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Hello everyone, welcome to the 24th lecture of the course Discrete Time Markov Chains
and Poisson Processes. So, in the last two lectures, we solved a few problems. In todays
lecture, we will start with a new topic, which is time reversibility.
So, let Xn be an irreducible Markov chain. Before starting with the theorem, let me say
a few words. So, what is a Markov chain? We say that a process Xn is a Markov chain
if given the present state the evolution or the future evolution depends, does not depend
on the past, that is what a Markov chain is. Now, so this is something talking about the
forward evolution. Now, what if we look at the backward evolution.
So, what do I mean by that? So, suppose say you are told that, you are given the states
X100, X99, X98 and you are asked about X97. So, these states you are given X98, X99, X100

you are given and you are asked that what is the probability that X97 was a certain state.
So, basically, you are being asked the question about backward in time. So, now the question
is, can you answer this question?
And another question is, in order to answer that question, how much of this information is
relevant? Do you need all these states X98, X99, X100? Or do you just need X98? Let us
see. So, that is the motivation or that is the starting point. So, the Markov chain definition
talks about future evolution, what if we look back in time, or we reverse time. So, we will
start today with a theorem.
So, let Xn be an irreducible Markov chain with stationary distribution, one small thing. So,
you see here we are looking at 0 ≤ n ≤ N . Till now, we were just looking at for all n ≥ 0. So,
we are looking on an infinite time horizon, but here we are looking on a finite time horizon.
Very soon you will see why we need that, but again nothing changes you can look at a Markov
chain on a finite time horizon all definitions and everything remains intact. Here, we are
looking at the Markov chain on the time horizon 0 to capital N. Now, define Yn = XN−n.
So, you see that is why because, so, we cannot talk about some X infinity minus something.
So, that is why we need to look at on a finite time horizon.
So, we are defining why Yn = XN−n. Then Yn is again a Markov chain with initial distri-
bution pi and transition probability matrix P̂ , which is given by this equation. What is it?
That πjP̂ji = πiPij. So, basically, it is saying that the entries of this matrix the transition

probability matrix satisfies this relation that πjP̂ji = πiPij, for all i, j.
So, what it says is that, like now, if we go back to the question which we started with it said
that, it says, so what this theorem tells you is that like okay if you are looking back in time
that is again a Markov chain. That means, if you are given information about X100, X99,
X98 and you are asked something about X97 a probabilistic like what is the probability that
X97 = i for some i in the state space.



Then you only need that what the 98th state is. So, again this you can think of as the
current state, so you do not need too many things in the future. So, you only need X98.
That is the meaning of the statement that Yn is again a Markov chain. Now, remember,
here we start, not, the initial distribution is also important, the initial distribution is, so if
you start with π, so that is also important.
So, be an irreducible Markov chain with stationary distribution π and you also start the
Markov chain at π. So, this is also important that probability, so P(X0 = i) = πi, that is
also important that the initial distribution is the stationary distribution. So, you start from
the stationary distribution, so that is also there. So, if Xn is an irreducible Markov chain
with initial distribution π where π is also the stationary distribution.
Then if you define Yn in this way, where Yn = XN−n then Yn is again a Markov chain with
initial distribution π and transition probability matrix P̂ which is given by this relation.
Moreover, Yn is also irreducible and has an invariant distribution π. So, remember, so this
point is important that you are starting from the stationary distribution.
That P(X0 = i) = πi. The initial distribution is not π, this theorem is not true and again this
π is not any initial distribution, but π is, it is also told that π is the stationary distribution
of the Markov chain. So, here that means the stationary distribution. So, it is like, since it
is irreducible the Markov chain will have, if there exists a stationary distribution then there
will be a unique stationary distribution.
So, here basically you are told that okay the unique stationary distribution exists and you
take that as the initial distribution. If that is the setup then if you define your Yn in this
way, then Yn is again a Markov chain with initial distribution π and transition probability
matrix this P̂ where P̂ is given by this relation. Further, Yn is also irreducible and has an
initial distribution π.
So, what this is telling you is that if you, so for a Markov chain, we know that if you are
trying to predict the future evolution, you only need the current state and nothing from
the past. Similarly, if you start a Markov chain from the stationary distribution and an
irreducible Markov chain from the stationary distribution at look backward in time, then
that again a Markov chain. So, more specifically we have to give an example.
So, if you are given the states X100, X99, X98 and you are asked about X97 then only you
need to know what X98 is, from that you can make a probabilistic statement. So, what is
the probability that say suppose, so if I ask you what is the P(X97 = j|X98 = i), that is now

