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Hello, welcome to Numerical Ship and Offshore Hydrodynamics. Today is the lecture 

54. 
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Now, today we are going to discuss about the how I can solve the structural problem 

using the finite element ok. Though you know the finite element is a very vast subject 

and we cannot cover the entire thing, so, but the thing is required for to proceed and to 

solve this Hydroelasticity problem, that part we are going to definitely discuss today. 
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And this is the key word that you have to use to get this lecture ok. So, let us start.  

(Refer Slide Time: 00:54) 

 

Now, we are going to use this Euler beam theory. And this equation is 1.12, just if you 

remember this connecting to the previous equation, it is actually the beam equation that 

we are going to solve. Now, here if you look at this equation 1.12, this term this the 

buoyancy term actually we can take in the right-hand side ok.  
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So, therefore, I mean if you do that then I just cross this thing and simply I can write this 

term equal to the ( , )f x t  ok. Because I am taking this term in the external force because 

this is coming because of the buoyancy force ok. And therefore, since it is a free beam, 

you can assume that a ship you can consider the ship is a free beam which is resting on a 

spring. One can say like this buoyancy force can act as a spring. So, therefore, the shear 

force and the bending moment at the both the end is going to be 0. 

So, this is the differential equation that we are going to solve and with respect to this 

boundary condition. Now, how I can solve this differential equation? So, there are so 

many ways. You can do that you can convert this partial differential equation. You can 

see here this w is the both the function of space; that means, x as well as the time t. 

So, the basic idea is converting this equation the partial differential equation into the 

ordinary differential equation in terms of t. Now, there are many ways of doing it. The 

popular way of doing is that we can use the separation of variable like for example, you 

can simply take this W x, t equal to some function of x and then some function of t. And 

then you can substitute the whole thing here you can solve this problem. 

Remember this, right hand side also we need to see how we can convert this function 

only in the function of time t. So, this is one way. So, there are many ways you can do. 

Actually, popularly you can say there is a two you can call the strong way I can solve the 

problem or sometime can say I can solve in a weak form ok. 
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So, now let us see that what is the difference between a strong form solution and the 

weak form solution. Now, in strong forms form solution that the solution you are taking 

as it is like you are not making any changes to the differential equation. And also, the 

solution of this problem entirely that satisfy the requirement that differentiate 

requirement or continuity requirement everything. 

For an example like the classical problem of string like let us take a second ordinary 

differential equation which is let us say d square y by dt square plus let us take k into t 

sorry k into y equal let us take it is 0 let us say. Now, I try to solve. Now you know that 

this the solution is you know it is some sin let us say 2k . So, 
2sin( ) A cos( )kt kt . So, 

this is the solution for this particular problem. 

Now, here one can say this continuity, differentiability everything is preserved over here. 

Now, if you look at a string now this string actually realistic way, I can see that it can 

you know I can see this as my approximate solution. Now, if you look at the sin kt or cos 

kt, so, you can see the actual the solution is in this form right, it satisfies all the 

conditions, now it is a strong form solution. 

Now, suppose I assume my if is a string. So, it is just connected here and then if I assume 

that string can actually you know oscillate in this fashion. Now, here it is a second order 

differential equation, but however, I can see this is a realistic solution, but here I can see 

that the second order differentiability is not actually maintained. Is it not?  

So, physically I can see that that could be a solution, if you take a string and then if you 

oscillate it more likely it is going to look like this way right. So, let me just grab it and 

draw it somewhere here yeah. 
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So, the same picture let me draw over here. Now in realistically if you think that this is 

an approximate solution of the string problem. So, one can say it is valid. I mean its 

practical, but it does not maintain the all this you know differentiability requirements. 

So, it does not. 

So, in weak form solution we can approximate some solution, but that does not you 

know maintain all the differential requirement of the solution right. So, in one way the 

all-strong form solution can be a weak form solution, but all the weak form solution 

cannot be a strong form solution ok. 

