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Optical properties of materials 

In the last lecture, we saw how light is absorbed by a material if we have a 

semiconducting material. 
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This is a semiconductor. If we shine light on it with certain wavelength then, this light 

will be absorbed in the semiconductor throughout. This will create an electron hole pair. 

We also saw if we create electron hole pair by some other means in a semiconductor 

then, this electron hole pair may get annihilated and give light out. This is known as the 

emission from the semiconductor. This is due to annihilation of electron hole pair. But an 

optoelectronic device is more than just creation and absorption of light. We want to know 

how this light is going to be interacting with the rest of the material.  

To explain this problem, let us think of our device. If you are just looking at the active 

region of the device only for the sake of simplicity, I do not want to draw the whole 

device. So, this is only the active region of an electronic device. If I am shining light 

from outside, this light will continue to go inside. But, some of it is going to also be 



reflected. So, we do not only need to know what is happening here that is the absorption 

process.  

We also want to know how much is going to be reflected back at the same time. Let us 

say, I am creating for an emitting device, light over here. This light is going to go in all 

the directions, some of what will be coming out. But, other may be lost in the device due 

to total internal reflection. That is why we need to understand the optical properties of 

materials because even though the device may be working well, it may not be giving any 

light outside. So, optical properties of materials are important for optoelectronic devices. 

That is a topic of today’s discussion.  
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So, today we are going to cover optical properties of material. What I mean by optical 

properties of materials is basically again whenever we say optics; we are normally 

concentrating on the visible light. But it does not mean that whatever we are going to do 

here is only good for the visible wavelength. This is equally good for infrared or UV 

region as long as if I look electromagnetic wave. Hence, you can always extend this 

discussion to other regions of the spectrum. When we talk about optical properties 

normally, what we are talking about is interaction of light with the matter the media or 

matter. 

Now, what is light? Before we understand this interaction, let us understand what is light. 

Just like the material electronic structure when we talked about electron, we looked at as 



dual nature. In the same way, light also have dual nature. You can think of it as a wave as 

well as a particle. In today’s discussion, we are going to be thinking of light as an 

electromagnetic wave. Hence, we must understand the theory of electromagnetic waves 

and basically Maxwell’s equations. 

So, our consideration here is going to consider light as electromagnetic wave interaction 

of the light with the materials. This electromagnetic wave with the material decides what 

is going to be the optical properties of the material. Now, when we talk about the optical 

properties of the material, normally we think in terms of transparency, opacity or 

reflectivity of the material. But these are basically phenomena which are based on 

intrinsic property of the material.  

So, the optical parameters, the intrinsic optical parameters of a material are intrinsic 

parameters describing optical properties are; n, which is what we call refractive index. k, 

which what we call extinction coefficient. Remember, we have used this parameter k 

earlier for wave crystal movement of electron. That is why I have designed this particular 

k, which is extinction coefficient with slight tilt on the top, so that we distinguish 

between the two parameters. 

Now, other properties which we normally confuse with the optical properties; other 

derivatives of this intrinsic properties are reflectance R, absorption and T transmission. 

Basically, a material has its optical properties defined by parameters n, n extinction 

coefficient. If I am looking at any light coming in, how much of it is reflected back is 

given by R, how much of it is transmitted is given by T. There is some amount which is 

getting absorbed in the material, which is given by A. 

So, effectively if I am looking at these properties, R plus T plus A is always 1. These 

parameters R, T and A are actually dependent on the intrinsic property of the material, 

which is n and kappa. Now, how do we derive n and kappa? That is what we will do 

next. So, what is light? It is as i just explained light is nothing but an electronic EM 

wave. 
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This solution can be obtained. It is a solution of the Maxwell’s equation. In case of 

vacuum, Maxwell’s equations are these, four set of equations that give the relationship 

between the electric field and the magnetic field in vacuum. The relationships are 

basically interrelationship of these two parameters. These four equations derive this 

interrelationship. In this parameter, epsilon naught is nothing but electrical permittivity 

of the vacuum. Mu naught is magnetic.  

