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Hello, welcome to the course EXCELing with Mathematical Modelling. 

 

In my previous lecture, we have done phase plane analysis, which includes phase portrait, the 

trajectories and the classifications, mainly the node, the focus, the saddle point and the centre. 

 

Now the question is that all these depends on the eigenvalues and its sign. 

 

We have seen that if the eigenvalues are real and negative, then we say that you attend a stable 

node. 

 

Now the question is why? 

 

So in this particular lecture, I will give a rigorous mathematical proof that when two eigenvalues 

are real and negative, they will give you a stable node. 

 

So to start with, we take the differential equation  

 
𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),     

𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦) 

 

This is an autonomous system, that means the right hand side does not depend explicitly on t.  

I take (0 0) to be the critical point or the equilibrium point. 

 

Let C be the path of the system and 𝑥 = 𝑓(𝑡) and 𝑦 = 𝑔(𝑡), they are the parametric solutions of 

(1). 

 

Now I need to explain two definitions. 

 

We say the path approaches (0,0), the critical point, as 𝑡 → ∞  (or 𝑡 → −∞) if 
 

lim
𝑡→∞

𝑓(𝑡) = 0 , and      lim
𝑡→∞

𝑔(𝑡) = 0. 

 

We use the word the path approaches (0, 0). 

 

If along with that you have  

lim
𝑡→∞

𝑔(𝑡)

𝑓(𝑡)
 

 

exists or if the quotient 
𝑔(𝑡)

𝑓(𝑡)
 becomes either positively or negatively infinite, as 𝑡 → ∞, we say the 

path enters (0,0) 



So we have two new terms one is the path approaches (0 0) and another is the path enters (0 0) 

 

So if the path approaches (0 0) we are these two limits has to be satisfied and if the path enters 

(0,0) along with these two, this particular condition need to be satisfied. 

 

Now let us come to the definition of node. 

 

So, (0 0) is your critical point of equation (1),  is called a node, if there exists a neighbourhood 

of (0 0) such that every path P in this neighbourhood has the following properties: 

 

Property 1:   P is defined ∀ t >  t0   (or ∀ t < t0). 

 

Property 2:    P approaches (0,0)  as  t → ∞. 

 

Property  3:   P  enters (0,0) as t → ∞. 
 

So, if these three conditions are satisfied, we say the critical point (0,0) is a node. 

 

Now, let us come to the proof. 

 

So, the hypothesis is that the roots of the characteristic equation are real, unequal and of same 

sign. 

 

So, we consider a linearized version of the autonomous system, that is,  

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦 ,   

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦  … (1) 

 

So, we assume let us the solution of this be of the form  

 

𝑥 = 𝐴𝑒𝜆𝑡 , 𝑦 = 𝐵𝑒𝜆𝑡 ,   
 

where your 𝐴, 𝐵, 𝜆  are constants. 

 

So if you assume this to be the solution of this system of linearized equation, you just substitute 

them and you get  

𝐴𝜆𝑒𝜆𝑡 = 𝑎𝐴𝑒𝜆𝑡 + 𝑏𝐵𝑒𝜆𝑡 
 

Similarly, you will get  

𝐵𝜆𝑒𝜆𝑡 = 𝑐𝐴𝑒𝜆𝑡 + 𝑑𝐵𝑒𝜆𝑡 
 

Now since, 𝑒𝜆𝑡 ≠ 0, you cancel it from the left hand side and the right hand side and you will get 

after simplification 

 

(𝑎 − 𝜆)𝐴 + 𝑏𝐵 = 0,     𝑐𝐴 + (𝑑 − 𝜆)𝐵 = 0 
 

So here your 𝐴 𝑎𝑛𝑑 𝐵, they are the variables for this equation. 

 

I mean, do not confuse with these constants. So these constants are here, but when you have 

substitute, now you are solving for this 𝐴 and 𝐵. Let us say they are unknowns. 



