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Welcome to lecture number seventeen. We want to continue from last lecture, and on this 

subject of equilibrium carrier densities, this would be the last lecture. After that we will move 

on to other topics. So, where were we, let us see. So, what we have done in the previous 

lecture was that, now we are point where if you plot 1 verses T verses log of carrier 

concentration, carrier concentration on this axis. Then we had that if this is intrinsic carrier 

concentration something like this; then I use this just not necessary same color code in this 

lecture but all I am saying is that; and this is the amount of doping.  

For example, if it is, if it is N doped material, and this quantity is N D minus N A on this 

scale; if it is already along scale then you will directly need a read N D minus N A, otherwise 

you will read, read log of this number. Then, we had said that our behaviour of the actual 

concentration which we get is something like this- meaning thereby that beyond this 

temperature, beyond this temperature, on this side of this temperature our material will going 



to be, is going to be intrinsic; shown by blue line. And then, on this side material will be what 

you call as extrinsic or another name is that it is called exhaustion region. 

Owing its name this exhaustion going to the fact that, what is happened is that, if we have e c, 

e v and some dopent level in the all the carriers which were at this level have also gone to the, 

they have gone to the conduction band, and hence no more carriers can be the, they cannot be 

anymore carriers, and hence the number of carriers has become saturated. It is in this region 

that we use these semiconductors; in this region which is, by which I mean this exhaustion 

region; it is this region, this exhaustion region we use are semiconductors.  

And, I and I did by mentioning by, by mentioning that suppose you have a p n junction, a 

semiconductor in which there is junction- one side is p semiconductor, other side is n 

semiconductor, what is that mean? That means that if you, well, if you keep increasing the 

temperature then we know that from this curve here that behaviour or semiconductor is going 

to become intrinsic. If this is silicon and this is also silicon, in that case what will happen?  

While at these temperature regions in the exhaustion region this behaves like a, this region 

behaves like a p type semiconductor, this region behaves like a n type semiconductor. But, if 

you keep heating it up and temperature goes really high beyond this temperature, you mean, 

that means you higher to this region now then this semiconductor is also going to behave like 

intrinsic, and this semiconductor also going to behave like intrinsic- meaning thereby that 

since both are silicon then this junction property will be lost; will behave as it is a one big 

piece of, one big piece of silicon all over, and hence this device will stop functioning.  

Ultimately this electronic device is functioned because that there are junctions of p and n or 

something like that. So, you lose the junction if you go to high temperature. And hence, 

intrinsic region is not interesting region where we can operate this semiconductor; the region 

where we can operate is then exhaustion, fine; this is where we were last time. 

Now what we going to do is, today’s lecture will be what I am showing in green portion. I am 

going to show to you that if you continue to reduce the temperature that means you continue 

to move on this axes then the question we want to answer is what will happen to n, when you 

when temperature starts continues to become lower and lower. I will show it to you that 

carrier concentrations again began to decrease; and, what is this characteristic of this 

behaviour, I will wind out to you. But before I do that let me continue on this thought of 

exhaustion and intrinsic carrier concentration alone; still let me continue on that little bit 

more before I go to the freeze at still lower temperatures. 
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Let me plot this 1 by T one more time; 1 divided by T, I am plotting on this axis; and this is 

log of carrier concentration, maybe log of n if you wish, if you going to log of n in which we 

have this, let us say this straight line, something like this; this is the intrinsic carrier 

concentration that means on this n is equal to p is equal to n i, is the intrinsic carrier 

concentration. And, the slope gives me, slope gives me minus e g, let me call it 1 for right 

now k T, that is what the, sorry, not T, by 2 k; all right, drop the minus sign, it is obvious that 

it is anyway negative slope; so, let me just write, e g 1 by 2 k is a slope.  