When we try to write these equations for a material, Maxwell’s equations are going to be 

modified, when you are talking about for any matter or media. Now, matter or media is 

not vacant space. It has electrons. It has other phenomena going on, which are going to 

define its properties.  
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Hence, those properties are going to change, modify the existing EM equations for 

matter and media. The additional parameters are given below. These are basically matter 

generally has some charge density per unit volume. It may also show some polarization 

behavior, which is basically the volume density polarization, is volume density of 

electric dipoles. M is magnetization, which is volume density of magnetic dipoles. We 

also have current density, which are current amperes per unit area. If we include these 

effects into the Maxwell’s equation by including them in the Maxwell’s equation, we are 

basically saying that polarization and magnetization is going to change the effective field 

inside the media. This is going to be used. 
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This is going to change the Maxwell’s equations into the following form; basically 

instead of H. We also have the magnetization included in here instead of simple electric 

field. We have polarization plus the current density included here. In case of the third 

Maxwell’s equation, we also have the charge density included here. Now, these four 

equations can be further abbreviated. We use the abbreviation defining the properties of 

material, which is basically the dielectric displacement instead of electric field.  

Dielectric displacement D is given by epsilon electric field. Epsilon is a dielectric 

constant of the material, which can be written as the electric field in the vacuum plus the 

polarization. We can also write as magnetic induction is given by the term H plus 

magnetization. By writing, using those abbreviations, we get further modified version of 

the Maxwell’s equation which can be easily solved.  
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The new set is fairly simple. The curl of the electric field is related to the magnetic 

induction. Curl of the magnetic field is related to the displacement vector plus a current 

density divergence of the displacement vector. It is basically defined by the density of 

the, charge density in the material. Divergence of the magnetic induction is going to be 0. 

Now, we are going to define these equations as 11, 12, 13 and 14. Now, these equations 

are basically defining all EM interaction with the material.  

An additional relationship is also required, which relates the current density to the 

electric field. This is known as the conductivity of the material. In summary, what we 

have done is we are trying to define the interaction of light with matter. The three 

parameters that come out, which define this interaction is the electric permeability of the 

media, magnetic permeability of the media and the conductivity of the medium. Now, 

this is basically defining the properties of the material. We will see how that defines our 

optical properties. 
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So, let us solve these equations for finding a solution. Let us look at the wave equation 

solution in an absorbing media. We will assume it to be isotropic for the present 

discussion. So, the properties in all directions are same in order to make this solution 

simple. We make following assumptions. Basically, density of charge is 0 as well as 

conductivity is 0. So, we are pretty much talking about a dielectric material here. There is 

no free charge in this. Material density is 0, free charge conductivity is 0. 

We assume that the magnetic permittivity is mu naught, which is the same as magnetic 

which is the same as for vacuum. Hence, this is a non-magnetic medium. Now, this is not 

a bad assumption because at the optical frequency, most of the mediums are not 

magnetic; even the magnetic materials at a high frequency of a optical wave. The 

magnetic activity does not take place. Hence, normally this is true for most material. 

Those materials do not show magnetic properties at optical frequency.  

So, normally true for optical frequencies. Now, from equation 11 to 12, 11 to 14, which 

were shown here from 11 to 14, we are going to try to solve for solution. We will take the 

curl of the first equation. This is going to be given by this expression. Further, write this, 

simplify this and write, take it the curl inside. Now, this can be by using equation 13, we 

can further simplify this part. This will become, this is obtained by using the relationship 

13 and assuming epsilon independent of time. Now, we can try to simplify this 

expression. The double curl can be written.  



Now, using the expression 14, we know that this is 0. That gives us an equation for wave, 

which is basically this equation. A solution for this equation will be our light in the 

media. So, a light in the media will be solution to this equation. If we take the terms for 

the vacuum, that would be the light, the equivalent wave equation for light in the 

vacuum. So, let us look at the solution and what are the characteristics of this solution.  
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So, the wave equation is basically a wave equation. This wave has a velocity v, which is 

going to be given by 1 over square root of mu naught epsilon. So, this is a velocity of the 

light which is represented by the wave equation 15. So, light wave is basically a solution 

of equation 15. This is the velocity of light. Now, let us look for a possible solution for 

this equation. So, basically our light wave is a solution for equation 15. If we assume that 

the wave is moving in the positive direction, one possible solution is given by once 

again. We have another k vector here. I am representing this by this from k, which is 

wave vector for light wave. 

