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Hello, everyone, welcome to the 25th lecture of the course Discrete-time Markov Chains
and Poisson Processes. So in the last lecture, we finished the Discrete Time Markov Chains
part of the course. So today, we will move on to the Poisson processes part. But actually,
we will not start with Poisson processes today, before starting Poisson processes, we need to
learn something more about exponential distributions. That is what we will be looking at
in today’s lecture.

So, you already know what is an exponential random variable. So, we will just recall that.
So, a random variable X is said to have exponential distribution with a parameter λ > 0
if the probability density function of X is given by this quantity. So, it is λe−λx if x > 0,
and it is 0 if λ ≤ 0. So, random variable X is said to have exponential distribution with
parameter λ > 0 if it is a continuous random variable with probability distribution defined
in this way. So, again, this kind of thing, so, you already know what is an exponential
distribution from your basic knowledge of probability, so, it is just a recall. And what is
the cumulative distribution function of X, so, it is given by this. So, you know that if it is
a continuous random variable then its distribution function is given by

∫ x
−∞ fX(x)dx. So,

you know, fX(x) is this, so, if you just do the integration, you can easily check that the
cumulative distribution function of an exponential random variable is given by this. So, it is
1− e−λx if x > 0, and zero otherwise. So, this is a random variable that takes only positive
real values, so, it does not take nonnegative real or nonpositive real values. So, that is an
exponential distribution or a random variable having exponential distribution and we will
use this notation. So, x Exp(λ). So, we will use this notation to mean that X is a random
variable with exponential distribution having parameter λ > 0. So, that is the exponential
distribution. Like you also know many properties of an exponential random variable. Like
for example, if you calculate you can easily check what is the expectation of X. So, first of
all expectation exists and it is equal to 1

λ
. Similarly, you can calculate what is the variance

of X and so on. So, that is the exponential distribution or exponential random variable.
Now, these are some plots of PDFs and CDFs of Exp lambda for several values of λ. So,

you see, we have plotted here for three different values of λ, λ = 2, λ = 1 and λ = 0.5. So,
you see the smaller the λ for PDF, it decays much slower or the higher the λ the decay is
much faster. And similarly, if you look at the cumulative distribution function, the bigger
the λ the higher it goes towards 1. So, you see the blue curve goes towards 1 at a much
faster rate or it goes much, much quicker to 1 as compared to the green or red curve. And
similarly, here, you see the blue curve decays much faster as compared to the green or red
curve. So again, these are just some observations from the PDFs and CDFs of Exp(λ) for



several values of λ. Again, you must have seen all these things in your basic course on
probability. So again, as I said, this part is just simply a recall.

Now, we will start with some properties of the exponential distribution, which we will
be needing for Poisson processes. So, the first property is what is called the memoryless
property so we state as a theorem. So, what is the theorem? Suppose X has an exponential
distribution with parameter λ. So, everywhere we will not say λ > 0, but whenever we say
that X has an exponential distribution with parameter λ, we mean that λ > 0. Then for
any t, s ≥ 0 if you look at this quantity P(X > t + s|X > t). That means, what is this
quantity? So, you are told that X > t and you are being asked what is the probability
that X > t + s. So, you have been given, so, it is a conditional probability. You are given
the information that the value of X > t and you are being asked okay what is the chance
or what is the conditional probability given this information that X > t + s. Now, what
this property is telling you or what this theorem is telling you is that, that is just simply
probability X > s. Now, this is what is called the memoryless property, why? Now, what
is this saying? It is saying that this information that X > t, so, you know that okay X > t
and you are asking what is the probability it will be greater than t+ s. What this is saying
is that this information that it is greater than t is actually not like it is being used in the
sense that this is the same as just probability X > s.
Now, why am I calling this memoryless property? Now, let me explain it by giving an exam-
ple. Now, think of suppose lifetime of some electronic gadget, say lifetime of a bulb, suppose,
it follows an exponential distribution. Suppose the lifetime of an electric bulb follows an ex-
ponential distribution with parameter λ then what this probability X > t + s given X > t
means, that means, you are told that the bulb has already lasted or has already survived
for t units of time and what is the chance that it will survive and s additional units of time.
So, you are told that okay, it has already survived four t units of time and you are asking
what is the probability that it will survive for t+ s units of time or in other words, you are
asking what is the probability that it will survive for additional s units of time. Now, what
this theorem is telling you that is same as the probability that the bulb will just survive s
units of time. So, this information that it has already survived for t units of time is not
being used or is not useful. So, when you are looking at above, if you know that the bulb
has an, again the lifetime of the bulb follows an exponential distribution, then suppose you
just come to inspect a bulb, you do not need to know how long it has been working, in order
to answer the question that how much further it will work. So, that is what this property is
saying. That is why it is called memoryless because it does not have any memory. It does
not keep in memory that it has already survived for t units of time. So, when you are asking,
okay, what is the probability that it will survive for s additional units of time, it is as if, it
is assuming that the bulb, so it is new bulb, it is forgetting that okay, it has worked for t
units of time. That is why it is called memoryless property. So, that is what this probability
X > t + s says, given X > t equal to probability X > s, if you have to think of it in a
real-life situation, this is what it is saying.



