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Wave and Wave Effect 

 

Welcome to Numerical Ship and Offshore Hydrodynamics. Today’s topic is Wave and 

Wave Effects. 
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So, today we are going to discuss something about the free surface waves and other 

things. 
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And, this is the keyword that we are going to use to get this lecture. 

(Refer Slide Time: 00:33)  . 

 

Now, let us coming back to this kinematic free surface boundary condition. Now, if you 

look at the wave then actually this water is and this the black line you can see is basically 

border line between the air and the water. And, this surface we call the free surface. 

Then, what is would be the equation for this free surface? 

Now, if you assume that the coordinate axis that vertically upward is the z. So, we can 

assume this vertical distance z is basically a function η which is depending on x, y and t. 
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Now, here in two-dimensional case we cannot see the transverse axis, but one can see 

that if you travel along this x axis, this η will change right. 

Also, if you fix that x at some point, let us say we are fixing somewhere here the x and if 

you try to vary your time then you can see the same kind of sinusoidal wave. So, 

therefore, this η is changes not only with respect to x, but also it will change with respect 

to t also and of course, with respect to y also ok. 

Now, remember in my last class. So, when we called a surface to be a boundary surface 

right and the definition that we have learnt in last class. Now, here I can simply write a 

boundary surface F which is z - η (x, y, t) right. Now, then this surface become F (x, y, z) 

= 0 or we can say it is F (r, t) = 0 right. So, till this point there should not be any 

problem. 

Because, in last class we discussed about that F would be a boundary surface etc. And, 

here I can see this F we can call as a free surface because, it is the surface which is 

between air and the water. And, also I have discussed in a last class and this is the one of 

the key things or a or say unique thing for shift dynamics or offshore dynamics, that we 

have to deal with this free surface right. 

Now, let us try to find out that what would be the condition that a water particle is stick 

on the surface right. So, the objective is to find out a condition so, that a water particle 

should stick on the surface. So, assume that this a water particle over here or somewhere 

over here. So, then what is the condition that this water particle cannot come out of the 

surface? Now, what would be the condition for this? 

So, let us try to find out. Now, if you remember my last class what I said that a part water 

particle or a particle stick on a boundary if and only if the normal velocity of the surface 

should be equal to the normal velocity of the water particle right ok. So, therefore, here 

and this would be the condition that material derivative should be = 0 right. So, F be the 

boundary surface, then the condition should be DF/Dt = 0 right ok. So, this everything 

we discussed in the last class. 
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Now, here let us in the right hand side actually I just derived that DF / Dt is how I can 

break it in partial derivative. So, this is the vector notation DF / Dt can be written as dF / 

dt + q dot ∇ F = 0 right. And, then this q actually has 3 component that u, v and w right 

and ∇ is of course, i ꝺ/ ꝺ x + j ꝺ/ ꝺ y + k ꝺ/ ꝺz right ok. 

Now, we assume that material derivative z - η that should be is = 0. So, this is the 

condition. Now, here if you remember that in my last slide I said that D / Dt of F should 

be 0. Now, I substitute the F over here and we know that in here actually we write that F 

= we write F = z - η x, t. So, I substitute this F over here right and then I substitute that D 

/ Dt also. Now D / Dt is nothing, but from here I know that it is ꝺ/ ꝺ t + q . ∇ F ok. 

So, now what I do is this ꝺ/ ꝺ t, I replace over here. And therefore, if I replace this q then 

I will get you know this ∇ if I replace over here, then I get it is u ꝺ/ ꝺ x + v ꝺ/ ꝺ y + w ꝺ/ 

ꝺ z right. So, it is it is very elementary. I just change that q . ∇, I just get q = ui + jv + wk. 

And, I call ∇ = ꝺ/ ꝺ x + ꝺ/ ꝺ y + ꝺ/ ꝺ z and if I do the dot product, it should be u ꝺ/ ꝺ x + v 

ꝺ/ ꝺ y + w ꝺ/ ꝺ z right ok. 