So, in general, in this course, you would have seen that k is used many times. The first k 

you were introduced to was momentum for the electron. Then, crystal momentum; then, 

we used extinction coefficient, when I changed its shape because that is defining the 

property of the material. Now, we are using another k, which is basically defining the 

wave vector of the light. I have changed the symbol slightly so that you do not confuse 

between the crystal momentum and the wave vector of light.  



So, this k is defining basically wave vector for light. In this, we have the solution for a 

wave, which is moving in positive r direction. Now, if I use equation 17 into 15, we will 

find a solution which will define our properties of the material in terms of light. By doing 

that, I will find this relationship; if I substitute 17 into 15, I will get k square. 
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k square is now, dielectric constant of the material. It is defined by the relative dielectric 

constant also. These are the terminologies, which you must have seen elsewhere. So, 

dielectric constant of the material is also defined as epsilon r. It is basically epsilon over 

epsilon naught, where epsilon r is known as the relative dielectric constant. What we will 

find is that this epsilon r has also written as a complex number, given by epsilon prime 

plus i epsilon double prime. 

Now, from the Maxwell’s equations in vacuum, we will find that the light solution, the 

solutions for the light wave that we obtain will have a velocity c. This will be given by; 

this was seen earlier over here. I showed you that in the media, the velocity for light will 

be given by 1 over square root of magnetic permeability times the dielectric constant. If 

the media is not there then, basically the speed of light which is the vacuum speed of 

light that is a speed of light in vacuum is going to be given by the permeabilities of the 

vacuum for magnetic and electric field. 

Now, applying for these new definitions to equation number 18, we are going to get k 

square is equal to omega square over c square epsilon prime plus i epsilon double prime. 



We know that in this is in medium or in the material; we know that k square is equal to 

omega square over c square in vacuum. This is basically saying that our light as it goes 

from the vacuum to the medium, its speed is reduced by a factor square root of epsilon 

prime plus i epsilon double prime. This vector, this factor is known as n. So, normally we 

define that in a medium, factor N. 
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This factor N is given by; we further know that this factor N is a complex number 

because it is a square root of a complex number. Some more parameters, material 

parameters are defined from here given by; this is all optical properties of the material. 

Remember, we talked about n, which is basically refractive index and kappa, which is the 

extinction coefficient. So, this has to be related to the relative dielectric property of the 

material by square root. Now, why is this n and i k?  Let us see how N is represented by 

this, which gives us the optical properties of the material. You will do this derivation in 

the reverse direction in the sense; we will assume a light wave. We will show that the 

definition of the relative velocity gives you the optical property of the material.  
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So, let us assume that light is, there is a material which has a refractive index n and 

absorption coefficient extinction coefficient k. Then, consider a plane wave, which is 

falling on this material in the z direction. Now, as this wave is propagating inside the 

medium then, what will happen to this wave? This wave is going to be modified because 

its k and omega vector are change. As we saw that k vector now is basically omega over 

c n plus i kappa. If we include this into our wave equation, we get e is going to be equal 

to the amplitude of the electric field.  

Now, this equation wave equation is basically a damped wave equation. The magnitude 

of the electric field is reduced by this factor. This is damped damping factor for the 

electric field and speed is also changed by a factor n. So, the damped wave is 

propagating with a phase velocity of c by n. So, basically the c by n is a factor by which 

the velocity of the magnetic wave in the medium is reduced. 

If you remember your high school science, you remember n is defined as c over v, which 

is the velocity in the vacuum divided by the velocity in the medium. So, from Maxwell’s 

equation, we basically get optical properties of the material. They are defined, that is 

defined in the same way, that the velocity of light is reduced in the medium as oppose to 

in the vacuum. That is the refractive index of the material. Now, let us focus on this 

damping factor. If there was no absorption in the material then, the magnitude of the 

electric field would remain same in the material. 