What I mean is suppose you have 2 semiconductors- one has a band gap of e g 1, other e g 2, 

and let us say band gap of another semiconductor is, second semiconductor is greater than 

that of the first semiconductor; then what will be intrinsic behavior? Recall that n i went as 

square route of N c N v e to power minus e g by 2 k, 2 k B T, that is what n i was. Clearly, 

then if you increase the band gap then the carrier density will decrease for the, this slope will 

become greater and greater. I am avoiding minus sign; I am simply saying more negative 

slope is what it will become then therefore. 

If, therefore if I plot, also simultaneously plot the semiconductor for e g 2 intrinsic carrier 

concentration then I should plot it something like this. If the green line continues like this 

then this line should be plotted like this, meaning thereby that at any temperature this, since e 

g 2 is greater than e g 1, the carrier concentration will lower. And, notice the slope that I have 

drawn is also steeper. This slope of course then will be minus, will be e g 2 by k B T will this 

slope be then, in that case, ok.  



If so, now let us do this. If now, we say that I have a semiconductor which simultaneously 

has been doped by, let us say we have a semiconductor which has been doped by some net 

doping of N D minus N A; that means it is permanently more N dope than the, more N dope 

than p dope; that means more donors than acceptors. So, net doping as we have seen 

semiconductor is N D minus N A. And, under these conditions the carrier concentration n, the 

majority carrier concentration; p of course will be much smaller which will be n i square then 

by N D minus N A will be A smaller number. And, we have given the example on that.  

So, if we look at this n which is independent on temperature in the exhaustion region then 

that would look likes a line something like this. I am again plotting that exhaustion region; 

here is my N D minus N A of course, N D minus N A. Remember, whatever I am doing; you 

could plot plot this as log of, instead of plotting log of n you could plot log of p if p is 

majority carrier; and then you will write N A minus N D, is the same thing. So, whatever I 

am doing for donors you could do it for acceptors; that does not change anything, all right. 

If so, now notice what happens? So, if I look at this behaviour then what do I see? I see that 

this semiconductor e g 1 which has a band gap of e g 1; for example, let us say this is silicon 

and let us say this gallium arsenide which has a band gap 1.5 and silicon 1.1, then what will 

happen? That, beyond this temperature this semiconductor, at this semiconductor, at this 

temperature semiconductor will start behaving if you increase beyond this temperature right 

here 1 by T values more than is less than this, then and therefore T is more than whatever 

corresponds to that point, in that case this semiconductor will start behaving like intrinsic 

semiconductor, that we have talked about.  

If your e g 2, if you take semiconductor which is a higher, which is a higher band gap then 

that semiconductor would be able to behave like intrinsic semiconductor to higher 

temperature; of course, have a smaller value of intrinsic carrier concentration; therefore, it 

takes then greater temperature to reach same value as N D minus N A, whatever is in your 

system. And hence they can operate in its exhaustion region for, at a, upto a higher 

temperature. In, sometimes in design consolations you may have to include this as well. So, 

that is the, another point I wanted to make on, make to you, let you know, want to tell you 

about, before I move on to what is called as carrier freeze out. 
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What is saying this; that when temperature was high the dominant mechanism, infact 

dominant mechanism was the carriers which came because of this reason. The carriers came 

because of; I am corresponding holes here because these electrons jump over, because these 

electrons jump over across the band gap therefore we got intrinsic semiconductor, and we 

plotted out this curve right here like this.  

Now, when the temperature became lower, when the temperature is lower that means you 

moving in this direction, what happened was, at some point of time this, the carrier 

concentration here what determined by the dopant level; we have e D as a dopant level; and 

then now what happened was these carriers became, the jumps which became possible toward 

these jumps. Well, not these jumps became possible, they were always possible; when this 

jump was happening, this green one, at that time obviously this is small energy gap and hence 

these jump was happening any ways.  

These jumps were anyway smaller jumps across the dopant level happening anyways. Just 

that the carrier concentration because of these intrinsic jumps was so high that they number 

because of this was much more smaller. But now, as you lower the temperature intrinsic 

carrier concentration thus one because, because of this jumps qualitatively at least becomes 

small; and this particular number because of this which was happening earlier also becomes a 

more dominant one; and, in that case what happens is micro becomes, starts taking shape of 

like this, ok. 