Now, I just do the operation. Now, here this z is not function of t; however, this η is 

function of t right. So, therefore, ꝺ/ ꝺ t of η I just write - ꝺ/ ꝺ t. Now, again z is not the 

function of x either, but η is the function of x. So, I substitute over here. So, I get - u (d η 

/ ꝺ x). Similarly, z is not a function of y also; however, η is a function of y. So, if I do 

this then I get - v × (d η / dy). And finally, that ꝺ/ ꝺ z this goes this goes to 1. So, I have 
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that w, but then η is not the function of z so, therefore, it 0. So, if I do this operation so, I 

will get - ꝺ/ ꝺ t - u ꝺ/ ꝺ x - p ꝺ/ ꝺ y + w, that should be = 0 right. 

(Refer Slide Time: 07:48) 

 

Now so, now, I understand that this is the equation. But, you know where I apply this; 

that means, that at which z this will apply? Now, if I write it this again the graph, I can 

see that this equation apply on the free surface. So that means, at the free surface your z 

is = η right. So, therefore, we understand that this kinematic free surface boundary 

condition, it is w = ꝺ η / ꝺ t + u (ꝺ η / ꝺ x) + v (ꝺ η / ꝺ y) and it should be apply at z = η. 

(Refer Slide Time: 08:42) 
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So, now I replace the u = ꝺ ϕ / ꝺ x, v = ꝺ ϕ / ꝺ y and w = ꝺ ϕ / ꝺ z in this equation. And 

then finally, I get the complete expression as ꝺ ϕ / ꝺ z is = ꝺη / ꝺ t + ꝺ ϕ / ꝺ x × ꝺ η / ꝺ x + 

ꝺ ϕ / ꝺ y ×ꝺ η / ꝺ y and this apply at z = η. So, this is my kinematic free surface boundary 

condition which states that water particle has to stick on the free surface. If it is so, then 

this condition should apply or this condition should hold. 

Now, I just writing this or writing in a little bit compressed way or smart way. So, I just 

write instead of ꝺ ϕ / ꝺ z I use ϕz, instead of ꝺ η / ꝺ t. I use ηt. So, in that way I can write 

ϕz = ηt + ϕx ηx + ϕη y and this apply at z = η. So, this is known as the kinematic free 

surface boundary condition ok. 

(Refer Slide Time: 09:55) 

 

Now, let us move on the next part is called the dynamic free surface boundary condition. 

Now, kinematic free surface condition explain you that at this the water particle 

kinematics; that means, water particle to stick on the free surface right. Now, this 

dynamic free surface condition is telling you that at free surface there is equilibrium of 

the pressure. So that means, the difference of the pressure I mean the air pressure water 

pressure balanced each other and this goes to 0. 

Now, if we apply the Bernoulli’s equation or my pressure equation. So, this is the 

equation that we learn the pressure = ꝺ ϕ / ꝺ t + 1/2 ∇ ϕ2 + g η, we have discussed in the 

last class. So, here you know we are not deriving it right. So, this is one and then this left 
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hand side should goes to 0, because this one balance each other. And then finally, we 

will get the dynamic free surface condition as ꝺ ϕ / ꝺ t + 1/2 ∇ ϕ2 + g η = 0. 

And of course, it apply at z = η. So, it apply over the free surface. So, therefore, I have 

two boundary conditions. One is we call the kinematic free surface condition which tells 

about the kinematics of the water particle. And, second one is the dynamic free surface 

boundary condition which talks about the pressure over the free surface ok. 

(Refer Slide Time: 11:29) 

 

So, what is the complex part of it? Now, this is the equation the derivation of equation is 

fine. But, what is the complex part? The first one is let me this is your the non-linear 

kinematic free surface boundary conditions right. And, then we have the non-linear 

dynamic free surface condition. Now, here needless to say in this equation 1 and 2, both 

η and ϕ are actually unknown to me right. 

Now, now then the problem is how can I obtain ϕ if I do not know the information about 

η and how they obtain this η if I do not have the information about the ϕ? Now, how to 

solve this problem? So, because you see this is a very, this is really a complex part 

because now we get an expression for η. 

So, in order to find the η we need ϕ. Also I have ϕ, but I need to find out in order to get 

the ϕ I need η. So, the best way is just eliminate either ϕ or η right. So, how to do this? 
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That means, we have here the both ϕ and η both are present in the equation, I need an 

equation where that either ϕ or η is absent. 