So, if there is a electric field going in it has some magnitude e naught then, this 

magnitude is going to be dampened as it goes through the material. That is basically 

denoting the absorption of this electric field in the media. This absorption is being 

defined by this parameter kappa, which we called extension coefficient. 
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So here, we have finally. To summarize so far what we have done is; we have shown that 

the optical properties of the material n and kappa are basically related to epsilon for the 

material and epsilon r for the material. It is given by epsilon prime plus epsilon double 

prime. So, both the n and k are related to the basic property of the medium, which is 

epsilon prime plus epsilon double prime. 

Now, we would like to see how this n and k is related. n and k is going to be related to 

the actual observed properties of the light to get to the basic optical parameters of the 

parameter of the material. We basically measure reflectance, absorption and 

transmission. We do not directly measure n and k from the information from reflectance, 

absorption or transmission. We try to derive what are the basic optical properties of the 

material. 

So, it is important to show the relationship between what we measure and what are the 

actual n and k. The difference basically lies in the fact that when we measure, we do not 

actually measure. We do not measure the magnitude of the electric field. We do not 

measure e. What we are measuring is the intensity of light. So, in any experiment, optical 



experiment in which we are looking at how is light going reflected or transmitted or 

absorbed inside the material, we are actually measuring the intensity of light.  

Now, how is the intensity of light related to the EM wave equation? Intensity of light is 

proportional to the e square. So, all the measurements that we do are actually done not on 

e, but on intensity. The detectors that we have the source, we have, we use the intensity 

in the terms of dual nature of light. This is basically number of particles per centimeter 

square per second number of photons that are emitted and this is what we are going to 

measure. 

So, let us when we measure intensity, we are going to measure properties like R, T and 

A. I will first show the relationship between absorption and n and kappa. This is a term 

that we also used in the earlier lecture where I was talking about the absorption 

coefficient. If you remember, we talked about intensity of light. If i naught is a intensity 

of light falling on a material of this dimension x then, what I am going to measure is the 

intensity. Here, we will be at innovated by a factor alpha x. Alpha was defined as 

absorption coefficient. 

This alpha was important to us because that is what defines how many electron and holes 

pairs are generated in the device. We use that alpha factor to calculate how many electron 

hole pairs will be e generated in a device. Now, what we want to do is we want to show 

how this absorption coefficient, which is measured on the intensity of light, is going to 

be related to the basic optical parameter of the material, which is n and kappa. Now, we 

are going to decide how n and k are going to be related to the properties that we measure 

in light experiments, which is basically absorption coefficient or the absorbance in the 

material. 
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So, let us consider. In this derivation, we consider a slab. We consider a thin slab of 

material. In order to make the derivation simple, I am going to assume. So, this is my 

thin slab of the material, which has the dimension delta z. This has refractive index n and 

it is in a bulk of the material, which is also refractive index n. The reason I am assuming 

the bulk of the material and the thin slab to be both same refractive index because if the 

refractive index is different, you have some of the light being reflected back.  

But if I assume it to be the same, which means I can easily ignore that there is no 

reflection, R is 0 here. Then, this will propagate. There will be some absorption here. 

Something will be transmitted. What I am interested in is trying to figure out how much, 

what will be this absorption in terms of n and kappa. So, from electromagnetic theory, 

we already know that, i is going to be propositional to magnitude of E square. From 

experiments, we know that the light intensity that we measure is related to absorption 

coefficient alpha. 

It is important to realize that light as subject of interest has been there for a much much 

longer time than the Maxwell’s equations. Hence, a lot of terminologies were developed 

before that the EM wave relationship was realize. That is the reason that we have to 

today find this correlation between the solution to the light as Maxwell’s equation and 

the terminologies that exist in optics like absorption coefficient and reflectance etcetera. 

But it is interesting to note that both explain each other very well.  