Now, you also recall that I had given example where I had said that if you have a situation 

like this, e c, e v, and then let us say I have sort of donor levels like this, and I have some 

accepter levels like this, and I had said that suppose they are N A of these and suppose they 

are N D of these, and I had said that; this is e D level and this is this is e A level, this is E A 

level; then I had said that if you were to look at a picture at 0 k, if you look at 0 k, then what 

happens?  

My electrons I tie, the electrons I tied up to these levels this weight and I am going to erase 

some of these; and then I had said that at 0 k what will happen, these electrons, some of these 

electrons will go down here and reach here even at 0 k because that way they lower the 

energy, so I am going to remove this electrons from here; this 4 electrons; I remove this 4 

electrons, but then I am showing you at 0 k these 3 electrons atleast here and still bound to 

their this three these electrons right here, here and here; these three in this picture is still 

bound to their phosphorous atom. For example, if phosphorous is a donor in silicon, in that 

case these three electrons are still bound to the phosphorous, or fifth electrons still bound to 

the phosphorous atom at 0 k.  

Clearly, that means, in this case we know that the carrier concentration would be very low 

because nothing is there in the conduction band. So, we clearly know that if we continue to 

go down lower temperature then this carrier concentration must somehow come down, must 

begin to come down, that we know. What the nature is a straight line, how it come down, that 

we have to discuss; but that is what is called as carrier freeze out. This is what we mean by 

carrier freeze out.  

That, even at the dopant level, now the carriers will not be able to contribute to conduction, 

and they slowly and slowly some of these, the fifth electrons of phosphorous and silicon for 

example will remain; temperature has become so low that there is not enough energy, thermal 

energy to even extract that fifth electron out to the conduction band and therefore the carrier 

concentration will again begin to drop down. It is, this is statistics. Now, we are beginning to 

learn about. So, that is what I am going to do right now. 
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So, again what we will do is, consider a semiconductor in which, in which N D is greater than 

N A. You are free to consider a semiconductor where, I take example where donors are more 

than acceptors; you are free to take example where acceptors are more than donor, does not 

matter. In that case you must talk in terms of p, number of holes but in volume in that, 

because that is the majority carrier in that case, all right. 

If that, if it is so, then formue level lies close to e D level. We have seen this and I gone 

through everything very clearfully with you that when formue level is exactly at e D level 

then half of the, half the impurities are ionized. That means, remember this five, at all, in the 

exhaustion region all the impurities, temperature was high enough, all the impurities were 

ionized; everything had gone to conduction band. But now, if formue energy was at safe, 

exactly at the donor level, then what happens? Half of these donors are ionized and half of 

them are not ionized; that means fifth electron is still tied to the donor, donor atom. So, that is 

what is going to happen at low temperature. So, is close to e v level at low temperature.  

So, what is the low temperature, then what would happen in this case, is what we will like to, 

try to understand. And, I will draw my picture; again in this case I will again draw the same 

picture which I draw during the last page, e c, e v, and then I am going to draw those 6, 7 of 

these, again these acceptor levels; so, N A is smaller than N D, so I have shown 7 lines, 7 

segments here for e D level, at e D level; and at e A level I am showing you 4 because that 

represents N A, number of such sides per unit volume; and this is N D, number of such sides 

number of phosphorous atoms; so number of boron atoms in case of N A, number of 

phosphorous atoms in case of N D, phi unit volume of course always.  



If so then I have already drawn the picture for you that, what happen is that some of these; 

now in this picture that I will be ionized; some of the phosphorous atoms not I is ionized, but 

some of these atoms will be ionized and some will not be ionized; maybe I am showing you 

one electron due to here, going down here and this is the electron here, here, here; at some 

low temperature these electrons have gone down here, schematically. That is not necessary 

exactly how it happens. And, these are the once low temperature is low enough; these have 

still not ionized that is what is happening. 