Further exponential distribution is the only continuous distribution or it is the only contin-
uous random variable with this property. So, it is kind of an again if and only if statement.
So, if you, if x is an exponential random variable with parameter λ, then it satisfies this
property and if you are or it is what is called this memoryless property. Similarly, if you are
told that okay, X is a continuous random variable having this property then straightaway
you can say it is an exponential random variable with some parameter λ > 0. So if it is an
exponential random variable then it has the memoryless property. Similarly, if you are told
that okay it is a random variable that has the memoryless property, then it is for sure the
exponential random variable. That is what is an, so this is what is an if and only statement.
So, it is memoryless if and only if it is an exponential random variable. Now, we will see
proof, but again we will just prove the first part that if it is exponential, then it has this
memoryless property will not prove this other part that if it is a continuous random vari-
able with the memoryless property, then it is exponential distribution, that proof is slightly
complicated we will not prove it in this course, but we will see one side of the proof that if it
is an exponential distribution with some parameter λ > 0, then it satisfies this memoryless
property or it has the memoryless property. So, we will look at this P(X > t + s|X > t).
So, we are using the formula for conditional probability, we know that probability A given
B is probability of A intersection B divided by probability of B. So, this is nothing but
P(X>t+s∩X>t)

P(X>t)
. Now, P(X > t+ s ∩X > t) is just simply this, why?

Because, if (X > t + s), then for sure it is greater than t. So, this set where (X > t + s),
it is a smaller set, because if (X > t + s), then for sure it is greater than t, but not other
way if it is greater than t you cannot say it is greater than t+ s. So, this set, set of all Ω for
which, if you look at this, set of all Ω for which X of Ω is greater than t+ s, that is a subset
of all Ω such that X of Ω is greater than t. So, this intersection this is this, so, if you have
a smaller set and a bigger set, so, if A ⊂ B, then A ∩B = A.

So, that is why we get that this is basically, so, P(X > t+ s|X > t) is just simply P(X>t+s)
P(X>t)

.

Now, you know it is an exponential random variable, so, you know what its CDF is. So,
now, P(X > t + s) so, this will be just 1 − F (t + s), so that you get as e−λ(t+s) and the
denominator is probability X greater than t. So, it is eλt. Now, if you just do the cancellation
you get eλs which is simply probability X greater than s. So, we have proved that if X is
an exponential distribution with parameter λ then it has the memoryless property which is
P(X > t + s|X > t) is just simply probability X greater than s. So, this distribution does
not have memory.
So, if given that an electric bulb has survived for t units of time and if you are being asked
that, what is the probability that it will serve for s additional units of time that is same
as asking what is the probability that a new bulb will survive s units of time. That is the
memoryless property in real-life situations. Provided you are told that the lifetime of the
electric bulb follows an exponential distribution with some parameter λ > 0.



So, that was the first property. Now, second important property if X1, X2, ..., Xn are i.i.d.
That means, independent and identically distributed random variables with having distri-
bution exponential λ. So, each Xi is Exp(λ) and Xi’s are independent of one another. So,
that is the meaning of X1, X2, ..., Xn are i.i.d. Exp(λ). Then if I look at this some random
variable. So, Sn =

∑n
i=0Xi. Now, what this theorem is telling that the sum is again a con-

tinuous random variable having this probability density function. Now, if you have seen this
density before then you should know that this is the density of Γ(n, λ) distribution. So, this
is the density of a random variable that has Γ(n, λ) distribution. So, what this theorem is
telling you is that if X1, X2, ..., Xn are i.i.d. Exp(λ), then if you look at the