Now if I consider that  

 

|
𝑎 − 𝜆 𝑏

𝑐 𝑑 − 𝜆
| ≠ 0,     

 

Then, clearly, 𝐴 = 0, 𝐵 = 0 is the unique solution and this is known as also the trivial solution. 

 

But we are interested in the non-trivial solution and for that this determinant must be equal to 

zero. 

 

So, you have   |
𝑎 − 𝜆 𝑏

𝑐 𝑑 − 𝜆
| = 0, for the non-trivial solution. 

 

Now, if you expand the determinant you get the characteristic equation, which is 

 

𝜆2 − (𝑎 + 𝑑)𝜆 + 𝑎𝑑 − 𝑏𝑐 = 0, 
. 

and you say let 𝜆1 and 𝜆2    be the roots of this characteristic equation. 

 

We choose 𝜆 = 𝜆1 and substitute in this particular equation, let us name it as (1). 

 

So let me rewrite this substitute in  

(𝑎 − 𝜆)𝐴 + 𝑏𝐵 = 0 
 

𝑐𝐴 + (𝑑 − 𝜆)𝐵 = 0 
 

So, you substitute 𝜆 = 𝜆1  and obtain the non-trivial solution which will be of the form 

 

𝑥 = 𝐴1𝑒𝜆1𝑡, 𝑦 = 𝐵2𝑒𝜆1𝑡 . 
 

So basically you substitute  𝜆 = 𝜆1 here and obtain some solution of 𝐴 and 𝐵, which you name 

it as 𝐴1 and 𝐵1. 

 

And once you get it you substitute it back 𝑥 = 𝐴𝑒𝜆𝑡   that was the form of the solution. 

 

So you substitute in place of 𝐴 = 𝐴1  which is obtained from this equation and the value of 𝜆 =
𝜆1. So that is how you get this particular expression and this particular expression. 

 

In the similar manner if you put 𝜆 = 𝜆2 you will get the solution to be  

 

𝑥 = 𝐴2𝑒𝜆2𝑡, 𝑦 = 𝐵2𝑒𝜆2𝑡 . 
 

So again in the similar way you substitute it here and get another solution which you name it 𝐴 =
𝐴2, 𝐵 = 𝐵2 for 𝜆 = 𝜆2 and you substitute back here and you get again this solution. 

 

So, here your 𝐴1, 𝐴2, 𝐵1 and 𝐵2 they are called definite constants. These solutions are linearly 

independent. So, your general solution will be of the form 

 

𝑥 = 𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡, 𝑦 = 𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡. 
 



So, this is now the general solution of the differential equation  
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 + 𝑏𝑦 ,   

𝑑𝑦

𝑑𝑡
= 𝑐𝑥 + 𝑑𝑦. 

 

Let me rewrite the equation  

𝑥 = 𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡, 
 

𝑦 = 𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡 
 

Here, 𝑐1 and 𝑐2 they are arbitrary constants whereas your 𝐴1, 𝐴2, 𝐵1 and 𝐵2, they are definite 

constants. 

 

Now, let us choose 𝑐2 = 0. 

 

So, if you choose 𝑐2 = 0, you get 𝑥 = 𝑐1𝐴1𝑒𝜆1𝑡, 𝑦 = 𝑐1𝐵1𝑒𝜆1𝑡 and if I divide, I get 

 
𝑦

𝑥
=

𝐵1

𝐴1
               . . . (2).        This is one set. 

 

Again if I choose 𝑐1 = 0, you get 𝑥 = 𝑐2𝐴2𝑒𝜆2𝑡, 𝑦 = 𝑐2𝐵2𝑒𝜆2𝑡, then again  

 
𝑦

𝑥
=

𝐵2

𝐴2
 ,         … (3).          My another set. 

 

Now, I say let 𝜆1 and 𝜆2 are negative. 

 

So by taking that I will show that this represents a stable node. 

 

So, if your 𝑐1 > 0 the solution which is represented here, they will consist of a half straight line, 

 

which is of the form 𝑦 =
𝐵1

𝐴1
𝑥   with slope 

𝐵1

𝐴1
 

. 

