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Hello everyone, welcome to the 21st lecture of the course Discrete-time Markov Chains and
Poisson Processes. So, in the last lecture, we saw that if you have, if Xn is an irreducible
positive recurrent Markov chain, then starting from any state i, the long run proportion of
time, the chain visits state ior the long run proportion of time the chain spends in state i that
is equal to πi which is the unique stationary distribution, where πi is equal to 1

Ei(Ti)
. So, we saw

that stationary distribution appears as a limit that showed that, okay. Stationary distribution
is indeed important because I said that it is a very important thing, we have already seen many
important properties of stationary distribution. In today’s lecture, we will see some more. And
another thing that we saw in previous lecture was this complete characterization of states in
terms of this p ii k like, when it is transient, recurrent, positive recurrent, and null recurrent.
So, if

∑n
k=0 p

(k)
ii <∞, then it is transient if this quantity is equal to infinity, then it is recurrent.

Now, in order to further sub classify it into positive recurrent and null recurrent, we need to
look at this quantity which is 1

n+1

∑n
k=0 p

(k)
ii , if the limit of this is equal to 0, then it is null

recurrent and if it is positive, then it will be positive recurrent. So, today we will see some
more limiting theorems, so this the first theorem that this long run proportion is πi that was
1 of the limiting theorems, so this module is about limiting theorem. So, today we will see 1
more very important limiting theorem, so let us start.

So, we saw that, okay, if it is positive or null recurrent, so we saw this kind of a thing that
1

n+1

∑n
k=0 p

(k)
ii , so say if i is, so this converges to 0, if i is null recurrent and this converges

to 1
Ei(Ti)

, if it is positive recurrent. So, again you see that we already saw that this long run
proportion is equal to the station distribution, but again, what is this Ei Ti? Now, since it
is positive recurrent suppose we are assuming reducibility as well then this is precisely the
stationary distribution. So, we see even the limit of this thing 1

n+1

∑n
k=0 p

(k)
ii that is equal to

the stationary distribution. The i-th component of the stationary distribution if the state or
if the chain is irreducible and positive recurrent. Now, for a state i what about this limit?
Remember what is this, so it is starting from i, Xn = i, does this have a limit? So, as limn→∞
does this converge to something. Remember, if you recall 1 of the theorems that we saw in the
module of stationary distributions, we saw that if you have a finite state Markov chain then
this p

(n)
ij , the limit of that if it exists we called it as limiting distribution and if it exists that has

to be the stationary distribution. So, basically this you start from a state and then probability
that you add Xn equal to j as n goes to infinity does this converge to something that theorem
said that if this limit exists then that has to be equal to the stationary distribution, but it did
not say anything about when or whether the limit exist or not. So, here we are now trying to
investigate that part whether that limit exist or not, but here we instead of i and j we are just
looking at i = j. Again, we will see, finally when we see the result, we will see everything for ij,
but initially, first let us concentrate on p

(n)
ii . So, whether this starting from i, P (Xn = i) if this

as limn→∞ this limit exists. In order to answer that question, first let us look at an example, so
we consider the Markov chain with the following transition probability matrix. So, the Markov
chain has two states 0 and 1 and the Markov chain is actually very simple, so if this is 0 this is
1, it just goes from 0 to 1 with probability 1 and it goes from 1 to 0 with probability 1. So, it is
a extremely simple Markov chain and it is easy to see that it is irreducible because you can go
from any state to any state and if you just try to calculate, you will see that this has a unique
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stationary distribution given by half comma half. So you can easily check that. Now as soon
as it has a unique stationary distribution or just, because it has a stationary distribution, it is
irreducible, so all states are positive recurrent. So it is a irreducible positive recurrent Markov
chain with these stationary distributions. So, in that sense it is a nice Markov chain, now let
us see for such a Markov chain, if whether this limit exists or not. Now, here you see, since
like it is a very the dynamics of the Markov chain is very simple it goes from 0 to 1, 1 to 0.
So, starting from 0 the probability that it will be at 0 in odd number of steps that is 0 because
it goes from 0 to 1, 1 to 0, so it is at 0 at all even steps. So, p

(2n−1)
00 = 0 and p

(2n)
00 = 1 for all

n ≥ 1. Now, that is very simple from the dynamics of this Markov chain, but that tells you
that this limit does not exist, because what is this like if you look at, so this if you look at, so
this p

(n)
00 is nothing but just a real sequence and how does that sequence look like so it is like

in or so p
(n)
00 is. So, if I just look at from say the first so odd place you have 0 and even place

you have 1. So, it is a sequence of 0 and 1, so obviously this does not have a limit because
the lim soup of this is 1 and limit as n → ∞ of this is 0. So, you know like this kind of n,
so it is kind of an alternating sequence, so the limit does not exist. So, you see for such a
simple Markov chain which has all these properties of irreducibility, positive recurrence, unique
stationary distribution still this limiting distribution does not exist. But, now the question is
okay then is there some issue with this Markov chain?

