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Hello. Welcome to Numerical Ship and Offshore Hydrodynamics. Today we have 

lecture 41. 

(Refer Slide Time: 00:21) 

 

So, this is the concept we are going to cover today, it is continuation of the basic 

mathematical formulation that we have done for last few classes. Today, we are also 

going to discuss about the numerical modeling ok. 
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And, these are the keywords that we are going to use to get this lecture ok. 

(Refer Slide Time: 00:40) 

 

So, now in last class we discuss that to get the total Froude Krylov force over the body 

what we are going to do is as follows. We take a ship we take a ship and then we have 

done the cross section and each cross section if I take the sectional Froude Krylov force 

which is written by the f ok. So, let us take fi is the sectional force and then if you 

integrate this sectional force over the line; that means, over the length we can get the 

total Froude Krylov force right. 
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Now, again here we have now you know that we have six mode right, and in last class 

we have discuss this f1 is always 0. So, therefore, we need to take the sectional force only 

in three mode. So, what are the three mode the first mode is f2 which is sway, then f3 

which is heave, and f4 which is roll.  

Now, if I know f2, f3, and f4. So, definitely I can get this f5 by taking the moment multiply 

the heave mode. And, if you get this for the sixth mode it is nothing but f6 is nothing but 

x f2. So, this is how actually we are going to get the total Froude Krylov force over the 

body right. 

(Refer Slide Time: 02:23) 

 

Now, here we are going to check that how we can get the sectional force. Now, in 

sectional force you know that it is force is nothing but the integration of the pressure. 

Now, where I going to do the integration now here this f since it is f is in the y z plane 

because, I am drawing the cross section.  

So, it is with respect to the y direction, this is the z direction and this is your curve. So, 

we can call this is C or C0 why 0, 0 is basically I am integrating upon the mean weighted 

surface. If I want to do for exact weighted surface in that case it should be Cb. 

So, let us not go into that let us restrict our attention into the linear case and then also we 

know that if I look this previous thing that it is harmonic   is harmonic multiply with 
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i te  . Now, if I do that here this pressure then it is nothing but 
I

p
t


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t




 now again this I  let us take that sectional I  which is let us take 

(x,y, t) (y,z)I i te    right? So, if I do that apply over here then pressure is 

coming (y,z)i . 

Now, if I want to integrate it. So, get this normal. So, if I try to find out that. So, it is let 

us say this pressure integrated in the sway mode or surge mode whatever, now if you 

integrate then we get this let us take the sectional force in the ith mode it is nothing but 

this integration. So, I just make   over here   this and it should be multiplied by that 

type normal and over this dC or dC0 or here I am get a dxi. 

So, that is how we are going to get the force. Now, here you can see I just leave this part, 

I did not write minus over here why? Because sometimes instead of i te  many people take 

i te  . If you take i te   then this become plus because this minus will this minus will 

cancelled out. So, therefore, based on the situation it should be minus or it should be 

plus. 

If you take i te   definitely you have a minus over there, and if you take i te   definitely 

you have the plus over there. And, now this is very simple for you for numerical 

calculation because this  is a analytic function, if I go back I can see this   is a analytic 

function. Now, so what we need to do is I need to; I need to take the section over here 

and then I need to divide this number of panel and then you need to take the center point 

of this. 

Now, in this case panel is nothing but a straight line because a two dimensional curve 

and I take the center of this point and in this center of this point, I calculate this 

numerical value right, and then I multiply by the normal at this particular point. So, 

which is here and then I sum up everything. So, these things essentially this fi equal to 

now I just use minus i  because I am taking i te  . 

It should be sum of is i = 1 to the number of straight line. So, I take I have some N 

number of straight line. So, then I just put this functional value at the middle point of this 

each section. So, I can just called ym, zm and of course, it is i. So, it is basically the middle 
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point between i and i + 1, in this section taking the middle point. I just find out the value 

of  over there right. 