And if your 𝑐1 < 0 , then again you will get the other half of the straight line, which passes 

through the origin as you can see here and with the slope 
𝐵1

𝐴1
. So, the two paths enters (0 0) with 

slope 
𝐵1

𝐴1
. So, what you actually getting is, that you have something like this. 

 

                                 

 

 

 

 

 

 

 

 

 

 

So, one half of the line is entering the origin like this, and the other half is entering like this, it  is 

the same line. This is, for say 𝑐1 > 0, and this is, for say, 𝑐1 < 0. 



 

And the properties which you need to see is, we have taken 𝑥 = 𝑓(𝑡)   and 𝑦 = 𝑔(𝑡). 

 

So, if I express that this is my 𝑓(𝑡) = 𝑐1𝐴1𝑒𝜆1𝑡    and this is my  𝑔(𝑡) = 𝑐1𝐵1𝑒𝜆1𝑡,  then I need 

to show 

  lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

𝑐1𝐴1𝑒𝜆1𝑡 = 0 . 

. 

Since, 𝜆1 < 0, this will be equal to zero, because there will be an exponential decay. 

 

It is more clear, if you can just put a negative sign and you can just visualize as 𝑡 → +∞, this 

becomes less and less and ultimately goes to zero. 

 

In the similar manner,    lim
𝑡→∞

𝑔(𝑡) = lim
𝑡→∞

𝑐1𝐵1𝑒𝜆1𝑡 = 0, which means the path approaches (0,0) 

along with that if you now show that 

                       

lim
𝑡→∞

𝑔(𝑡)

𝑓(𝑡)
= lim

𝑡→∞
𝑐1𝐴1𝑒𝜆1𝑡 =

𝐵1

𝐴1
 

 

So, a constant value. So, this implies that the path enters (0 0). 

 

So, both the properties are satisfied and we get that when 𝑐1 > 0, you get a half straight line and 

𝑐1 < 0, you get the another half and together they consist of this particular straight line. 

 

The same thing holds for 𝑐2 that if your 𝑐2 > 0, in that particular case you will get your 

 𝑥 = 𝑐2𝐴2𝑒𝜆2𝑡 = 𝑓(𝑡), 𝑦 = 𝑐2𝐵2𝑒𝜆2𝑡 = 𝑔(𝑡), and your 

 
𝑦

𝑥
=

𝐵2

𝐴2
  

. 

 

 

 

So if 𝑐2 > 0, you get a half line and if 𝑐2 < 0   you get another half of the line both are 

approaching and entering the equilibrium (0,0). From here you can see that since, 𝜆2 < 0, 

 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

𝑐2𝐴2𝑒𝜆2𝑡 = 0. 

 

With the similar logic, you will get  

 

lim
𝑡→∞

𝑔(𝑡) = lim
𝑡→∞

𝑐2𝐵2𝑒𝜆2𝑡 = 0. 

 

Also,  

lim
𝑡→∞

𝑔(𝑡)

𝑓(𝑡)
= lim

𝑡→∞

𝐵2

𝐴2
=

𝐵2

𝐴2
, it is a constant and gives you a finite limit. 

 

So that means it approaches and enters the point (0, 0). So these two are rectilinear cases by 

rectilinear cases means when you get a straight line. 

 



Now let us move to the non-rectilinear cases. 

 

Suppose you have 𝑐1 ≠ 0, 𝑐2 ≠ 0. In that case what you will get? 

 

So, if I write the equation one more time this is  

 

𝑥 = 𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡, 𝑦 = 𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡. 
 

So, here 𝜆1 < 𝜆2 < 0. So, both 𝜆1, 𝜆2 are negative values. 

 

So, if we now check 

lim
𝑡→∞

𝑓(𝑡) = lim
𝑡→∞

(𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡) = 0 , and 

 

lim
𝑡→∞

𝑔(𝑡) = lim
𝑡→∞

(𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡) = 0. 

 

So, this is because this is negative, it is easy to visualize if you are directly put a negative sign 

here. 

