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Review of Basic Probability III

In the previous two lectures, we have talked about some concepts of proba-
bility and random variables then jointly distributed random variables. Now,
in the third lecture of this particular course, we are going to talk about
conditional distribution of random vectors or random variables.

So, what is the conditional distribution for discrete random variables, we
will first start with the discrete random variable, and then we will proceed
to the continuous random variable or continuous random vector also. So, in
case of the discrete random vector, how we can talk about the conditional
distribution? And the idea in this case is very very simple, suppose that
(X, Y ) be a discrete random vector with joint probability mass function,
fX,Y (·, ·) and suppose that the marginal PMF of Y is fY (·).

So, what is the marginal PMF of Y ? That is nothing but, if (X, Y ) is
discrete random vector, it can be shown that Y is a discrete random variable,
so it has a PMF. So, that PMF is called the marginal PMF in this context,
and in this case we can talk about the conditional PMF of X given Y = y is
defined by this particular expression

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

P (X = x, Y = y)

P (Y = y)
= P (X = x|Y = y).

And what is this expression, if you see that from the definition of joint
probability mass function, the numerator is nothing but P (X = x, Y = y)
divided by P (Y = y), the denominator is P (Y = y) that is directly from the
definition of joint PMF and the marginal PMF.

Now, this particular quantity is nothing but this conditional probability,
that is actually nothing but P (X = x|Y = y). So, that is basically the
conditional PMF and this conditional PMF is defined only if P (Y = y) > 0,
which basically means that fY (y) > 0. So, this condition has to be there
otherwise, I cannot define the conditional PMF of X for given Y = y, that
is needed.

Now, from the definition it is clear that this function is basically a prob-
ability mass function, of course, the conditional probability mass function,
but it is the probability mass function. So, I can write the corresponding
conditional CDF and which is basically coming from the fact that CDF is
nothing but P (X ≤ x|Y = y), i.e., probability of X is less than equal to x,



but I know that the value of Y is y. So, in this case, I can just sum it up the
probability up to the point x. So, that is what basically written here

FX|Y (x|y) = P (X ≤ x|Y = y) =
∑

{u≤x:(u,y)∈SX,Y }

fX|Y (u|y),

provived fY (y) > 0.
And again, this probability is only meaningful if the probability of the

given event is strictly greater than 0. So, that basically means that fY (y) > 0.
So, in this way, I can talk about the conditional distribution for a discrete
random variable. And it is a very very important thing as we see in this
course, in most of the cases we are going to talk about the conditional dis-
tribution.

So, it is the important thing. Keep in mind that well in case of the
discrete random variable, the conditional PMF of X, given Y = y is defined
by this particular expression. And this is basically nothing but P (X=x,Y =y)

P (Y =y)
.

And this is only defined if P (Y = y) > 0 and note that this is a function
from R → R or rather, I can write it a function from R → [0, 1] because it
is finally a probability, so R → [0, 1]. Keep this function as a function from
R→ [0, 1].

And now of course, we can talk about the conditional CDF and that is
nothing but if you take the sum of the conditional PMF over the appropriate
points, we get the conditional CDF. So, again the idea behind this condi-
tional distribution or conditional PDF, just same as that of the conditional
probability because it is finally a conditional probability and the idea is that,
if I know that Y = y has occurred, what is the probability of X = x has
occurred or, if I talk about the conditional CDF that is, if I know that Y = y
has occurred, I try to find out what is the probability that X ≤ x.

Let us proceed now, we can talk about something again very important
concept is conditional expectation for discrete random variable and idea is
very simple. As I have mentioned that fX|Y (·|y), this one is basically a
conditional PMF, so finally it is basically a PMF, it is a conditional PMF
fine, but it is basically a PMF.

So, with respect to this PMF I can try to find out what is the expectation
of the corresponding random variable. So, that is basically exactly that and,
in this case, a little bit generalization I have written, instead of taking only
that random variable, maybe I can talk about some function of the random
variable.

So, if I try to find out E(h(X)|Y = y), so I try to find out that if I know
that Y = y has occurred, what is the expectation or what is the long run
average of h(X) given Y = y has already been occurred, I try to find out



what is the average of h(X) that is basically this one. And that one basically,
I can find, like these way that the simple thing and basically that because I
am trying to find out the conditional expectation, here the PMF is basically
the conditional PMF of X given Y = y.

So, that is basically the thing and, in this case, also, this absolute summa-
bility is needed and that basically means that again same as before that it is
nothing but

∑
{x:(x,y)∈SX,Y } |h(x)|fX|Y (x|y) <∞. That absolute summability

basically means this in this case.
So, let us now proceed to the continuous random vector. So, in case of the

continuous random vector, the joint PDF, the probability density function
of X given Y = y is defined by this expression

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

So, just note that the expression is just same as that of the discrete random
vector that joint probability density function divided by marginal probability
density function and for discrete random vector it is joint probability mass
function divided by marginal probability mass function.

So, the definition is exactly same, but this condition again is needed
because I am dividing by that probability density function at the point y.
So, that condition has to be true if it is 0 then I cannot define this ratio. So,
that is why basically this has to be true.