So, what do we see? Since, N A is smaller than N D; so, first thing we know is since N A is 

smaller than N D then therefore all acceptors must be ionized; that is N A should be equal to 

N A minus, all those which ionize; why we can see that is schematically I have shown you; 

even at 0 k whatever is a, all these electrons would have fallen down to minimize the energy. 

And therefore, N A would be completely ionized; the boron would have accepted the, for 

example, a boron in silicon would have accepted these electrons and would have become B 

minus; that means it is ionized, it is having 4 electrons.  

And clearly that will happen because formue energies lying somewhere close to e D level, 

formue energy somewhere close to e D level. If formue energy is close to e D level then that 

also says you have your formula N D, N A minus divided by N A, and you can see that if 

formue energy somewhere here; we have done this exercise, that means all these N D levels 

would be ionized, ok. 

If so then what can, how can I write charge neutrality? If I write charge neutrality then I 

know, n plus N A minus, should be equal to N D plus; that is what should the charge, that is 

what the condition for charge neutrality should be. And this is condition were p is much 

much less than n of course, otherwise I should have, or I should, let me add p, let me add in a 

p first, and then I am going to say that I am going to use this assumption; I will use this 

assumption and that n is much much greater than p, since it is n dope semiconductor. 

And, we have seen that that N dope semiconductor n per N p is n i square, since n is 

dominating. Therefore, and since n is dominating, so I am making assumption n is much 

much greater than p, this assumption I am making. And, in most cases it will be true. So, if 

that is so then I will write this expression as n plus N A, I replace N A minus by N A, is equal 

to N D plus, and I will drop this p in favor of N D plus. Anyway N D plus we can imagine is 

on order of 10 to power 16 or 10 power 17 per centimeter cube. This quantity or N D is and 

therefore p will be a small number, in comparison therefore, all right. 
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If so, now let us substitute this; what is N D? N D plus by N D, you will recall, is of course e 

to power is equal to e f minus e D by k B T, it is this quantity. So, I will substitute this in 

here, and therefore n plus N A should become equal to N D times, sorry I made a mistake in 

this expression right here, so first let me correct this; that is not the expression as we know it; 

so, that should be equal to 1 divided by 1 plus e to power that factor which I have did now, e f 

minus e D by k B T.  
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So, we substitute this now in there; so that is why it is N D divided 1 e power e f minus e D 

divided by k B T, all right. Now, I am going to do this little manipulation in here; n plus N A, 



I am going to write this as N D divided by 1 plus e to power e f minus e c by k B T; and, I am 

going to write e to power, e to power e c minus e D by k B T is what I will write this as. Now, 

you will recognize what this quantity is, you will recognize what this quantity is; this e f 

minus e c is a factor which appears in n also. 

So, I will use this expression n here. And, remember n is equal to N C times e to power e f 

minus e c by k B T. Therefore, I will use this expression in here. And therefore and, I will 

write on next page; I will move this, I will substitute this quantity by, n divided by N C, is 

what I will substitute this as equal to, and then accordingly I will write this expression as, n 

plus N A should be equal to therefore N D divided by 1 plus N C divided by n, e to power; 

see what is that, so this quantity will determined as n by N C; so, we substitute it here; so, n 

by N c, e to power e c minus e D, e c minus e D divided by k B T.  

So, what we will do is, now separate these terms in here; and I am going to; so, this way we 

have we got a rid of e f atleast in these expression. And, what I am going to do is write this as 

n plus N A plus, n plus N A times, n, e to power e c minus e D by k B T by N C equal to N D; 

and hence, I will write this as n plus N A times n, e to power e c minus e D by k B T divided 

by N C as, N D minus N A minus n.  

(Refer Slide Time: 24:12) 

 

And, therefore I will write, my final expression will be n, n plus N A divided by N D minus 

N A minus n as equal to 1 by N c, e to power, e to power e D minus e c by k B T. So, I 

change the order; e D is here, e c is here, so I will take it down; take it inverted one, inverse 

of that then in that case if I; I should not write 1 by N c but I should write N c; N c times; so it 



should take in there, the another side; so, this is N c times; I take this on the right hand side 

and take this quantity on the left hand side; so, this is N c times e to power and I have 

changed the minus sign here. So, this is the expression which we are governing equation, 

which, using which we will try to understand what the behaviour in freeze out is.  