Now, alpha is what we call absorption coefficient. So, since we can now try to see what 

this is going to be equal to, we know this i is related to E square. So, this is going to be 1 

over E square, modulus of E square. I can take from my earlier equation, an expression 

for E in the media. So, modulus of E square is nothing but this from earlier equation, 

where we derived the E. This is the wave equation for light in media. If we include, if we 

do the complex conjugate multiplication here, we will get E naught square exponential. 

Now, we can write what is alpha basically. This will say that del E square over del z is 

going to be equal. So, if I now look at what is alpha, alpha is basically this term divided 

by 1 over E square. Then, I am only left with 2. So, this is the relationship between 

absorption coefficient and extinction coefficient. Absorption coefficient is defined for the 

light intensity, which is used in the optics literature a lot. The extinction coefficient is 

defined for the material property, which we have just shown is related to the permeability 

of the material for electric field and the magnetic field. 

Hence, this shows the one to one relationship between optical parameters of the material 

as well as the dielectric parameters of the material. The relationship of a with n and 

kappa is simple. But, now you want to derive for reflectance and transmission.  
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Let us first look at the derivation for reflectance. In the earlier discussion, we made the 

slab very thin inside the bulk material so that there was no discontinuity in the refractive 

index. Hence no reflectance, but if I have a discontinuity, I can almost assume that there 



is going to be some reflectance except under certain special conditions. Hence, in order 

to derive the equation for reflectance, I must first do the condition or the assumptions 

used to deal with EM wave at the interfaces.  

One important point to note about reflectance is just like in absorption, when the material 

property is basically deciding the absorption coefficient, reflectance is slightly different. 

Sometimes, it may not be the material property. Reflectance from a very sharp 

discontinuous material is a property of the material refractive index. I am assuming the 

refractive index of the air to be 1. n is equal to 1 and ambient is equal to 1. This is for the 

material. There will be some reflectance.  

But it is not always the property of the material. This, you can think of a situation, where 

you have a very rough surface. This is known as a specular surface. This is known as a 

rough surface. Now, although this material might still be n, the reflectance is not a 

material property. It can be actually a surface property in some extent. So, we need to 

understand, the surface is to really understand reflectance. But we are interested in here 

to relate the optical properties.  

As we observe with the material intrinsic material properties, we are going to consider 

this case, in which we have very sharp discontinuity. In this case now, the reflectance is 

going to be decided by refractive index of the material or optic or kappa of the material, 

not by the roughness of the surface. So, this is a case that we are going consider here. 

Now, what will be the boundary conditions when we take up such a case so, boundary 

conditions?  

The first condition is going to be that the tangential component of the electric field and 

the magnetic field are going to be continuous. This is not very surprising. Why should 

these to be continuous? This is because intuitive way of deriving this condition is that 

you cannot have on a dielectric for which we have defined our wave equation that there 

is no current. There is no charge density. If these are not continuous, means that there is a 

current at the surface.  

So, in the situation that there is no charge in the material, these two vectors have to be 

continuous across the boundary. Now, let us consider situation in which if when we said 

these things continues, what will happen? So, consider a very sharp discontinuity. 
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Let us take the medium to have n 1 refractive index here, n 2 over here. Let us take a 

general case where the light is coming. We define the incidence angle from the normal 

theta. The incoming light wave has the wave vector k. We assume some wave vector k 

prime for the reflected light and at some angle theta prime. I am not defining this theta 

prime as equal to theta. You have already seen in your high school probably that the 

reflectance is at the same angle. 

But we would like to derive that condition here, same thing about refracted light which is 

at the angle phi and wave vector k double prime. So, this is your reflected ray and this is 

your refracted ray. So, k a is for the incident reflected and refracted ray. We can further 

define that n parameter, which is basically n 2 over n 1. This may be useful in 

simplifying the expressions at a later stage. Now, if I write down the EM wave equation 

for incident reflected and refracted light, I am going to get, I can write it. Now, general 

expression the incident wave as having the magnitude E i, the reflected wave has having 

the magnitude some E prime. 

