independent random variables?. The intuitive idea is that, if suppose I have

two random variables x and y, or x1 and x2. Now, if the value of one random variable does



not affect the value of another random variable anyway, we say that random variables are

independent. So, just like suppose I am tossing two coins separately. The outcome of one

coin does not have any effect on the outcome of the other coin. Now, in this case, these

two things are completely independent. One has no effect on other. The same kind of thing

we will going to talk about now, but we will going to give the mathematical definition of

that and the mathematical definition goes like this. That if X1, X2, · · · , Xn is a collection

of random variables, we say that these are independent if the particular expression

FX1,X2,··· ,Xn(x1, x2, · · · , xn) = Πn
i=1FXi(xi),

is hold true for all (x1, x2, · · · , xn) ∈ Rn. This for all is important. So, what does this mean?.

This basically mean, notice that the left-hand side here is nothing but the joint cumulative

distribution function of (x1, x2, · · · , xn), and on the right-hand side, this quantity is nothing

but the CDF, the Cumulative Distribution Function of xi and then I am taking the product

over all. So, this quantity I can write as F (x1) at the point x1, F (x2) at the point x2 so on

so forth, finally, F (xn) at the point xn. And in this case, you see that basically this means

that if the joint cumulative distribution function can be written as the product of marginal

cumulative distribution functions, and if it is true for all values of (x1, x2, · · · , xn) ∈ Rn,

we say that the random variables X1, X2, · · · , Xn are independent random variables. So,

by the way in the context of jointly distributed random variables, this CDF is called the

marginal CDF just to signify in the context of jointly distributed random variables. Now,

this is of course a very general definition, because the cumulative distribution function and

the jointly cumulative distribution function exists for any random variables and any random

vectors, respectively. So, this is a very, very general definition and this definition I can use

for any kind of random vectors. In case of the discrete and continuous random vectors,

we can give the equivalent definition. Notice that the main definition is basically given in

terms of the cumulative distribution function as I mentioned. Now, in case of the discrete

random vector, suppose my (X,Y ) is a discrete random vector. In this case, the equivalent

definition can be given in terms of joint PMF and marginal PMF. Suppose (X,Y ) is discrete

random vector, then if I can write the joint PMF of (X,Y ) same as product of the marginal

PMFs of X and Y for all (x, y) in R2, we can also say that X and Y are independent

random variables. The similar thing is also true for continuous random variable. Suppose

x and y are continuous random variables and also, I am assuming that (X,Y ) as a vector

are continuous random vectors, then if I can write the joint PDF is same as product of

the marginal PDFs for all values of (x, y) in R2, I can tell that X and Y are independent

random variables. So, of course, in this case, I have written these for two-dimensional

random variable, but it can be easily generalized for a multi-dimensional one. For example,

if I have n random variable X1, X2, · · · , Xn, in case of (X1, X2, · · · , Xn) is discrete random



vector, this is the joint PMF, and in case of the continuous random vector it is a joint

PDF. If I can write this one is same as product of f(xi) at the point xi, i = 1, 2, · · · , n for

all (x1, x2, · · · , xn) ∈ Rn, then we can tell that X1, X2, · · · , Xn are independent random

variables. So, again, notice that in case of the discrete random variable this is the joint

PMF and in case of the continuous random vector this is the joint PDF. And similarly, in

this side also, in case of the discrete random variable it is the marginal PMF and in case of

the continuous random variable it is the marginal PDF. So, this is the equivalent definition.

And of course, this definition is only valid for either discrete random vector or continuous

random vector. And in general, of course, I cannot use this definition, because for general

kind of random variable the PDF and PMF may not have any meaning. So, that is why

basically this is a particular case of discrete or continuous random variable and sometimes

this definition we can use very easily compared to the original definition which is given in

terms of the cumulative distribution function. Now, you see that in this case actually what

I have is that, I can again find out the expectation very easily. So, suppose X and Y are

independent here, if I try to find out the expectation of g(X) into h(Y ), then I can write it

as the expectation of g(X) multiplied by expectation of h(Y ) i.e.,

E(g(X)h(Y )) = E(g(X))E(g(Y ))

provided all the expectation to exist. And keep in mind here the functions are product and

g is the function of X only, h is the function of Y only. Then I can find out the expectation

of g(X), I can find out the expectation of h(Y ), I product them, I get the expectation of

the product. So, easier way to remember this one if X, Y are independent, the expectation

of product is same as product of expectations. That is the easier way to remember.

With that, I stop for this particular lecture. In the next lecture we will see some more

concepts of probability random variable, random vectors, especially we are going to see the

conditional distribution in case of random vectors and which has a lot of use in our Markov

chain part. Thank you for listening.