Now, in order to understand that first we need to learn a definition, the definition of a
period. Now, what is period of a state? So period of a state i is defined by the greatest
common divisor of all integers n greater than or equal to 1 for which this p

(n)
ii > 0, i. e., what

is di, di is the gcd of all n ≥ 1 such that p
(n)
ii > 0, if this is a non-empty set, if this is an empty

set then we define the gcd to be equal to 0, define the period to be equal to 0. Now, what is
greatest common divisor? Again this is something you should know from high school. So, given
a set of numbers, what is the greatest common divisor or the highest common factor, that it
is also called the highest common factor, so what is that? It is basically, so great again so its
greatest common divisor, so the name itself will tell you what it is. So, first of all it has to be
a common divisor. So, if you are given a set of numbers, so in this case the set of numbers
is the set of all n for which this p

(n)
ii > 0. So,I look at this set of numbers, now the greatest

common divisor is a number which is first of all a common divisor, that means it should divide
each number in that set, it is a common divisor and it is the greatest common divisor that
means, if you have any other common divisor that will be less than or equal to that. Say for
example, If I look at, if my set is 4 and 8, so if my set is, so here it is suppose my set is 4
and 8 then 1 is a common divisor because 1 divides everything, 2 is a common divisor, 4 is a
common divisor, but what is the greatest common divisor, 4 is the greatest common device.
But in this case, this set can be an infinite set. So, actually, so when this is non empty, this
actually will be an infinite set. So, but again it does not matter, it is the same thing. The,
so the greatest common divisor of a given set of numbers finite or infinite does not matter is a
number that number, which is a divisor of all the numbers in that set, so it is a common divisor
and if there is any other common divisor that has to be less than or equal to gcd, it is the
greatest common divisor also this is called the highest common factor. So, what is this period?
The period is the greatest common divisor of this set of numbers, what are the numbers? So
it is the collection of all those n ≥ 1 for which p

(n)
ii > 0. That means starting from i you can

be at I, in the n-th step with positive probability. If n is such that for which this probability
is positive then you take that n. So, you look at the collection of all such ns that gives you
a set of numbers, the greatest common divisor of that set of numbers is called the period of
that particular state i. And if this set is empty, then you call it, like then you just define the
period to be 0. The important case is this first case when it is non-empty right. Further, if i is
called aperiodic, if the period is 1. Now, let us see some examples to understand this concept
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of period better. So again consider the Markov chain, so this is basically the example which
we saw in the previous, so example 34 and example 35 is the same Markov chain, in 34 we saw
that this Markov chain does not have the limiting distribution or in other words limn→∞ p

(n)
ii

does not exist. Now, let us see that what is the period of say 0, now we have already seen that
p
(2n−1)
00 = 0 and p

(2n)
00 = 1. So, now what is this set? Set of all n ≥ 1, where p

(n)
ii > 0, so this is

precisely the set {2, 4, 6, . . .}, which is the set of all even numbers. Now, what is the greatest
common divisor? So, 2 is a common divisor, so basically 1 and 2 are common divisors of set
of all even numbers because if you take anything greater than 2, that will not divide 2. So, 1
and 2 are the greatest, are the common divisors of the set of all even numbers among them,
2 is the greatest, so d0 is equal to 2. Similarly, see for even 1 also the same thing is true that
p
(2n−1)
11 = 0 and p

(2n)
11 = 1, because the 1 also you go to from 1 to 0 and then you come back to

1. So, starting from 1, you can be, you are at 1 at even steps, so even by the same argument,
you can also check that d1 is also equal to 2. So, here we see that this 1 thing is there that
here it has period 2. So, is that a problem because of which this p

(n)
ii , the limit of that did not

exist, it can be because we saw why it did not exist, because the, if we looked at this sequence
of p

(n)
ii , it was this alternating 0 1 0 1, so maybe there is some connection with this periodicity

thing. But that, we will see slightly later, but before that, let us seeonemore example.
So now, we look at this S, so the state space is the set of all integers. So, 0± 1± 2 and so

on and suppose you starting from I, so again you go to, from i to i− 1 with probability a, you
go to i from, sorry, so this is i, this is i+ 1, and say this is i− 1. So, you go from i to i− 1 with
probability b and you remain at i with probability c, where a + b + c = 1, where a, b, c > 0.
Now, fix a state i, now, suppose that p

(1)
ii , so again, what is p

(1)
ii ? That is just simply pii, p

(1)
ii

is pii. So, that from here that is equal to c, so if that is strictly greater than 0, that means if
I look at the set, the set of all n ≥ 1, p