 

So this goes to zero, this goes to zero, and you are getting this value to be zero. 

 

So why we are doing this? Because in the definition of the node, if you recall, it says that the path 

approaches zero and the path enters (0, 0). 

 

So, these two property will ensure that the path approaches the equilibrium point (0,0) and the 

third property, which says  lim
𝑡→∞

𝑔(𝑡)

𝑓(𝑡)
, if this also gives you a finite limit or tends to plus infinity or 

minus infinity, then we say that the path enters (0, 0). 

 

So, here, we find this  

𝑦

𝑥
=

(𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡)

(𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡)
= =

𝑐1𝐵1

𝑐2
𝑒(𝜆1−𝜆2) + 𝐵2

𝑐1𝐴1

𝑐2
𝑒(𝜆1−𝜆2)𝑡 + 𝐴2

. 

Now,  

lim
𝑡→∞

𝑔(𝑡)

𝑓(𝑡)
= lim

𝑡→∞
 
𝑦

𝑥
= lim

𝑡→∞

(𝑐1𝐵1𝑒𝜆1𝑡 + 𝑐2𝐵2𝑒𝜆2𝑡)

(𝑐1𝐴1𝑒𝜆1𝑡 + 𝑐2𝐴2𝑒𝜆2𝑡)
=  lim

𝑡→∞

𝑐1𝐵1

𝑐2
𝑒(𝜆1−𝜆2) + 𝐵2

𝑐1𝐴1

𝑐2
𝑒(𝜆1−𝜆2)𝑡 + 𝐴2

. 

 

So, you can see that this tends to zero because you are already you have taken that 𝜆1 < 𝜆2 < 0, 

so, 𝜆1 − 𝜆2 < 0.  

 

As 𝑡 → ∞, 
𝐶1𝐵1

𝐶2
𝑒(𝜆1−𝜆2) ⟶ 0,

𝑐1𝐴1

𝑐2
𝑒(𝜆1−𝜆2)𝑡 ⟶ 0, and the limiting value 

 

lim
𝑡→∞

𝐶1𝐵1

𝐶2
𝑒(𝜆1−𝜆2) + 𝐵2

𝑐1𝐴1

𝑐2
𝑒(𝜆1−𝜆2)𝑡 + 𝐴2

=
𝐵2

𝐴2
  

So, now this ensures that the path approaches (0 0) and this ensures the path enters (0 0). 



 

So, for both the rectilinear case and non-rectilinear case, we see that the path approaches (0,0) as 

well as the path enters (0 0), and by definition of the node, this (0,0) will give you a node, when 

both of the eigenvalues are negative and if you draw the figure you will get something like this. 

                                 
 

The first one is a straight line for the rectilinear.  The another one is also another straight line, and 

the rest are the non-rectilinear paths. 

 

So, you can just draw something like this, and hence this represents a node and as you can see 

that they approach and enters the origin (0,0), hence an asymptotically stable node. 

 

So, when 𝜆1 < 𝜆2 < 0, you see that the path represents a node,  I mean the trajectories, they 

becomes an asymptotically stable node about the equilibrium point (0,0). 

 

If your 𝜆1, 𝜆2 > 0, then everything remains the same, but only thing that you have to derive the 

whole thing when 𝑡 → −∞,  and you will see that the all the paths whether it is rectilinear or 

whether it is non-rectilinear, this will approach and enters (0,0) as 𝑡 → −∞ and because it tends 

to −∞, the diagram will be exactly the same only the direction of the arrow will change. 

 

So in this particular case, this is the straight line and this is the straight line your arrow will be 

outwards along with the paths and this represents an unstable node. 

 

                   
 

So, with this, I assume that you get a clear idea that when two eigenvalues the real and negative, 

they will represent a stable node, asymptotically stable node. 

 

In a similar way you can prove for a spiral or for a saddle point or even for a centre. 

 

In the next lecture, we will be taking some typical examples involving this Lyapunov stability. 

 

Till then bye-bye.  