equal to P̂j. That is the meaning of that this is the transition probability matrix.
And the Markov property means like in apart from this if you are also given a X99. Any-
way, let me now write this again. So, again if you are given some extra information, say
X99,X100still this probability is just this P̂ . So, only you need to know X98 in order to say
something about X97. You do not need anything more in the future like X99, X100,... That
is the content of this theorem.
But remember one important thing is you start the Markov chain from the stationary distri-
bution then if you reverse it, then it is again a Markov chain with the same initial distribution
and the reversed Markov chain is also irreducible. So, remark that this chain is called the



time-reversal of Xn and you can easily see that from the definition, because you are looking
backward in time or you are reversing time.
So, this chain Yn is called the time-reversal of Xn. Now, one more definition, let Xn be
an irreducible Markov chain with transition probability matrix P and initial distribution π,
where π is also stationary distribution. Now, you know in this case if you reverse the Markov
chain then it is again a Markov chain with initial distribution π and transition probability
matrix P̂ .
Also, this time reverse chain is irreducible and has π as invariant distribution. Now, if for
all n ≥ 1 the time reverse chain. Now see, now, we are looking at Xn the Markov chain of
infinite time horizon, but if you have to, so what is, but for the definition what we are saying
is that if for all n ≥ 1 this time reverse chain also has transition probability matrix P then
Xn is said to be reversible.
Now, in order to define this time reverse chain, you need to just look at the Markov chain on
a finite time horizon that is why what this definition is telling you, you say a Markov chain.
Now, when Xn for n ≥ 0 on the entire or the infinite time horizon it is said to be reversible
if for all N ≥ 1, if you look at this reverse chain, then that is.
So, this first theorem tells you that well that will be again a Markov chain with initial distri-
bution, that will be again an irreducible Markov chain with initial distribution π, which will
also be the stationary distribution and the transition probability matrix will be P̂ . Now,
the, so that is for any irreducible Markov chain starting from the stationary distribution.
But further, if you know that this P̂ = P that means, this transition probability matrix
of the time reverse chain is same as the transition probability matrix of the original chain
then you say that the Markov chain is reversible. So, again what is the meaning of also as
transition probability metrics P?
That means, you know that the reverse chain transition probability matrix is P̂ . What this
definition is telling is if this P̂ = P or in other words what it means is that if P̂ij = Pij
for all i, j then you say that the original Markov chain is reversible. So, if the transition
probability matrix of the reversed chain is same as the transition probability matrix of the
original chain, then you say that the Markov chain is reversed.
Now, we will see a couple of examples. So, first, consider the Markov chain with the fol-
lowing transition probability matrix. Now, again it is easy to see that this Markov chain is
irreducible. Any two states communicate and have unique stationary distribution this now,
why? Because, you can again check that this is a doubly stochastic matrix and we have
already seen this result.
So, if the transition probability matrix is doubly stochastic and the chain is irreducible, then
the unique stationary distribution is given by 1

N
where N is the number of states. So, here

the number of states is 3. So, the unique stationary distribution is given by 1
3
. Now, if P

had satisfies this, remember, we are trying to check whether this Markov chain is reversible
or not. Now, what will be the transition probability matrix of the reverse chain it will be P
hat which will satisfy this.
But now, you know that, so here what is pij = 1