∑n
i=0Xi then that

has Γ(n, λ) distribution. What is Γ(n, λ) distribution? It is a continuous random variable
having probability density function equal to this. Again, you must have seen Γ distribution
or Γ distributed random variable in your basic course in probability. So, then this density
should be familiar to you, but anyway if you have not seen this before then if X1, X2, ..., Xn

are independent and identically distributed Exp(λ) random variables then if you look at the
sum then it has Γ(n, λ) distribution, which is that it has, it is a continuous random variable
having this probability density function. Now, this is true for any n. So, we will prove it by
mathematical induction. Now, it is easy to see that this is true for n equal to 1, n equal to
1 means you are just looking at X1, but what is X1, X1 has exponential distribution. And
what is the density? The density is λe−λs for s > 0, 0 otherwise. So now, if you compare
this and this. Now, remember what is Γ(n)? Γ(n) is (n− 1)!.
So, that is the formula. So, if n is, then this is true for any n ≥ 1. So, and also 0! is equal
to 1. So, if you plug in n = 1 here, so you get λ

Γ(1)
which is 0!, which is 1. Now, s1−1, so s0,

that is 1, e−λs. So, you get precisely this thing. That the density is λe−λs for s > 0.
So, if I just look at for n = 1, that means I am just looking at a single random variable,
since this is exponential, since this has exponential λ distribution, so, its PDF is given by
this and if you plug in n = 1 in this formula, then you just get this using the fact that Γ(n)
is (n−1)!. So, how does mathematical induction work? You first prove it for n = 1 or n = 0
depending on the situation.
So, here we prove it for n = 1. Now, we assume it for some k−1 and then you prove it for k.
That this assumption that it is true for k− 1 that is what is called the induction hypothesis.
So, we assume it, assume that it is true for n = k − 1. So, this is what is called induction
hypothesis. So, we assume that it is true for n = k − 1. Now, we will show that this is true
for n = k. That is how that is the process or method of mathematical induction.
Now, if X and Y are two independent continuous random variables. So, before going to the
final step, which is the inductive step, we need one more fact. So, the fact is if X and Y
are two independent continuous random variables with probability density functions f and g
respectively. Remember, independence is important. So, if it is, it is important that X and
Y are independent.
So, if they are two independent continuous random variables having probability density func-
tions f and g respectively, then if you look at X + Y the sum that is again a continuous
random variable with probability density function given by this formula. This is what is



called the convolution formula. Again, the name does not matter, but this is the formula.
So if X and Y are two independent continuous random variables.
Independent is very, very important. If X and Y have some dependency, then this formula is
not true. So, if X and Y are two independent random, continuous random variables having
probability density function f and g respectively, then if you look at the random variable X
plus Y, that is again a continuous random variable having probability density function given
by this formula

∫∞
−∞ f(s− t)g(t)dt.

So, this formula is what is called the convolution formula, but anyway, the terminology does
not matter. Now, we will use this fact and the induction hypothesis. The induction hypoth-
esis is, that we have assumed that, so we have assumed that this thing is true for n = k that
if I look at i = 1, ..., k Xi, that is a continuous random variable having this PDF for n = k.
So, now, we want to prove it for n = k. So, we have assumed it for n = k sorry, so, we have
assumed this for n = k − 1.
So, i = 1, ..., k − 1 Xi has this density with n = k − 1. Now, we will prove it for n = k. So,
we want to find the density of Sk which is k running,

∑k
i=1Xi. So, again, so, now remember,

since this each Xi’s are independent, now, if I look at Sk−1. Remember what is Sk−1, that is
i = 1, ..., k− 1 Xi and you have Xk. Now, since Xis are i.i.d., Sk−1 and Xk are independent.
So, these two are independent Sk−1 and Xk are independent are independent. Again, both
these are continuous random variables having some probability density function. So using
this fact, the density function of f(Sk), so, which is Sk−1 +Xk by using these fact the should
be equal to this. But now, see, first of all, f(Xk) remember, this is an exponential random
variable, so, this is only positive for when t is, sorry, so, this should not be t, so, this should
be S, this is S, this is S. So, f(Xk) remember Xk is exponential.
So, the exponential random variable, its density is positive only for t > 0. So, the part minus
infinity to 0 vanishes. Again, if you look at this part, remember, this density is positive only
when this argument is positive. So, this thing is positive only when t < s. So, finally, this
integral limit becomes 0 to s because outside that either this is equal to 0 or this is equal to
0.
So, this first part is equal to 0 for t < 0 and the second part is equal to 0 for t > s. So,
finally, you get this integral from 0 to s. Remember, so, this is a typo it should not be t
should be s. So, integration 0 to s, this thing. Now, if you just do the cancellation. So, here
this is one e−λt, this is e−λt all those things will can get canceled. The integrating variable
is t, so e−λt will come out. There is one (λ)k−1.
Here, there is a λ. So, you get (λ)k and again this Γ(k − 1)e−λs . Now, if you do this

integration you will see, you just get this is equal to, so just this integration is equal to Sk−1

k−1
.