(Refer Slide Time: 12:59) 

 

Let us see that. Now, in a classical book by Marine Hydrodynamics by J. N. Newman; he 

said that the kinematic free surface condition 1 can be replaced by the statement that 

material derivative of the pressure is zero over the free surface. So, actually you can say 

this is a mixed boundary condition. So, it means that the pressure is zero on the a varying 

surface. 

So, when I consider the a varying surface so, definitely it is a kinematic part and then we 

are considering the pressures is a dynamic part. So, what he said is very interesting. He 

says that I take the pressure along this free surface and that pressure should be = 0. So; 

that means, I am considering. Now, what I am doing as per his statement I mean this 

statement; I am considering a surface of pressure. 

I am considering a surface of pressure where in this particular surface at any point of 

time, the pressure variation = 0. So, this is very strong argument actually and with 

respect to this we can easily eliminate the η right. How? 
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Let us see. Now, you see here what I said that, that what I said the meaning 

mathematically meaning is that I just considering a surface where the material derivative 

of pressure should be = 0. Now, if I say that then this is the equation for the D / Dt the 

material derivative. We know that is ꝺ/ ꝺ t + u. ꝺ/ ꝺ x + v. ꝺ/ ꝺ y + w. ꝺ/ ꝺ z right and 

then this pressure is basically this one, our pressure right. 

Now, let us continue and let us find out what we can get out of this. Now, here you can 

see that in this equation there is no existence of η right. So, now, if I break it So, I just 

write in terms of you know here actually what I did is, this term I makes × two 

component right. Now, you can see here I replace u. ꝺ ϕ /ꝺ x, v.  ꝺ ϕ / ꝺ y and w. ꝺ ϕ / ꝺ z 

right. And, apart from that what I do that I write another component is you know i ꝺ/ ꝺ x 

+ j ꝺ/ ꝺ y + k ꝺ/ ꝺz. 

Now, you see if you do this that; means, that means that is how I just make this u ꝺ/ ꝺ x + 

v ꝺ/ ꝺ y + w ꝺ/ ꝺ z. I break it this way. Now, if you do this then actually you can get; now 

if you use a dot product its become ꝺ ϕ / ꝺ x × ꝺ/ ꝺ x + ꝺ ϕ / ꝺ y × ꝺ/ ꝺ y + ꝺ ϕ / ꝺ z × ꝺ/ ꝺ 

z. See this is nothing, but your this term right. 

And, then actually what I do is I just use this as a vector product. So, I split it out × 

vector component. One component is i ꝺ ϕ / ꝺ x + j ꝺ ϕ / ꝺ y + k ꝺ ϕ / ꝺ z and multiply by 

the another component i ꝺ/ ꝺ x + j ꝺ/ ꝺ y + k ꝺ/ ꝺ z. So, I did that. Then what is the 

benefit of doing all these things? Let us see. 
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Now, if I do that, if I do that then you can see that I actually write this term as a ∇ ϕ. 

And, then I write this term as a ∇ right and again just in case of ꝺ ϕ / ꝺηt, I make at ϕt. So, 

therefore, this is the I write in a vector form. So, I just changes this into it nothing it is 

just a notation right. So, now, if I apply the differentiation over there. 

So, if I use ꝺ/ ꝺ t × ϕt, I will get you know ϕt and then if I get ꝺ/ ꝺ t × 1/2 ∇ ϕ2. So, I will 

get ∇ ϕ. ∇ ϕt and also if I make ∇ ϕ . ∇ ϕt, again I am getting ∇ ϕ . ∇ of ϕt. So, therefore, I 

get 2 ∇ ϕ . ∇ ϕt and finally, I multiply this with this. So, I will get g × ∇ ϕ . ∇ × z ok. 

(Refer Slide Time: 18:20) 
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So, now I get a combined free surface boundary condition which is the absence of η 

right. So, in this equation you can see there is no η is present. So, now, if I solve this 

equation then actually I really do not have to worry about my η. So, this is called the 

combined non-linear free surface boundary condition. Now, here you can see there is no 

presence of η right ok. Now, let us just little bit do some maths quickly. 