3
for all j. So, this and this are both equal



to 1
3

and hence, they get canceled. So, P̂ will satisfy this. So, P̂ji = Pij. Since, Pij is same
for all j, so this will get canceled from both sides. So, P hat will satisfy this relation or in
other words, P̂ji = Pij.
Now, if this Markov chain has to be irreducible that means what, that means, again see,
so here it is, it says thatP̂ji = Pij but I have written as P̂ij = Pji. But since this is true
for all i, j you can just interchange i and j. But then if this has to be time-reversible then
P̂ij = Pij. But what this relation is telling you this is equal to Pji. So, this Markov chain
will be reversible, if Pji = Pij for all i, j.
But you can clearly see say for example, P12 = P21. What is P12? P12 is basically, so you are
looking at P12. So, the first row is 1, second column. So, basically this. So, you are looking
at this, that is P12, and this is P21, you can clearly see, so 2

3
is not equal to 1

3
.

So, this Markov chain is not reversible because you see like, if it has to be reversible, there
at least for this particular case it has to satisfy this condition that Pji = Pij for all i, j. But
you can see P12 6= P21. Similarly, you can also check say for example, P01 6= P10, because
this is P01 and this is P10. So, this Markov chain is not reversible.
So, let us look at another example. Now, we consider another Markov chain with the fol-
lowing transition probability matrix. So, this matrix is very similar to this but with a slight
modification, anyway. So, the Markov chain has this transition probability matrix. Again, it
is easy to check that the Markov chain is irreducible and has unique stationary distribution
because again you can check that this matrix the transition probability matrix is doubly
stochastic.
Now, again, thus if P̂ has to satisfy this by the same calculation as before, it should be
P̂ij = Pji. But now, you look at this matrix here P̂ij = Pji for all i, j. So, again, so if this

chain has to be reversible you need P̂ij = Pij. But since the stationary distribution has all
components equal this is basically equal to Pji. So, this chain will be reversible if Pji = Pij
for all i, j and that is precisely true for this given transition probability matrix.
So, you see this and this is same this and this is same this and this is same. And obviously,
so you only need to check this for i 6= j because for i = j that is trivially true. So, here is
an example of a transition probability matrix or here is an example of a Markov chain that
is reverse.
So, you see, we have seen both the examples one of a Markov chain that is not reversible
and another of a Markov chain that is reversible. Just the transition probability matrices
are very similar, but with a slight difference, so in one case it is reversible in the other case,
it is not reversible. So, moving forward.
So, that was about time reversibility. Now, we will see another definition. So, initially, you
might find okay from where this definition is coming, but slightly later you will see that,
okay, everything is connected. So, what is that definition? So, let Xn be a Markov chain
with transition probability matrix P. A non-negative row vector λ, where the size of the row
vector is equal to the size of the state space.
And P, P is the transition probability matrix, are said to be in detailed balance if this con-
dition is true λjpji = λipij for all i, j. So, that is the definition of detailed balance. So, let



Xn be a Markov chain with transition probability matrix P. A non-negative row vector λ,
non-negative means, each λi ≥ 0. So, such a non-negative row vector.
And P this transition probability matrix P is said to be in detailed balance if this condition
is true, λjpji = λipij for all i, j. So, the obvious question is why suddenly this condition,
what is like, what this condition is going to give us? If we investigate a little more closely,
we will see that. So, that is our next remark that if λ and P are in detailed balance that
means, this condition is true, then λ is an invariant measure for the Markov chain.
And what is the proof? The proof is very simple. Now,

∑
i∈S λipij, this is equal to this,

why? Because λjpji = λipij, that is the detailed balance condition. But now, so, again the
summation is still over i ∈ S, but now when you, because now, look at this, this is . So,
when you are doing P,

∑
i∈S you are basically summing up a row of transition probability

matrix and that is equal to 1, because you are summing it over i and this is pji.
So, you are actually summing up over the jth row, so that sum should be equal to 1. So,
again λ, the sum does not depend on j. So, you can take out λj outside, so this becomes
equal to λj. So, finally, you get λj =