So, what I do is, first we will take a case; three cases we will take. So, case one- this, a green 

one. Let us consider case one. Let us take N A to be equal to 0, thereby that is we say we 

have doped only with dope donor atoms, no acceptor atoms are there. And, at low T, answer 

this that is what we are talking about, low temperature n is, let us assume much much less 

than, n is less than, that means you are trying to discuss freeze out. So, n has become N D is 

the most dope, dominant one. 

Let me try to explain this to you through this curve, through this curve; where is that curve 

one, which I want to use. What I am saying is, since this value in that case would represent N 

D, N D minus N A; and, N A is 0. Then, we are talking about value of n; n values are 

becoming lower and lower. We are talking about when n values are freezing out, that means 

the carriers are freezing out; so, n is becoming less and less compared to N D. So, that is the 

case we are considering- n is less than N D.  

In that case, what happens? Now, we are considering case where; so let us see that N A is 0; 

this quantity N A is 0; n is much much smaller than N D. So, in denominator I am going to 

only keep N D therefore, and a numerator of course N A is 0, so I am going to leave it as n 

square; this will make n square equal to N c, e to power e D minus e c by k B T. And, what is 

e c minus e D? Remember this. Hence, e D level, hence e c level, hence e D level, so it is 

measuring this difference. It is basically minus of this separation right here; the dopant level 

measured from the band edge is what we have got, gotten into, all right. 

So, if that is the case, then clearly what is implies, what is the value of n; n in that case is 

equal to, n goes as, in that case N c N D square route, e to power e D minus e c, e D minus e c 

by 2 k B T, that means n verses temperature. 
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That means, log of n verses 1 by T, will have a slow of, e c minus e D by 2 k. What does that 

mean? In intrinsic case, remember this slope was, first of all it will be straight line; first of all 

you can see, if I take log of n, then I will have a straight line as a function of 1 by T; second, I 

will have a slope which corresponds to this gap; just like this, how if you wish. So, the way I 

will plot it out is as follows.  
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So, we plot it as, carrier concentrations as log of n, now as something like this, this. And then, 

I am going to plot a straight line like this. And, this value of course will be equal to N D, and 

N is zero of course; and, this slope will be equal to, this slope will be equal to e c minus e D 



by 2 k about this slope D, and carriers is clearly showing that begin to freeze out; the carrier 

concentration begin to decrease.  
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Now, let us take case two. This is the case where N A is not equal to 0; N A is not equal to 0. 

This leads to another interesting facts, some more interesting facts. Now in this I can, for, or I 

should not say case two first, let us say if; if N A is not equal to 0 then I have two cases 

possible, namely that n is less than N A and another case, this is case we will call it two now; 

and in case three, that means I will call where n is greater than N A, n is greater than less 

than. And remember, it is always true, always true that N D is a most dominant one, is greater 

than N A; and, N D is greater than n also.  

So, only matter is, this is always given in case two and three then we have a question is 

between n and N A which one is bigger; n is in one case, in case two we will consider n less 

than N A, in case three we will consider n greater than N A, I will consider consequence of 

this. So let us write down all this; N D greater than N A, this given; and N D greater than n, 

this is understood already; and the case two is basically where n is less than N A or much 

much less than, we will make it much much less than when you want to make the 

approximation. So, this is basic is the case two, is what is indicating with.  

So, if this is so then remember, let us go back to our expression – n, n plus N A divided by N 

D minus N A minus n, was equal to N C, e to power E D minus E C divided by k B T. Or, if 

that is the case, now we are going to make this approximation and we say n is, n is much 



smaller than N A; in that case, we will drop this n in favour of this N A. And therefore I am 

going to write this as n, so we approximate this as n times N A.  