Now, remember what is Γ(k − 1)? Γ(k − 1) is (k − 2)!. Now, with (k − 2)!, if you multiply
k − 1 then you end up with, so if you multiply (k − 1)(k − 2)!, you get (k − 1)!, which is
nothing but Γ(k).
So, doing all this you finally end up with this. So, you have shown that, that Sk has precisely
this density. So, it has this density for (n = k). So, by mathematical induction, we have
proved the result for all n. So, if X1,X2,...,Xn are independent and identically distributed



exponential λ random variables then if you look at the sum which is X1 +X2+, ...+Xn then
it has what is called gamma distribution.
And the meaning Γ(n, λ) distribution, the meaning of that is it is a continuous random
variable having this particular density. So, again this is 0 for s < 0 and it is equal to this
for s > 0, and we have proved it by mathematical induction. So, we have shown first that it
is true for n = 1 because when it is n = 1 it is just X1 and it has exponential distribution.
Then we assume it for n = k− 1 and then we prove it for n = k, but in order to prove it for
n = k, we need this important fact that if X and Y are two independent continuous random
variables having probability density functions f and g respectively, then if you look at the
some X +Y that is again a continuous random variable and which has density given by this
formula. So, remember it is very, very important that you have independence of X and Y.
This if X and Y has some dependent structure then this formula is not true.
Now, using that fact and induction hypothesis, we show that f(Sk) or we show that Sk also
has the correct density. So, the fact we use, using the fact we get this first formula and then
we just write down the densities do the integration and finally, we end up with the correct
result. So, by process or by method of mathematical induction, we have proved our result.
Now, moving on to the last property that we will be seeing in today’s lecture. So, again
we have a theorem if X1,X2,...,Xn are independent exponential lambda i. Now, (())(27:25)
each Xis are independent, but they are not identically distributed each Xi has exponential
λi distribution, so, the parameter, so, each of them is exponential, but the parameter can
be different for different random variables, but independence is required.
So, if X1,X2,...,Xn are independent exponential λi then if you look at this random variable,
which is miniXi, then that again has an exponential distribution where the parameter is
sum of all these parameters. So, for example, if I just look at two things say X1 and X2,
then and suppose this as parameter λ1 and this is parameter λ2, then if I look at minimum
of X1 and X2 that will have exponential λ1 + λ2 distribution.
So, if you look at independent exponential random variables minimum of that, then that is
again an exponential random variable, where the parameter is some of the parameters of the
random variables whose minimum you are taking. Remember, again independence is crucial,
you do not have this if there is some dependence structure, even if the marginal distributions
are exponential, but if there is some dependent structure, this is not true, independence is
very, very crucial.
Now, the proof is very simple. So, for t > 0. Again, so, if since each Xi takes values only
greater than 0, because each of them is exponential, so, the minimum will also take value
greater than 0. So, we only need to check for t > 0, because the probability that minimum
will be less than or equal to 0 is 0. So, probability mini(Xi > t). That means, so, if minimum
is strictly greater than t.
That means, each of the random variables is strictly greater than t. So, you get (X1 > t),
(X2 > t) and so on, (Xn > t). But now remembers Xis are independent and if you are
independent and probability of intersection is product of the probabilities. So, you get prob-
ability of, this probability is basically product of this (Xi > t) i running from 1 to n. So,



these follows from independence.
Now, since each Xi is an exponential random variable, we know what probability (Xi > t)
is that is just eλit, product i running from 1 to n, but if you do product of exponential, the
exponential just gets added, the thing in the exponent just gets added. So, this product is
equal to this. But this is precisely nothing but the, so this is equal to 1−FX(t) where FX(t)
is 1− e

∑
i λit. And this you know is precisely the CDF of exponential lambda i.

So, we get that, since like distributed, there is this 1 to 1, so you can identify a random vari-
able from its distribution function. So, as soon as we know that. So, here we are not exactly
looking at the distribution function, but 1 minus the CDF, but if you have 1 minus CDF
from there, you can easily find the CDF. So, we have seen that the CDF of this minimum
random variable is equal to (1− e

∑
i λit)t.