∑
i∈S λipij and this is true for all j ∈ S. So, and this is

precisely the condition for the stationary measure. So, recall the definition of a stationary
measure it says that a row vector with non-negative entries is said to be a stationary measure
if it satisfies this condition.
So, we see that if λ and P are in detailed balance, then lambda is an invariant measure for
the Markov chain. So, you see. So, in general, in order to find a stationary measure, you
need to solve this set of equations given by πP = π. Now, you see this. So, again this is also
a set of equations, but this is a much easier looking or simpler looking set of equations.
So, in many cases you will see, you will see some examples later that calculating this de-
tailed, finding solutions to detailed balance equations is easier than finding solutions to the
stationarity equations. So, this is a special case. So, if it is, if the detailed balance equations
is true or if λ and P satisfy the detailed balance condition, then λ is an invariant measure.
So, if you can show that the detailed balance equation has a solution, then you can find an
invariant measure.
Now, if that invariant measure, the sum of all the entries is finite, then you just divide by
that sum and you can make it an invariant distribution. So, this is a way of finding invari-
ant distribution. And why we are looking at this? Because this way is slightly easier than
finding it from the original equation set of equations which is πP = π, which is slightly more
complicated than this detailed balance equation.
So, detailed balance implies stationarity obviously, if it is a stationary measure it need not
satisfy the detailed balance equation, but if it satisfies the detailed balance equation then it
is a stationary measure. So, this detailed balance is a stronger notion. So, if it satisfies the
detailed balance condition then it is a stationary measure or it is an invariant measure.
And further, if you can show that if that sum of the entries, so if the sum of the entries
is infinite or if it is 0 then again it will be just an invariant measure you cannot do much
with that, but if the sum of the entries is finite, then you just divide by the sum to make
it an invariant distribution. Because, if something is an invariant measure then if you just



multiply it with a constant it remains an invariant measure, but now, since we are dividing
by the sum it will become an invariant distribution. So, this is a way of finding invariant
distribution.
So, if you can show, if you can find a solution to the detailed balance equations that is a
way of finding invariant or stationary distribution. But why we, the important thing is that
you will see cases where finding a solution to the detailed balance equations is much simpler
because this is a much simpler looking equation as compared to the stationarity equations.
So, now, the question is, in the first couple of slides, we looked at this time reversibility, and
then suddenly we move to detailed balance equations. Detailed balance equations is useful,
because if we can find a solution to the detailed balance equations, we can find invariant
distribution or stationary distribution.
But is that the only reason why we brought this stationary distribution this detailed balance
equations then we could have brought it when we dealt with just stationary distributions,
why did we bring it in the lecture on time reversibility? That is because these two are
connected, what is the connection is given by the next theorem. So, let Xn be an irreducible
Markov chain with transition probability matrix P.
Let π be a positive row vector which means πi > 0 for all i in S such that the sum is equal
to 1. Or in other words, it is a distribution. Then, the following statements are equivalent.
Again, what is the meaning of the following statements are equivalent. That means, the
statements are if and only one implies the other and vice versa. So, π and P are in detailed
balance, you know what that means, and the second statement is π is the stationary distri-
bution for Xn and Xn is reversible.
So, if you can find, so if you are given an irreducible Markov chain, and if you can find a
solution to the detailed balance equation, then it is not just that that solution is a stationary
distribution. But further, the Markov chain is also reversible. Well, in this course, I am not
able to give you the full justification of why reversible Markov chains are useful.
But if you do any further course on Markov chains or some advanced course in Markov
chains, then you will find out why reversible Markov chains are useful. I will just make one
statement. So, if you know what Markov Chain Monte Carlo is, then that is one place where
this reversible Markov chain plays an important role.
So, if you do not know what Markov Chain Monte Carlo is, you do not need to bother,
but just keep this thing in mind that why we are looking at reversible Markov chains, is
because reversible Markov chains have some useful applications, but we are unable to keep
such applications in this course, because we have some other things to do. But reversible
Markov chains are important, keep this point in mind.
So, we are not just studying them just like that, but we are studying them because they are
actually important and has many applications in various places. One such place is Markov
Chain Monte Carlo if you know what it is, if you do not know do not bother. Anyway. So,
again, what this theorem is basically telling you is that okay, if you are giving an irreducible
Markov chain, and if there you can find a solution again a positive solution or to the detailed
balance equation.