Now, numerator will become n times N A, because I am going to drop this n; this n is much 

smaller compared to N A. And, in denominator I could just simply write N D, because 

anyway N A and n are, is smaller much much smaller than N A; that we can always do, 

because N D is the most dominant one; therefore, N c, e to power e D minus e c, k B T.  

Again what you observe, log of n verses 1 by T is linear; and slope is e c minus e D by k B, 

that is the slope now. Earlier we had a slope of 2 k, remember, 2 k; now what has happened, 

this slope has become, now this slope has become 1 k; slope has changed, all right. So, this is 

when, when n is less than N A. Before I draw this let us start looking at also the case where 

when n is greater than N A and then we will draw this case three also, and then we will draw 

all these together. 
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So, now let us look at case three, in which case, n we take as greater than N A; all other 

things remain same, namely N D is greater than; so, another, another words in this case, the 

order is n greater than N A; in the previous case of course, the order of things was therefore, 

the order of things was, N D was, N A will greater than n; n was less than, that was the order 

of the concentrations. Now, it is N D, n, and then N A. 

So, if that is the case, again let us go back to our expression- n, n plus N A divided by, 

divided by N D minus N A minus n equal to N C, e to power e D minus e c by k B T. If so, 

then we again make the substitution in here; that in this time, n is greater than N A. Therefore 



I am going to drop N A in favor of n. So, I am going to write this numerator as n square 

again. And of course, denominator is N D because N D anyway is greater than either of these 

two. So, I am going to write this as N C, e to power e D minus e c by k B T. 

Now notice I have n square. So again, if I plot log, log of n verses 1 by T, again what we will 

notice is linear; second, slope is now again 2 k B again; plus n square, when I take a square 

root I will get a 2 here, factor of 2 here, so again becomes 2 k b; that is very interesting. That 

means the slope changes inbetween. So, now we on a position to plot this whole curve. So, I 

have already plotted the case where N A was equal to 0. 
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And, you saw the slope was this, whatever this gap, energy gap was; meaning thereby that it 

is the e c, and have e D, then whatever this gap energy gap was; that gap is written here, e c 

minus e D, that is written here; the point is more important; this factor 2; this is a factor 2 that 

was the slope of this line which we had, when N A was equal to 0.  
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What happens if the n, now I am going to plot what happens when n is not equal to 0. In that 

case, I will get two cases: one, so log of n, not log; natural log in some plotting in sometime 

is slope as, all right. Now what will happen? Now, we have two cases where when, let us see, 

let us repeat it down; when n is less than N A then slope is 1 k here; not two, one is appearing 

here, when n is less than N A.  

So, when n is less than N A then our slope is becoming, then the slope is, in that case slope is 

e c minus e D by k B, some minus sign here of course. And then, n is; this was case two. And 

case three was, case three was n greater than N A. In that case, we can see, that when n is 

greater than N A because of slope which was, which has a factor of two in there. So, we have 

this as minus e c minus e D by 2 k B. So, when n is greater than; so slope will become half in 

magnitude, slope will become half when n is greater than N A; and it will become more 

when, slope become more when n is less than N A.  

So, the way I will draw this is something like this, something like this, and then something 

like this; at some point here it is changing; the slope here is in this case this is, let us give a 

name because this is become very big. If this is e c, if this is e D, this e D, and this is e v, then 

let us give this a name; this difference, this magnitude to be equal to, let us call it as, let us 

give it a name, let us give it e D prime; where e D prime is equal to e c minus e D, that is 

what this quantity is, that is what this quantity is. So, I am going to plot this as, the slope here 

is when n is greater than N A; then, I am going to write this as, e D prime by 2 k B, and the 

slope here is, minus e D prime by k B.  



And, what is this point, this point right here, let me use the different pen here, I will say; right 

here where the slopes break that point should be equal to, on this scale should be equal to N 

A, right, do you understand this. So, if I label and this entire curve then I will write it this as 

follows: this quantity is a slope would be e g by 2 k, if you wish I will put a minus sign here; 

we have understand that is a minus in there; I will not normally writing it. And then, what 

you, what is it?  