And, then I multiply this by that now in which mode let us say it is in now, I should not 

use i here because I already use i. So, let us say in the kth mode. So, it is basically for the 

kth mode for the ith segment. So, this is how we are numerically we are getting the 

exciting force. It is similar right we have done this for before also we have done for 

tunnel method then omitted solution also. 

So, we aware of how to do this earlier we have done it for the surface; now, here it is 

even easier because now surface requires panel, but curves requires collection of the 

straight line. We are coming we are maybe later on if we get time we will show that you 

know numerically how could we do this, but right now let us leave this point because we 

know how to calculate the Froud Krylov force. Most interest or more interesting and 

more complex thing is how I get the diffraction force. 

(Refer Slide Time: 08:41) 

 

Now, in case of diffraction force there as I said there are lots of theories are available, 

but we are really not going into the theories. Now, may be in the next lecture I am some 

reference I will add, if you go through this reference then definitely you get to know 

about the theory behind this formulation ok. 
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But, at present what we do is how this theory I do not say discuss on how this theory 

works, but what is the final results and where we are going to proceed that definitely we 

are going to discuss. Now, in case of a diffraction force it is similar that the three 

dimensional diffraction force here, I can get if I know the two dimensional diffraction 

force ok. Now, here this hj(x) represent the two dimensional diffraction force and now 

this is basically particularly for a section. 

Now, here if you remember we said that wave might come, but different angle right. 

Now, diffraction for the logic is this body is now here the thing is that body is moving 

forward it is not in a it is not fixed it is not for a zero speed, remember that in case of a 

like added mass we are considering the zero speed and then we do the forward speed 

correction. 

Now, here suppose it is having diffraction force in the forward speed then of course, we 

have this three dimensional thing. So, we have the encounter wave angle  . So, 

therefore, at some particular section it is not simple x it should be this one right because 

we have already know that just go back here like if we do this. So, that is how actually 

we have defined this sectional Froude Krylov force right. 

Because it is, if we remember our previous classes we have discuss that it is now 

normally this I  the way we are writing is or I  or D it is nothing but you know kzag
e


. 

Now, instead of sinkx t  we used to write as follows we are writing this into 

sin cos sinkx kx  . 

Now, we have here this coskx   and that is why you are having these things here. 

Anyways, and these terms again as I said this is again a forward speed correction. So, 

because of the forward speed it is coming and really we are not going in detail into this 

theory how these terms comes actually here. So, if you follow this Faltinsen I mean STF 

paper the classical STF paper then all these discussions is there. 

But, here our intention to how to get this sectional diffraction force and after all applying 

all this theory and we define, now here this capital N is nothing but the two dimensional 

normal and small n is actually three dimensional normal. So, n1 = N1, n2 = N2, n3 =  N3 

and then n4 is nothing but the moment. So, it is and then n5 is again the in this r.n the 
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second term and this is r cross a the third term. Now, how it can changes to the two 

dimensional strip this is written over here. 

So, now the sectional diffraction force of any mode j, it can be defined as this expression. 

Now, how this comes as I said we do not discuss, but physically we can see some 

interesting fact is that you can see that my sectional diffraction force, I represent as a 

sectional radiation force. 

Now, this is something very interesting right. Now, you see there is a two different 

phenomena is it not one is that there is no waves the still water and then body start 

oscillating and then the in case of a diffraction we can say the body stands still and wave 

is hitting. Then, how actually I can represent the radiation force a radiation potential to 

get the diffraction force. 

Now, the idea is like it is a matter of perception. Now, suppose if you think this way now 

there is a wave is stand still and then the body actually pushing back then it is a radiation 

force right, is it not? Now, radiation force is the is water stands still and we just oscillate 

the body. Now, in diffraction this body is still and then wave is hitting. 