That means, if you have a π where each component or each component of that is positive,
it sums up to 1 and π and P satisfy that detailed balance equation, then it is not just true
that π is stationary, we have already seen that, that if the detailed balance equation has a
solution then from that you can find stationary distribution, but further the chain is also
reversible.
So, if the detailed balance equation has a solution such that each πi > 0 and they sum up to
1. Then it is true that yes 1 that it is an invariant distribution or a stationary distribution.
But moreover, it is the Markov chain is also reversible. And this statement is not just one
way it is an if and only if statement that means, if you know that okay π is a stationary
distribution such that and the chain is reversible then π also, π and P satisfies the detailed
balance equation.
So, if you know that π is an invariant distribution, and again since we are in an irreducible
Markov chain, so, if π is an invariant distribution, we know that all components must be
positive. So, we saw independently that if you have an irreducible Markov chain, and you are
given a stationary measure then either everything is 0 or everything is positive irreducibility
is the important hypothesis.
So, since we are working with irreducible Markov chains, if you have a stationary distribu-
tion, then all, everything, each π > 0. So, if you have an irreducible Markov chain, which
has a stationary distribution π and the chain is reversible, so suppose you can just show
that the chain is reversible, then you can also say that this pi and the transition probability
matrix P of the given Markov chain satisfy the detailed balance equation or π and P are in
detailed balance.
So, now, we will see the proof of it the proof is very simple. So, first, we do 1 implies 2.
So, by the previous remark π is a stationary distribution. We have already seen that if π
and P are in detailed balance, then π is a stationary distribution. Because it is a stationary
measure, but now, since it also sums up to 1, so it is a stationary distribution. And now, we
need to, so this part is done that π is the stationary distribution for Xn.
Now, we need to show that Xn is reversible. So, for time reversibility by detailed balance
condition, remember what was the detailed balance condition, the detailed balance condition
was πipij = πjpji. Now, we know what is P̂ , we know that this transition probability matrix

of the reversed chain Ynπ will be P̂ where P̂ji . So, basically, you saw πj, that it satisfies

πjP̂ji = πipij.
But now, since we know that each πi > 0, so, we can bring it to the denominator. So, we
have that P̂ji = π

Pij

πj
but this quantity πpij because of this is equal to πj

Pij

πj
but then πj and

πj cancels and you get equal to pji. So, P̂ji = Pji for all i, j that precisely means that P̂ = P
or the transition probability matrix of the reverse chain is equal to the transition probability
matrix of the original chain and hence, the Markov chain is reversible.
So, that is 1 implies 2. Now, 2 implies 1. Now, that means, you are given that π is the
stationary distribution for Xn and Xn is reversible, reversible means P̂ = P . Now, we know
that P̂ satisfies this condition that πjP̂ji = πipij, that is how you define P̂ . But now, P̂ = P