Here, I can see that I just replace that ∇ ϕ over here, I replace the ∇ over here and then if 

I multiply by the z. So, I can get here, now you can see that only ꝺϕ / ꝺz term exist right. 

So, therefore, therefore, I can replace this as g × ϕz right. So, this is basically the I mean 

the most simple simplified case for the combined non-linear free surface boundary 

condition. 

These are elementary mathematics that you can follow very quickly like this ∇ ϕ is this 

one, then ∇ is this and then I multiplied by the z. So, it is k ꝺ ϕ / ꝺ z multiplied by the ꝺ / 

ꝺ z. So, therefore, we will end up getting ꝺ ϕ / ꝺ z and then we replace the ꝺ ϕ / ꝺ z over 

here ok. 

So, math part is elementary. So, the, but the important part is here this boundary 

condition we do not have η. So, if I try to solve some problem and try to find out the 

what is my free surface or is the velocity potential of the free surface, the water particle. 

So, then you can use this equation ok. So, now, this exercise as I said it is free surface 

boundary condition absence of the wave elevation. 

(Refer Slide Time: 20:34) 
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Dealing with the non-linear free surface boundary condition is very complex and it is 

very difficult to solve the practical, real practical problem. So, therefore, we have to 

make some kind of approximation, some assumptions and then we need to drop some 

terms and we have to get a simplified equation and then we are ready to solve the 

equation. 

So, let us now see that in case of the non-linear boundary condition what approximation 

we make; so, that I can find a simplified linearized equation ok. Now, this is your non-

linear free surface boundary condition. Now, here you can see we have non-linear terms 

such as ϕx ηx, this one and ϕy ηy. So, we need to drop this to get some linearized free 

surface conditions. 

So, what is the approximation? Approximation is we assume ϕx and ηx both are very 

small. Now, if both are very small then multiplication of the product should be too small 

so, that we can ignore. So, this is the underline assumptions. So, under this underline 

assumptions we ignore the contribution for ϕx ηx, we ignore the contribution of the ϕy ηy. 

But, the question is at which z actually you are applying it? This is a very important 

question. 

Now, ideally speaking we should apply at z = η; that means, you should apply this 

equation at the exact free surface. However, in case of a under the assumptions of the 

linearity, we apply at z = 0 ok. And then finally, we end up getting this kinematic free 

surface boundary condition, what is called the ϕz = ηt. 
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Now, let us try to understand what is the meaning of this linearity. Now, here I can you 

can see that this is a wave elevation with various z / l ok or h / l; that means, height 

divided by the λ, the length. I mean the length between this from here to here. So, now, 

you can see this is called the in its frankly speaking this is called the wave stiffness. 

Now, we can see that this h / l it is 1 / 10, means is very stiff. So, I decrease the step 

slowly slowly. See, first is 1 / 10 and after that it is 1 / 12.5, after there is 1 / 15, 1 / 25 

and then finally, it is 1 / 50. And, then actually you can see when is 1 / 15, this elevation 

is really really small. 

Now, what is happening that this I can think of a linear range. So, what we are logically 

what we are try to say as follows. We are trying to say that in case of this small 

amplitude; we can assume what is happening at z = 0, the same thing is happening at z = 

a or z = η ok. So, this is the underlying assumptions of the linearity. We have to 

understand this right. 

We assume that when you say it is a linear problem; we assume that what is happening at 

z = 0, the same phenomena is happening at z = a because the elevation is very very 

small. So, that assumptions not hold. These assumptions we cannot make. If we take this 

point, if I take this waves I if it is this wave we cannot say. What is happening here, the 

same thing happening here not possible. 
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But however, in case of a linear range we could say that what is happening here, the 

same thing is happening here. And, that is why we change the range the z = η to z = 0 

right. So, this is the underlying assumptions of the linearity and one has to understand 

very well. Because, otherwise it is very difficult to find out that what is the linear range; 

when you say it is a linear range, it is a non-linear range. 

Everything depend on the fact that as long as we can assume what is going to happen at z 

= 0, the same thing is happening at z = η; we really cannot progress ok. So, let us stop 

here and in the next lecture we are going to discuss about the linearity of the dynamic 

pressure. And, then we have to deal with like how we can solve this problem and how we 

can obtain the ϕ. 