Now, instead of wave hitting if you consider some picture that wave is still and this body 

is pushing the wave then actually we can say that ok that could be you know some kind 

of a radiation component right. So, this is some very vague I do not say vague, but very 

simplified physical understanding of this equation and lot of mathematics involved here 

to do this, but we do not discuss that, but only thing is that why this is important that this 

sectional added mass we can get through many ways. 

And, may be from the you know the next class onwards, we are going to see that how we 

can get the sectional added mass maybe today also in later part we are going to discuss 

that. So, thing is that we really do not have to find out the   diffraction and   radiation. 

If I get the   radiation using that   radiation we can get the diffraction ok well. 
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Now, let us take a special case. So, I take this   . So, then sin 0   and then 

cos 1   . So, therefore, now this equation now I can see in this way like that 

0 0 0

0

sin

0 3 2{( N sin ) }
ik x ik y k zD R

j k

C

h e iN e e dC
  

   because N2 is having sin . So, it goes to 0 

and then this cos sin 0y    . So, this expression so, now, again from here we do not 

have to do anything. 

So, now in case of a heave in case of a heave I just see that we have to solve for the 
3 , 

right and then we have the multiplication of the N3. So, now, if I rearrange this further. 

So, we can see that 0 0

0

3 0 3( ) {( ) }
ik x k zD R

k

C

h x e iN e dS 
  . Now, you see this is something 

actually very known to us. 

Now, if we look at this part. So, this is the part actually we know for the radiation it is 

very it is very very known for us right. Now, suppose if you know ok we know this result 

of course, now you see from this result I know that 
3iN   it is nothing but you can 

represent in terms of added mass and the damping. Now, you see this expression and this 

expression is very similar only thing is that I have in integration kze . 

So, now if I try to if I do something for example, if I try to approximate ikze  and if I this 

z, if I replace by some constant value then these terms also can go outside and that only 
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leads to 2

ij ija i b   equal to you know I can use this into this value. Now, you see the 

idea is here idea is that in this integration I need to do some kind of approximation to get 

this outside. 

Now, if I follow the STF paper classical STF paper they have written this expression as 

. .k d se . Now, here this d is nothing but the sectional draft and then s is nothing but the 

sectional area coefficient. So, d they are using at sectional draft and then this s they using 

the sectional area coefficient ok. 

Now, so, if I apply this then this expression then I can rewrite as follows, it is nothing but 

0

0

ik x
i e  . Now, I have C0 sorry and also this now I can take out . .k d se , and now I have 

over this C0, 3 3N dS  or dC whatever like and then if I do that then I can use this as a 

added mass and the damping right. 

(Refer Slide Time: 19:57) 

 

So, if we apply everything here and then finally, you know we get as follows, we get the 

now this is the very special case for head waves, if I try to figure out how to get the 

diffraction force then this is the expression, and you know that this in also it is very well 

known that    is the condition where we are interested to get all these wave loads 

because it is assumed that when for the head waves it is much more dangerous compared 

to the other wave angle. 
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So, in case of a sea keeping if you try to figure out heave pitch coupling etcetera etcetera 

then you know beta equal to   is the most crucial you know as I said that more crucial 

heading angle, and then in that heading angle I can get this diffraction force is much 

more simpler way ok fine. 

Now, let us jump into this now you see that as you know as you will see here that there is 

lot of theory available and very complex theory to calculate the diffraction force, but 

however, the exciting force is much easier. Now, I would like to suggest you not suggest 

you like propose this is not proposals, it is somehow like some simplistic way to 

calculate the exciting force. Now, suppose you are trying to get trying to write some code 

sea keeping code using the strip theory, but you are you really do not know how to 

handle the diffraction force right. 

So, I mean then suppose, but somehow as you know that the added mass and damping I 

discussed in very first class, it is available the added mass and damping is available 

through some chart and what is the chart definitely I am going to discuss now. Now, 

suppose assume a situation you know that added mass and damping these values you 

have some chart of for this to get the added mass and damping of the ship. 