This point represents a concentration which is equal to N D minus N A, this represents N D 

minus N A. Now, upto this point we have region, this is a region case two where, where, the 

case three sorry; this is case three here which where n is greater than N A. So, now the N 

which I am plotting here, log n is what I am plotting in this axis; on this axis that number is 

falling down.  

And, by the way keep remembering because I am assuming that we plotting this one a semi 

log type of graph paper, so the numbers we read out here is N A, number we read out here is 

N D minus N A. But, otherwise you, if you log when you taken then even you think of this is 

log, I should write log in front of it also if you wish; depends on how you want to read it, 

anyways. So, that, I hope you understand that part. 

So, if we look at case three then, when then n was equal to N D minus N A; and, N D of 

course was very large; let us say this is 10 to power 17, this number is 10 to power 17 or 

something like that; and, this number is equal to 10 to power, let us say 15. So, then n starts 

becoming less than N D of course; that means it becomes less than, less than 10 to power 17. 

But it continues to be greater than N A. Let us say it is in 10 to power 17, that means it is 

more than this quantity N A here; then in that case our slope is e D prime by 2 k. 

But, as you can see when n becomes less than N A that means it goes below 10 to power 15, 

less than 10 to power 15, in that case this slope becomes, slope changes. So the point where 

slope changes is roughly where n is equal to N A; and hence I use this point to mark as, this 

value must be that, that means this value must be equal to N A. That’s what I am assuming; 

that is what I am pointed out to you, and then this slope here, all right. So, using this, but this 

is, now you can see, first physically let us see the whole picture.  
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The whole picture looks like this, that I have a system in which I have some electrons which 

are bound to this level. A very very low temperature, here at very very low temperature, and 

there are some acceptor levels also. Let us say, acceptors levels few, just some acceptor levels 

also, which have these have taken their electrons, they ionize; and, I have only, this is a 

picture at 0 k, this picture at 0 k; and we can add here plus plus also in here.  

This is the picture at 0 k; and what has happened is, as we began to raise temperature then I 

start getting, we start getting some electrons jumping from here to here, and that is what we 

see in this region here; that is what we see in case two and this is the case two. In case two 

and three are this regions where some n- I have shown here 2- some of them are started 

jumping over to this because temperature is slightly increased, and hence this jumps jumps 

are becoming possible.  

As this temperature continues to increase the point comes when all of these electrons have 

jumped. When all of these electrons jump and that is basically start of this point we reaching 

here. Now, as we keep increasing the temperature these jumps are still not possible, the 

temperature is low enough and hence we get into situation a semiconductor is, carrier 

concentration remains same which is, and this quantity is obviously equal to N D minus N A; 

this is equal to N D minus N A.  

So, we receive, find that carrier concentration remains the same as you continue to increase 

temperature, and that is N D minus NA, where it remains to; until temperature becomes high 

enough that these electron jumps also become possible, and then the behaviour becomes 



intrinsic like behaviour. That is the big picture of this semiconductor. But, also please notice 

that this is a very powerful way, this is a powerful experiment. Why I have taught you is this 

is, this is good, it is a good characterization technique.  

What you notice, note; suppose you measure carrier concentration in a full temperature range, 

from very low to reasonably high temperature, what are the different information can you 

get? What are the different information you can get out of it? Notice, this is essentially e D 

prime, you get e D prime, and this quantity is e g, this quantity is e g. If you see, from this 

you will able to extract just by doing this experiment- measuring carrier concentration as a 

function of temperature, hole temperature range, things which we can get is you can measure 

e D. That is if you measure this and calculate this slot, then you will measure this e D; you 

will able to measure this e D levels. 

Second thing you will able to see is that where the slope breaks, when you see a break in 

slope; in that case, you see, you can measure what N A value is; you can figure out how 

many of these N A are present in there; what is a number of these acceptor levels present in 

there. When you see a flat region you can measure out what is N D minus N A, you can 

measure out what is N D minus N A. And hence, you can figure out what this total number of 

N D levels are; how many N D are present in there. And finally, when you go down go go 

higher in temperatures you can also measure the band gap of the semiconductor.  