I am also not assuming that the magnitude of the wave is going to remain same, given by 

k prime omega prime t. The transmitted wave is going to be E double prime. So, I have 

taken a very general case. I am assuming, I do not know anything about light. When the 

light wave comes, it has some wave vector, some magnitude and some frequency. As it 

gets reflected, it has a completely different magnitude, wave vector and a frequency as 



well same thing for the refracted light.  

Now, let us apply the boundary condition at this point to see what would be the some of 

the relationship between these parameters in all this. Let me specify r is taken relative to 

0 and 0 point is the origin here. If I can write the electric field vector this way from help 

of the Maxwell’s equation, we also know which means at the magnetic field vector of the 

light is going to be basically for the refracted magnetic field vector. It is going to be k 

prime and for the transmitted it is going to be k double prime.  

If we look at this equation, we also see that the condition that is going to be satisfied here 

is going to be that that the two vectors, the wave vector and the magnitude are going to 

be perpendicular to each other. This is because for EM waves are transfer electric field 

and a magnetic field vector are at 90 degree to each other and that is at 90 degree to the 

wave vector.  
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Hence, we can write the condition that the relationship between all 6 vectors is going to 

be such that k dot E is equal to going to be k prime dot E is going to be k double prime 

dot E double prime. These are with this relationship. Then, it basically says that Ei vector 

the tangential component the Er vector the tangential component of it and Et vector, E 

reflected, E transmitted vector the tangential component of it. Now, taking these 

tangential components at the boundary and using the boundary condition, we will get 

basically the Ei tangential component plus the Er tangential component should be equal 



to the E transmitted tangential component. 

So, what we are trying to say here is basically the E wave. This is let us assuming for the 

discussion that it is perpendicular to this. It is going in this direction. What we are saying 

is at this point the entire tangential component. If we add up for the incident and the 

reflected ray, that should be since it has to be continuous across the boundary, it should 

be equal to the 1 that is for the refracted ray. So, if we add up add up for the incident and 

the reflected one across the boundary that should be equal to the tangential component in 

the media n 2. That is this condition we have just written here. 

Now, this equation must hold true for all values of r. As a simplification, if we take it for 

at r is equal to 0 then, we can forget about the k dot r terms. We will get basically E 

tangential for the incident term exponential i omega t. Now, this equation for this 

equation to hold true for all t’s, it requires omega has to be equal to omega prime has to 

equal to omega double prime. Hence, although we did not assume in the beginning that 

the frequency is going to remain unchanged, it turns out that upon reflection from a sharp 

interface, the frequency of the reflected and refracted light is going to be same thing, we 

can do from this condition. 
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For all rs, the equation is to be true for all r. It is also required that k dot r has to be equal 

to k prime dot r has to be equal to k double prime dot r. Now, this condition itself 

requires that all these vectors k, k prime and k double prime have to be coplanar. Now, 



from here, we get k r sign theta is going to be equal to k prime r sign theta 1 is going to 

be equal to k double prime r sign theta 2. No, sorry, sign phi. By definition we know that 

the k vector is nothing but n square omega square over c square.  

We can also write that omega square over c square is equal to k square over n square. If 

we take that definition, we get the condition that across the interface; we will get 

relationship which is going to be true here. If we look at that from these two expressions, 

this basically means that k has to be k prime. Once again, we did not assume that before 

definition. But, it turns out that after solving it, this is going to be true only when k is 

equal to k prime. 

Now, if we substitute that, this also gives us that theta is going to be equal to theta prime. 

We also get the equation that n 1 sin theta is going to be equal to n 2 sin phi. This is 

nothing. What is then what you have studied in high school? Snell’s law that defines the 

reflection at a interface. So, what we have done in today’s lecture to summarize. 
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We have realized the importance of the optical properties in optoelectronic devices. We 

have derived the optical properties of the material from the EM wave, electromagnetic 

wave equations and its relationship with Maxwell’s equations. Then finally, we showed a 

relationship between alpha and kappa are related E derived conditions of reflection using 

EM waves. So, this brings us to the end of this lecture. 