But you really have no clue how to get the exciting force, then how you write the strip 

theory code. So, I just discuss it and then you try to write a strip theory code based on 

that the chart for added mass and damping definitely can be provided or it is available  in 

internet. 
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Now, how we do that as follows suppose if you have a ship. And, then now if is let us 

say is the z = 0 line, and now if you superposed the wave here oops no it is not very bad 

way to superpose the waves. So, not like that ok let us do it again. So, yeah. 

(Refer Slide Time: 23:22) 

 

Now, this is your z = 0 line let us say and then it is probably this is the superposition of 

the wave. Now, what one can do that now they can take this extra buoyancy is the 

magnitude of the exciting force. Now, you know that the exciting I mean the exciting 
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force is the harmonic function. So, I can write that 
3 0( ) cos( t)excF t F   this is how we 

write it right. 

Now, we are we do not know that what is the magnitude F0. Now, what you can do that 

for in case of a heave, you can take this extra buoyancy force as a magnitude of the  

exciting force. Now, again if you know this magnitude then if you take a moment. So, 

for the pitch now it is for the F3 then for F5(t) you just need to take this M0 which is 

nothing but if this is your the cg then you have to take the moment about the cg to get the 

M0 right. 

And, then again it is cos( t)  and now you can see like how you incorporate the phase, 

now if you for the low frequency limit is really work because at that time there is no 

phase between the wave and the you know this wave and the response. So, therefore, you 

can take this phase is 0, and then very simplistic way you can calculate the exciting force 

in this expression and then you can write a strip theory code. 

So, the idea is you get this added mass a and b from the chart and then you calculate this 

as an exciting force you know and then you write the strip theory code. So, this will get 

from the chart this is available for you and then you are ready to write the strip theory 

code ok. 

(Refer Slide Time: 25:47) 
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Now, let us discuss that what actually we are trying to figure out like before that the ok 

before we go to the radiation force let us discuss about the restoring force also. Now, in 

case of a strip theory you know the it is same is a geometric property and this is the this 

is how we can get the restoring force. So, therefore, there is no big deal we know how to 

get it.  

So, we really do not discuss on this because we have already discuss this for you know 

panel method for omit type solution. So, only thing we would like to discuss as follows. 

Now, in case of a strip theory what the data you are having is basically the sectional data. 

(Refer Slide Time: 26:37) 

 

So, that is why how to get this coefficient just I just give some kind of a very quickly 

how to get this coefficient, let us take heave or something else. Now, here what you are 

getting the data set you are receiving is nothing but the in each section you are receiving 

the sectional section sectional point like sectional curve. 

So, maybe if you take this then you will have a sectional curve like this, and let us say 

this is your Z = 0 line. So, this is this curve we are getting, then from this data how you 

can get the you know the this coefficient that like C33, C35 or C55. Now, it is very easy. 

Now, if you what you need to do is at each section you need to collect these two point, at 

Z = 0, what is your values. 
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Now, if you plot this value then you can get this shape that from the water plane area. So, 

it is at Z = 0. So, now, in Z = 0 we have this curve because this is nothing but you take 

this point in all sections, the y values at Z = 0. So, if you make it then definitely if you 

project that into this plane you are getting these values. So, you have this value now if 

you integrate it then if you integrate it you get the water plane area right, if you integrate 

you know 
ixbd  along L. So, it is nothing but your moment about the water plane area. 

So, therefore, your 35 wpC gM  and if you take the second moment, so, you will get the 

C55 also right. So, those things are very known to us and, so I mean you know we really 

do not discuss on this is very trivial and, at any point of time that you can use either 

trapezoidal rule or Simpson rule to get this coefficients right. 

So, today we are going to stop here, and in the next class we are going to discuss on how 

we can get the two dimensional radiation potential or may be the two dimensional added 

mass damping, what are the methods are available. So, those discussions, we are going to 

discuss in the next class ok till now. 

Thank you. 
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