So, in one experiment you can measure in the band gap of semiconductor, you can measure 

the dopant level with respect to the, measure this dopant level with respect to the relevant 

band edge, that means e c minus e D that that gap you can measure. And you able to do so, 

because these are thermally activated jumps. And the two types of thermally activated jumps 

happening- one across this gap and other across this gap, and that is why you able to measure 

both these gaps.  

So, e D prime, this e D prime you should be able to measure, you should be able to measure 

the band gap, you should be able to measure N D minus N A, and you should be able to 

measure N A. This much information you are able to get out of this one experiment. Only one 

which you are not able to measure a, figure out is what is this energy level. And, this of 

course you are not able to measure because no transition is, no jumps of electrons are taking 

place between these valence band and the dopant level, acceptor level are taking place, so 

how could you measure them. So, that is, that is the only one.  



So, hence it is a, this carrier freeze out experiment is a very powerful technique, to be able to 

measure all these quantities. Of course, you will ask the question, how would you measure n? 

Measuring n is not an trivial exercise; you could measure n using a hole probe experiment; 

hole measurement you can do to measure n.  
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Alternative is, that you can measure instead of n, you could measure possibly conductivity, 

you could measure possibly conductivity, and since conductivity is equal to n times number 

of carrier times, mobility times, the charge, the basic fundamental charge; and if you make a 

assumption that mobility is not a very strong temperature, function of temperature, then more 

or less what you measure by sigma is what you measure in n, if you make that assumption. 

So, this measurement is fairly simple; a 4.4 like measurement will give you conductivity. 

And, accordingly you can measure n, therefore.  

Similarly, by the way I have taken a example where N D was greater than N A, greater than 

N A, you could have measured, you could have situation where N A is greater than N D; in 

which case then I would be plotting as a function of 1 by T, I will plotting log of p, and it will 

be straight forward enough to say that these curves will look something like this where 

actually I will be measuring N D here, I will be measuring N A minus N D here; N A minus 

N D, just same analysis you can do; this of course remains the same, it measures e g by 2 k 

minus if you wish; and, what I will be measuring here, then in this case would be e A minus e 

v by 2 k, and this will be k B; e A minus e v by k B. So, these are the quantities we will be 

measuring.  
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Just by same analysis, now in this case, it will be log of p that will be plotted in this direction. 

So, you will be able to measure whether it is a, if it is p type semiconductor then this is how 

you will measure it of n type, then this curve is what will measure out, all right. 

So, this brings us to the end of, this brings us to the end of this. I hope you are able to 

understand this whole equilibrium carrier densities. Why this is taught is as because reason is 

this; I have mentioned earlier also. These are equilibrium carrier densities. And the, from now 

on our operation range will we can find between this two temperatures; so, our room 

temperature must, will choose semiconductors, only those semiconductors whose room 

temperature lies somewhere between these.  

So, room temperature should be between these range; what temperature operation of that 

semiconductor must be in this range because this is the range in which semiconductor devices 

will be made; this is the range in which semiconductor devices exhaustion region; we have 

extrinsic semiconductor will be where with which we will be making these devices. And, 

now, from now on all assume that this is where we operating, in this condition. In this 

condition we are reliable to low temperature or high temperature range as far as the devices 

are concerned, ok.  

Now, when you make devices, when you apply voltage, you are disturbing this equilibrium. 

So, this I had said in the beginning itself, this, to knowing equilibrium carrier density is 

important because you want to know that when you disturb the system then we will have to 

watch out how is this system like to come back to equilibrium. So, in order to see the rates of 



how fast it comes, tries to come back to its equilibrium then you must know where the 

equilibrium is, and hence you will describe the equilibrium.  

From now on we will start discussing about those processes which disturb this equilibrium, 

and after that we can start talking about devices. So, let me close this chapter here today with 

equilibrium carrier concentrations and next time we will start with new topic on, which will 

lead us to towards devices.  

Thank you.  

  

  

 