which means P̂ji = pij. So, you get this is equal to this, now, for all i, j.
So, finally, what you get is πjpji = πipij for all i, j and that is precisely the detailed balance
condition. So, hence π and P are in detailed balance. So, you see the proof is very, very
simple. So, if it, if you have an irreducible Markov chain, the transition probability matrix
P, π is a row vector such that of the size of the, whose size is the same as the size of the
state space.
And such that each component is strictly greater than 0 and it sums up to 1, then the
following are equivalent, the statements are π and P are in detailed balance. And the other
statement is pi is stationary distribution and the chain is reversible. So, you see that de-
tailed balance, not only the solution to the detailed balance equation, not only just gives
you stationary distribution, but also gives you reversibility of the Markov chain.
So, we will finish today with an interesting example of time reversibility, or how time re-
versibility can be useful. Again, this is basically not about time reversibility, but about the
detailed balance equation. Remember, I made this statement that you will see in most situ-
ations, finding solution to detailed balance equations is simpler than finding solution to the
stationary equation provided there is a solution to the detailed balance equations, because
the detailed balance equations are much simpler looking, I am not saying you will always
find a solution to the detailed balance equation, but detailed balance equations are much
simpler looking equations.
So, you first try with that set of equations. If not, then again, you will have to go to the
original stationarity equation in order to find the existence of stationary distribution. So,
what is the example or what is the problem? A random King. So, a chessboard has various
pieces, one of them is the king the most important piece, so, King can move in any direction.
So, if you have played chess, then you will know that a king can move in any direction, it
can go sideways, it can go up down, it can go in all directions, provided those directions
are available. So, a random King makes each, we are calling it a random King, because it
is as if we are saying that like you know a random walk. It goes in all possible directions
with certain probabilities. Now, suppose here, you have a random King who makes each
permissible move with equal probability.
Now, if it starts in the square marked 1, which is this square, how long on average will it
take to return to 1. So, from 1, it starts making this random walk, the king is making this
random walk, what is a random walk, like, if you are in a particular square on the chess-
board, you know in which possible directions the king can move, now the king moves in all
those directions with equal probability.
So, that means what, so for example, if we just concentrate on this square 1, now from 1, it
can go to 2, it can go to 3, or it can go in this direction, that is 5. Now, it will go to either
of these squares with probability 1

3
. So, with probability 1

3
, it will go to 2, with probability

1
3
, it will go to 3 and with probability 1

3
, it will go to this 5. So, that is one situation.

Now say, for example, if we look at this yellow square. Now, you see what are the possibili-
ties. So, for example, I am looking at square 7. Now, it can go this way, it can go this way,
it can go this way, it can go this way, and it can go this way. These are all the possibilities.



So, there are five possibilities. So, each move it will make with probability 1
5
. Similarly, if

you look at a square, so you see why, the reason why these squares are colored differently.
So, you see this pink colored square, there are three possibilities.
In these yellow colored squares, there are five possibilities. Now if you look at a square here,
now there are you will see there are eight possibilities, it can go here, here, here, here, here,
here, so all possibilities are there. If it is a square in this green region, then each of, so the
probability that it will go to any of these squares is 1

8
. That is the mechanism or that is how

the king will make its move.
And you can clearly see that if let Xn denote the position of the king after the nth move, then
Xn is a Markov chain, where squares of the chessboard are the states. So, again, because
where it will be in the next step only depends on where it is currently, so it is a Markov
chain. And what are the states of the Markov chain? Sorry, what are the states of the
Markov then?
So, there are 64 states because there are 64 squares. Let me just clean up this square. So,
then Xn is a Markov chain with squares of the chessboard, where squares of the chessboard
are states. Now from the pink colored squares, the kink can move to three adjustment
squares, each with probability 1

3
, this is precisely what I explained just now.

From here, it can go to three adjacent squares, which is this, this and this, and the proba-
bility of going to each square is 1

3
. From yellow-colored squares, the king can move to five

adjacent squares, each with a probability 1
5
, again. So, these squares, these squares, and

these squares, there are five possible directions to go, and the probability of going in each of
these directions is 1

5
each. So, that is for the yellow squares.

And for green colored squares, the king can move to 8 adjacent squares each with a proba-
bility 1

8
. So, again, if it is a square in this green region, then there are 8 possible directions

to go and it goes in each of these directions with a probability 1
8

each. So, thus, what is the

transition probability matrix it is pij is equal to 1
3

if i is pink and j is adjacent to i.