(1)
ii > 0 , so then 1 belongs to that set. So 1 belongs to

the set of all n for which p
(1)
ii > 0, because p

(1)
ii which is nothing but just pii that is c, which is

strictly greater than 0. So, if c > 0, 1 belongs to this set. Now, as soon as 1 belongs to this set,
the only possible common divisor is 1, because if you take anything greater than 1 it will not
divide 1. Remember, common divisor means it has to divide every number in that set and as
1 is in the set anything greater than 1 cannot be divisor. So, 1 is the only common divisor and
hence it is the greatest common divisor. So, in this case the di is equal to 1. So, or in other
words, if c is greater than 0, then i is what is called aperiodic. So, in this case, i is aperiodic.
Now, that is if c > 0, if c = 0 that means what you can go from i to i − 1 and i to i + 1. So
again, so this is just simply like a simple random walk, and in a simple random walk, we saw
that if you are starting from a state you can come back to that state only in even number of
steps, you cannot be come back to that state in odd number of steps. So, again for any i this
is equal to 0 and now this is positive. Again not, like the previous example, it is not 1, but it is
strictly greater than 0. So, starting from state i, there is a positive probability that you come
back to i in any even number of steps. For example, if you have to come back in two steps, say
there are two ways of doing that either you go from i to i + 1 and then come back or you go
from i to i − 1 and then come back. So, all these for any even step this probability is strictly
greater than 0. So, now if I look at, again the set, set of all n greater than or equal to 1 where
p
(1)
ii > 0 that is again the set of all even positive even integers. So, 2m,m ≥ 1. Now, we have

already seen this in the previous example, the only common divisors are 1 and 2 so 2 has to be
the greatest common divisor, so in this case di is equal to 2. So, depending on whether c > 0
or c = 0 we get 2 kinds of things. So, if c > 0, then the period is 1 and if c = 0 then period is
2. And now again, you see, so here you see, I have done it for any state i, so it is true for all
states. Now, even in this previous example also, you saw that the period is same for both the
states.

Now, is there something special? Yes, like transience, recurrence, positive recurrence, null
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recurrence, even period is a class property. So, if i communicates with j then di is equal to
dj. In both the previous examples that we saw, it is very easy to check that both the Markov
chains are irreducible. So every state has the same period, in the first example, it was both 0
and 1 had period 2, in the second example, if c > 0, then all states have period 1 and ifc = 0,
then all states have period 2. So, even period is a class property. So, if i communicates with
j, then di the period of i is equal to period of j. So, a small thing, let me just so here, so
basically, so instead, of this we should write it as di equal to dj that is the notation that we
are using not d(i), but di. So, if i is equal to j, if i and j communicate then di is equal to dj,
so if i and j is in the same communicating class, then they have the same period, so states
in the same communicating class have the same period or in other words periodicity just like
recurrence, transience, positive recurrence, null recurrence is again a class property. So, if Xn is
irreducible, then all states have the same period, in particular if all states have period 1, we say
that the Markov chain is aperiodic just like if all states are recurrent. we say the Markov chain
is recurrent or if all states are transient, we say that the Markov chain is transient. Similarly, if
it is an irreducible Markov chain, and all states have period 1, then obviously all states will have
the same period. Now, if it is equal to 1, then we say that the Markov chain is aperiodic. Now
comes the important theorem, which says that let Xn be an irreducible positive recurrent, and
aperiodic Markov chain, then for any initial distribution µ, so that means what is µ, so µ is like
P (X0 = i) is µi, that is the meaning of any initial distribution µ, then limn→∞ Pµ . Again, Pµ
means just this, that you are starting from the initial distribution, Pµ(Xn = i), this exists and
is equal to πi for all i, where this πi, i ∈ S , is the unique stationary distribution. Again, since
it is irreducible and positive recurrent, we know that the stationary distribution exists and it is
equal to the, it is, it exists and it is unique and it is equal to 1

Ei(Ti)
. So again, this quantity or

the limiting distribution is the stationary the unique stationary distribution. Now see, this is
not again we have already seen this at least for in the case of finite state Markov chains, that
if the limiting distribution exists, then it has to be stationary distribution. We have already
seen this result, the question was when the limiting distribution exists. So, here, we give a
condition on the Markov chain under which the limiting distribution exists. So namely, if it is
irreducible, positive recurrent and aperiodic, then for any initial distribution mu, so no matter
what initial distribution you start with this limiting distribution the by limiting distribution,
I mean this quantity that starting from any initial distribution the probability that at the nth
step, you will be in state i as n → ∞ , that converges to πi, where πi is 1

Ei(Ti)
,because this is

a irreducible positive recurrent Markov chain, so it has a unique station distribution π where
πi is Ei(Ti). So, in particular suppose my µ is δi, so that means if I say start from i and then
if I look at, say starting from i what is the P (Xn = j) this as n → ∞ will converge to πj. So
here, I am looking at the special case, where my initial distribution is δi or I start with from
i with probability 1. So since, this is true for any initial distribution, I can obviously choose
my mu to be δi, so for any two states i, j, limn→∞ p