(Refer Slide Time: 25:50) 

 

Let us now talk about the linear dynamic free surface boundary condition ok. Now, this 

is the non-linear equation as you know. Now, here also we are going to apply the same 

thing. We are going to drop the quadratic term which is this one right, half of ∇ ϕ2. 

So, if I drop this term so therefore, we can get and also ok; also, we have to apply at z = 

0 in this case also. Again, the logic is similar what is happening at z = 0, same thing is 

happening at z = η. So, therefore, I can drop z = η and I can write z = 0. 

164



So, therefore, my linear dynamic free surface condition becomes ϕt + g η = 0 at z = 0 

right. Now, when I linearized my kinematic free surface condition and dynamic free 

surface condition, actually I can combine the both. 

(Refer Slide Time: 26:51) 

 

So, my idea again I need to eliminate either η or I need to eliminate either ϕ. So, let us 

see. Now, this is my linearized kinematic free surface condition ϕz = ηt and this is my 

linearized dynamic free surface condition ϕt + g η = 0 right. So, now I differentiate this 

equation with respect to t. So, I get ϕt + g ηt should be = 0 right. 

Now, here I can further replace ηt = ϕz. So, if I replace this then finally, my equation 

comes ϕt + g ϕz equals to 0 right. So, this is basically my combined free surface boundary 

condition. And, remember the next one which is in the bottom is basically the combined 

non-linear free surface boundary condition. 

Now, here also if I drop the quadratic term right. So, and if I apply it is at z = 0, again I 

can get the linearized free surface boundary condition right. So, I drop this term, I drop 

this term and therefore, from here also I get ϕt + g ϕz = 0. So, you can see that whatever 

the approach you are going to take; finally, when you linearized both the things are same 

ok. 
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So, now in the linear problem I am going to deal with this combined free surface 

boundary condition ϕt + g ϕz = 0. And, if I want to go with the non-linear so, then I have 

to deal with the ϕt + (1/2) ∇ ϕ. (∇ ϕ2) + 2 ∇ ϕ . ∇ ϕt + g ϕz = 0, this one ok. 

(Refer Slide Time: 28:53) 

 

So, now let us see mathematically what are the boundary conditions that we are talking 

about. So, this is the ꝺ2 ϕ = 0, that actually it is applying the whole fluid domain. We 

have discussed this in last class and then the initial condition we will discuss again later. 

And, now this is your non-linear free surface boundary condition, we apply though the 

free surface. And, then this is the linearized free surface boundary conditions which 

applied at z = 0 right. Also, we have the body boundary condition, we discuss this body 

boundary condition later on. Right now, we are not going to discuss this. 

And, also we have the bottom boundary condition which is basically the normal velocity, 

the fluid particle in normal direction is 0. So, fluid does not have any velocity in the 

direction of the normal. So, this is the bottom boundary condition right and also with this 

we have the radiation condition. So, basically when we are going to solve for ϕ, we have 

to apply this ꝺ2 ϕ = 0 and then all other boundary conditions. 
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So, now let us quickly check like the what is the floating body problem and what is the 

conditions and what is the you know the equation that we are going to solve. Now, in 

case of a non-linear problem, we are going to solve this. 

This Laplace equation with non-linear free surface boundary condition and apart from 

that the body boundary condition, bottom boundary condition, initial condition, the 

radiation condition right. So, this is actually Sb is called the exact weighted surface 

which is the exactly the free surface and we call this as a non-linear problem. 

(Refer Slide Time: 30:48) 

 

167



And, in case of a linear problem everything is same, only the free surface boundary 

condition is linearized. And, also this we are talking about the S0 which is basically the 

mean wetted surface, remaining thing are same. Just what is this? From this diagram I 

can see this is basically your Sb, where the blue one and this black line is basically your 

S0, ok fine. 

So, now this is basically the boundary value problem that we need to solve to get the 

solution for the ϕ ok. So, from the next class we are going to get how we can get the 

solution for ϕ solving this problem ok. And, today we are going to finish here. 

Thank you. 
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