Now, again I can talk about the expectation, the definition of the expec-
tation is same as before just the summation need to be changed with the
integration and again this condition is needed otherwise that joint density
function is not defined. And then this is the expectation and we say the
expectation is finite or expectation exists if the absolute integrability is there
if not there, we say that expectation do not exist or expectation is not finite.

So, let us proceed. Now, let us talk about something which is very very
useful in computing the expectation. So, we can compute the expectation by
conditioning, it is something like resemble with theorem of total probability,
I can find out the probability of a set by conditioning on several other sets,
the same kind of concept goes through here. So, what happens suppose I try
to find out E(X) that if Y is another discrete random variable I can find out
E(X) by this expression.

So, what I did, I basically write the conditional expectation multiplied by
the marginal probability and I then take the sum. The idea is very simple,
suppose in a class there are two columns of benches and the teacher is here.
He is teaching to the class. Now, suppose the teacher wants to find out what
is the average height of the students in the class, the thing is that X is a



random variable which denotes the height, now, the thing is that the teacher
try to find out what is the expected height.

Now, there are two ways to do this one, one is that, I measure the height
of all the students in the class and then I take their arithmetic average that
is standard way to do this one. Another way I can do this one is as follows
suppose there are n1 students in this column and n2 student in this column.
So, what I can do is that I first try to find out what is the average of this
column, maybe I call it x̄1 and I call the average of heights of this column as
x̄2. So, then to find out the final average I can do this one it is n1x̄1+n2x̄2

n1+n2
.

All of you know this formula; this is a very preliminary formula that we
learn in school levels, so all of us know this formula. Now, note that this one
I can write as n1

n1+n2
x̄1 + n2

n1+n2
x̄2. Now, you see what basically I am doing

you can think this one as a probability that a student is in this column.
And this one is again the probability that the student in the second column,
probability of first column and this is the probability of second column.

So, now what is this x̄1? That is the average of this column; this is the
average of this column. So, finally what I have, probability multiplied by
the average given that the student in the first column, so that is the condi-
tional expectation. Similarly, plus probability multiplied by the conditional
expectation of the height such that the students are in the second column
and you see that exactly same thing has written here, the thing is that if you
take Y is the random variable taking two values: 1, if the student in the first
column, 2, if the student in the second column and then this summation,
this expression is exactly the thing that I have written here. So, this one is
you can see as a generalization of the concept that you have done in your
school level, but of course, that has returned in a general form in terms of
probability in terms of the conditional expectations.

So, this is a very very useful expression, useful formulas we can see many
times that finding out E(X) is quite difficult, but when you try to find out
the expectations by conditioning that become quite simple and in our Markov
Chain part and then the subsequent part of Poisson Process we will actually
see this kind of examples.

So, this is for Y discrete, similarly I can do it for Y continuous, the
only thing is that, keep in mind one thing this probability is basically same
as I can write as marginal probability mass function of Y . And then for
continuous random variable again the same standard thing is there, that
the summation has been replaced by the integration and then probability
mass function is replaced by the probability density function. So, these
two are quite important, quite useful formulas to compute expectation by
conditioning and with that I let us proceed.

And the next slide we are going to see how I can compute probability by



conditioning. So, this one again is, you know that generalization of theorem
of total probability. So, if Y is district this is given by this if you compare
with the last expression in case of the expectation, this was the summation,
conditional expectation multiplied by marginal probability mass function.

Now, when I try to find out the probability, it is nothing but the condi-
tional probability multiplied by probability mass function for discrete ran-
dom variable, and for continuous random variable, conditional probability
multiplied by probability density function and then take the integration.

So, that is what the thing and this one actually directly comes from the
expectation formula because, just keep in mind if I have a random vector,
this one which is basically a function IA(x) which takes values 1, if x ∈ A
and 0 otherwise, i.e.,

IA(x) =

{
1, if x ∈ A

0, otherwise

then it is very easy to see that the E(IA), a random variable IA, is same as
the random variable IA takes two values, one is 1 and other is 0. So, it is
nothing but 1×P (IA = 1) + 0×P (IA = 0), because IA is a discrete random
variable, it can take only two values.

Now, the second part does not contribute anything because I have a
multiplication by 0. So, that basically turns out to be P (IA = 1) and IA = 1
if and only if x ∈ A. So, that basically turns out to be P (X ∈ A), so the
P (X ∈ A) can be written as E(IA) or maybe if I write it correctly, maybe I
just put an X here just for understanding that maybe I can write X here, so
then everything goes like that.

Now, you see that the probability can be written as expectation and these
random variables generally we call indicator random variable. So, probability
of X belongs to a set can be written as the expectation of indicator random
variable of the set A.

And now using this one, finding out this one is very simple, because
see P (E) is basically I can write as E(IA(X)) and then basically this one
continues. Then basically we can use the previous slide’s material that the
expectation can be written in this form, and we can proceed, and finally we
have that this expression holds true.

And as I mentioned earlier that computing expectation by conditioning
or computing probability by conditioning are very very useful tools to find
out the expectation or probability and we will see these, some example, as
we go through with our Stochastic Process, with our Markov chain, with
Poisson process in this particular course. With that I stop and thank you
for listening.