And I have explained what is the meaning of being adjacent to a square, pij is equal to 1
5
. If

i is yellow and j is adjacent to i, it is equal to 1
8

if i is green, and j is adjacent to i. Now, you
can easily check from here that says the king can move in any direction, the Markov chain
is irreducible. So, starting from any square, you can go to any other square. So, the Markov
chain is irreducible.
Now, if I define λi in this way, so λi = 3 if i is pink. So, remember, so here, I am just group-
ing the states into three groups, pink-colored states, green colored states and yellow-colored
states. So, for, if i is a pink-colored state, I am defining my λi = 3, I am defining it to be 5
if i is yellow, and it is equal to 8 if i is green, then it is easy to see that λ and P satisfy the
detailed balance equations for all i, j.
Why is that? Because again, now, let us see for if say i is pink, so i is pink, then what, then
what will be λi, it is 3, and what is pij, it is 1

3
. So, this i = 1. Now, j, j again, so j can be

either green, yellow or pink, but say, for example, j is yellow fine, but then I have defined
my λj. So, because j is yellow, so λj will be 5 because of the definition. So, it will be 5.
And again, what is pji, pji, so again, so here it is pij, but does not matter. So, if the starting



state is yellow, it is 1
5

then it will be again 51
5
, which will be again equal to 1. So, both

sides will be equal to 1 if I define my λi’i in this way. So, the detailed balance equations are
satisfied by this row vector. So for, where the pink states are 3, the yellow states are 5 and
the green states are 8.
So, now, since this is, this satisfies the detailed balance equation. So, now if I just, so this
is a stationary measure, now so if I just divide by the sum of all λj’s, then this will be the
unique stationary distribution because it is a Markov, irreducible Markov chain. So, if there
is a stationary distribution that is the unique stationary distribution. And so, we have found
out the solution to the detailed balance equation.
So, if I now just divide by the sum of all λj’s, I will get the unique stationary distribution.
Now, remember, what was the original question that starting from 1, how long on average
will it take to return to 1. So, basically, you are interested in starting from 1, if T1 is the
first return time or the first passage time to 1. So, you are interested in E1(T1), but we know
this theorem that if it is, so again, this is a finite-state Markov chain, so it is irreducible, it
has these stationary distributions.
And stationary distribution and this mean return times are connected in the sense that
πi = 1

Ei(Ti)
. So, E1(T1) = 1

π1
, but here what is π1, here it is basically, so it should be the∑

j
λj
λ1

. Now, there are 4 squares, 4 pink squares, 24 yellow squares, and 36 green squares.
So, 4× 3 + 24× 5 + 36× 8. If you do this calculation, you will see you will end up with 140.
So, that is the answer. So, now, just a few remarks.
So, we started from here. Now say, suppose we started from say a yellow square, say 4, then
the same calculation, so if we are interested in E4(T4), then what it will be, it will be

∑
j
λj
λ4

.
But λ4, what is it? Because it is a yellow square, it will be 5. So, you will see the answer
will be different. Similarly, if you are looking at a green square, say, for example, if I look
at E25(T25), in that case, you will divide by 8.
So, you see now, so starting from this pink square, the long, the average time it takes to
come back to 1 is much, will be much longer, because here you are dividing it by 3, but if
it is from a yellow square, you are dividing it, remember λ4 is 5, so you are dividing it by
5, so it will be slightly less and if it is a central square, it will be even less, because you are
dividing it by 8. So, these are some remarks.
But anyway, the important thing is, so here we have seen again, many things, we have seen
that this particular Markov chain here the detailed balance equations has a solution using
that we got the stationary distribution. And as soon as we have the stationary distribution,
we can say things about mean return times. And that is what the question was about.
So, you see, again, initially this looks like a very difficult question to answer, but using the
Markov chain, and these detailed balance equations we have answered this in a much sim-
pler way. So, you see, it is a very, interesting example of Markov chains of detailed balance
equations, and all those things. So, that is all. That is all. So, we will stop here today.
Thank you all.