(n)
ij = πj. So, in the theorem in the module

of stationary distributions, we saw that for, if it is a finite state Markov chain, then if the
station limiting distribution exist that has to be stationary distribution, but what this theorem
is telling you is giving you a condition or a set of conditions rather, under which this limiting
distribution exist. So that this is equal to πj is actually not surprising that, this is equal to
the stationary distribution is not surprising. But the important thing is this, what so the main
content or crux of this theorem is condition under which the limiting distribution exists. So,
the first example which we saw namely this example, so what was the issue with this, the issue
with this example was that it had period 2, because we have seen this here, that this Markov
chain has period 2. So, this is not aperiodic, hence that is why, so for the limiting distribution
2 exist there this aperiodicity is needed if it is not aperiodic the limiting distribution may
not exist. So, if the Markov chain is irreducible, positive recurrent, plus aperiodic, then the
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limiting distribution exists and it is equal to the stationary distribution. So you see again like
why stationary distribution is important, so what this basically tells you is that it says that,
so you start from any, so, we have seen that if you start from a stationary distribution, you
remain there that means the distribution of each Xn is equal to that stationary distribution.
But now, if you start from any initial distribution, what this theorem is telling you is that as
n→∞ P (Xn = i) that is equal to πi, so even if you do not start from the initial distribution
if your chain is irreducible, positive recurrent and aperiodic, then basically the chain moves
towards initial, moves towards the stationary distribution. So that is why some books also use
the term equilibrium distribution for stationary distribution, because every system wants to
go towards the equilibrium. So, if you, if the chain is irreducible, positive recurrent, plus a
periodic then the, no matter what initial distribution you start with the chain will eventually
move towards the stationary distribution that is not a very precise mathematical statement.
The precise mathematical statement is this that limn→∞ Pµ(Xn = i) = πi that means the
limiting distribution is the stationary distribution. And this theorem is telling you something
more, so remember that theorem, in the module for stationary distribution, the theorem was
only for the, statement of the theorem was only for finite state Markov chain, state that if it is
a finite state Markov chain, then if the limiting distribution exists, then it has to be stationary
distribution, but what this theorem is telling, okay, you do not need actually finite state Markov
chain. If it is, if the limiting distribution exists and the limiting, again if the if even if it is a
infinite state Markov chain the and provided it is irreducible, positive recurrent and aperiodic
then the limiting distribution exists and it is equal to the stationary distribution. So, even if
you do not start from the stationary distribution, you eventually move towards the stationary
distribution. So, that is why it is also sometimes called an equilibrium distribution, so that
is because every system wants to move towards equilibrium and if you have an irreducible,
positive recurrent, aperiodic Markov chain, then its distribution moves towards the stationary
distribution. Now, I will end with 1 just small remark, that this kind of a Markov chain if it is
irreducible, positive recurrent and aperiodic some books also use the term for such a Markov
chain they use the term ergodic. So, if in a book you see that Xn, let Xn be an ergodic
Markov chain, that means it is irreducible, positive recurrent and aperiodic. So, ergodic is a
common term used for if a Markov chain has all these three properties, that it is irreducible,
positive recurrent and aperiodic then such a Markov chain is also called aperiodic. So, I just
wanted to mention this because in some book, you might encounter the book on Markov chains,
discrete time Markov chains, you might encounter this terminology ergodic and this is what it
means irreducible, positive recurrent and aperiodic. So, what we have seen today is two more
important properties of stationary distribution again not two more, actually like one more that
it is actually the limiting distribution. So, we already knew it for the case of finite state Markov
chains, but there we did not know when the limiting distribution actually exists.

So, today we saw a criteria under which the limiting distribution exist and also, so once
the limiting distribution exists it is equal to the unique stationary distribution provided, the
chain is irreducible, positive recurrent and aperiodic. So, you see, so suppose someone asked
you, okay, if you look at a chain of, so long time from now, so that is the meaning of so in
real life what is the meaning of limn→∞? Suppose the chain starts from now, the current time
and someone asked you, so if you now look at the chain, a long time from now what is the
probability that you will, that the chain will be in state i. Then the answer is if the chain is
irreducible, positive recurrent and aperiodic, then in the long run the probability that you will
find the chain in state i is equal to πi, that is the way you should interpret this mathematical
theorem that or the mathematical result that the limiting distribution is πi. So, in the long
run, if you look at the chain, the probability that you will find the chain in state iis equal to
πi, where πi is the unique stationary distribution. So, we also know what this πi = 1

Ei(Ti)
. So,
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we will stop here today. Thank you all.

6