So, which is precisely the CDF of an exponential random variable with parameter i running
from 1 to n, λi. Hence, we have shown the result. So, again you see we have crucially used
independence in our proof.
So, actually, there is one more theorem that we are going to see in today’s lecture, so, that
the previous one was not the last. So, but this is going to be the last property that we are
going to see in today’s class. So, again we have another theorem, which says that again if
X1,X2,...,Xn are independent exponential λi. So, again independence is required, but we are
allowing that each Xi can have its own parameter λi.
Then the P(Xi = minj Xj) is equal to this. That means, what is the probability that, so, in
the previous theorem was how is the minimum, what is the distribution of the minimum if
X1s are independent exponentials? Now, this property says like what is the probability, so
suppose you are given n independent exponential random variables. What is the probability
that say X1 will be a minimum of X1,X2,...,Xn, what is that probability?
What is the probability that the i’th random variable will be the minimum of among these
n random varia?les. So, the what this theorem is telling that probability is equal to λi∑

j λj
.

So, this λi corresponds to this i. So, the probability that Xi will be the minimum is given
by the parameter of Xi divided by the sum of the parameters. So, it is kind of an intuitive
result.
So, the probability that the i’th random variable will be the minimum among the n random
variables is equal to the parameter of i divided by the sum of the parameters. Now, the
proof, so it says for any n, so we will just prove it for n = 2. So, using this idea, you can
prove it for any n. So, but we will see just for n = 2, but tthe idea should be clear from this
proof. So, we are interested in what is the probability that X1 is equal to minimum of X1

and X2.
But that is same as P(X1 < X2), in that case only X1 is equal to minimum of X1 and X2.
But what is P(X1 < X2)? So, here we are using this conditional formula which you have
seen in the preliminary. So, P(X1 < X2) is

∫∞
0

P(X1 < X2|X1) is equal to x multiplied by
that density. So, you have seen this formula in the just the first few lectures that you saw,
which was the preliminaries.
So, P(X1 < X2) is integration 0 to infinity,

∫∞
0

P(X1 < X2|X1) is equal to x times the density



dx. So, you have seen this formula. But now, you know that X1 and X2 are independent.
So, now, if I, if you are told that X1 = x, so, you are told that X1 = x, but then this
just becomes P(x < X2|X1 = x). But now X1 and X2 are independent, so the conditional
probability will be same as the unconditional probability.
So, this is basically now becoming probability that P(x < X2|X1 = x). But now, if you look
at this, since X2 and X1 are independent, now, this conditional probability will be just equal
to the unconditional probability. That is, because X2 and X1 are independent. So, that is
where we are using independence, this is where we are using indie independence. So, this
becomes equal to this, but now, again you know X2 is exponential with parameter λ2.
So, P(x < X2) is just simply e to the power minus lambda 2x times this density. But now,
so, this λ1 will just come out so, this will inside integration it will be just −(λ1 +λ2)x. Now,
the integration of that and then if you plug in the limits, you will just get λ1

λ1+λ2
. So, this

integration you can easily do.
So, we have got that probability that X1 will be minimum among X1 and X2 is given by
λ1

λ1+λ2
. Similarly, if you would have tried to check that what is the P(X1 = min(X1, X2))

then you would have got the answer as λ2
λ1+λ2

. So, you can just check this just following the
same method.
In this case, you will have to find out what is the P(X1 < X2). Again, you can follow the
same process and you will end up with this answer. So, given n independent exponential
random variables, the probability that the i’th random variable will be the minimum among
the n random variables is equal to the parameter of the i’th random variable divided by the
sum of all the parameters. So, we have seen today four properties.
First, the memoryless property. Second is if you have n independent identically distributed
exponential random variables with parameter λ, then their sum has gamma n lambda dis-
tribution, and I have explained what Γ(n,λ) distribution is. So, it is a continuous random
variable having a certain probability density function. So, that was the second property.
The third property was that if you take n independent exponential random variables each
having their own parameter λi, then the minimum of them has again exponential distribution
with parameter the sum of the parameters. And the last property that we saw is that again
if you are given n independent exponential random variables having like possibly different
parameters, then the probability that the i’th random variable will be the minimum among
the n random variables that is given by the parameter of the i’th random variable divided
by the sum of that parameters.
So, you will see that all these properties we will be needing, when we look at Poisson
processes, when we try to prove various properties of Poisson processes, we will need this
property. So, this lecture and we will be having one more lecture at least on exponential
distribution. So, these are all preparations for the Poisson processes. So, we will stop here
today. Thank you all.