855



(Refer Slide Time: 07:08) 

 

Now, let us see like some analogy like how we can see the solutions like. Now suppose 

one can see like the V =0 like say a vector V that vector V =0 ok, fine. Now, 

alternatively what I could say is like that a vector like assume that how I define a zero 

vector in alternative way. I can say that suppose g is become any vector apart from the 

zero vector any vector in a three-dimensional space or n dimensional space. 

Now, here at this point I really do not want to confuse you with some space problem in n 

dimensional or whatever, but we considered a three-dimensional vector space. So, we 

have the component x and y and z ok. So, then I assume this a g vector is something like 

this. And then for all g belongs to this space let us say this vector space S that V dot g 

this dot product should be equal to 0. 

So, it means that this vector V is orthogonal to any of the vector in the vector space then 

I can call this V is a zero vector. See idea is very simple. Idea is to tell something equal 

to 0, I just coming with some condition. Now, I say simple V = 0 I can see is a zero 

vector, but I am not saying that is a zero vector. What I am saying that I collect all the 

vector g which belongs to this three-dimensional space. So, g is the collection of all 

vectors, any vector that belong to this space the vector space. 

Now, if it is so, then V the dot product of V with that g is always equal to 0; that means, 

that V is orthogonal to the all the vectors in that vector space. It means zero V is a zero 

vector right because it is not possible that you cannot find a vector Z apart from zero 
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vector if you take a dot product with any other vector it becomes 0; think, like if I take V 

equal to some vector 
i j kx y z  . 

Now, if you take any arbitrary g vector which is may be that that g vector may be equal 

to 
1 2 3g i g j g k  . So, then dot product is 

1 2 3 0xg yg zg   . Now if these two are 

independent or whatever this is only possibility that x, y, z should be equal to 0. 

Otherwise, it cannot be 0 ok. So, this is one way I can say that V equal to 0, directly I say 

V is a zero vector. Alternatively, I can make another comment that a vector which is 

orthogonal to the all the vectors are called the zero vector. 

(Refer Slide Time: 10:30) 

 

Now, let us see how I use this idea for this the finite element thing. Now, if you take this 

differential equation over here, so, I can write this equation in little bit composed way 

0Lu   . Now, here this 0Lu   , a see one is saying that this is equal to 0 right, 

this is the normal way one could tell. 

Now, let us consider this as a infinite dimensional space. Now again I dont want to 

confuse you as a infinite dimensional space and all, but let us solve this problem in some 

numerical or approximate way. So, I assume that 
_

u u  is the approximate solution. 

Now, approximate solution cannot be equal to the main solution. So, therefore, there 

must be some error.  
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And I can define this error as E. Now how the previous idea helps over here? I assume 

that this error E should be a zero vector. Now, I assume this g the vector any vector g or 

any function g which is the which belongs to the solution space ; now this g could be the 

strong form solution ok. 

Now, if g is belonging to the solution space, then it should be orthogonal this should to 

the error. So, the idea is I am simply telling that this error, now if it is really a vectorial 

operation, I could say that E g  that should be equal to 0 if it is a vector, but it is not it 

is a function. So, I am using this symbol this symbol defines that now this E g  means 

that E and g are orthogonal to each other normal to each other. 

So, I can say that this error is orthogonal to the vector g, it means that this error does not 

belong to the space. Now, this is the basic key aspect of the finite element. I approximate 

a solution u, I try to calculate the error and then I multiply with some function g. We call 

this function as a test function, and this test function definitely be the solution of the 

problem and therefore, this should be orthogonal to the error function. 

So, this is how actually we approach for the finite element and that is the basic of the 

finite element. It is a very vast and therefore, a lot of theories and lot of things are 

available. So, I am not going to go into deep into that. So, with this let us try to figure out 

how I can solve this structural problem ok. 

(Refer Slide Time: 13:31) 
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Now, here now this is something that solution space you can say like you call a test 

function. The test function could be anything like this right because you can see it is a 

mode ok. So, if a thing you know oscillate as I said that this weak solution may be some 

realistic. Now, if you think of a flexible structure it can oscillate in any, it could be 

oscillated like this way, it can oscillate like this way, this way or this way, it could bend 

like this. 

So, all could be the possible solution. Anyway so, let us now start that how actually I 

could solve this problem ok. So, now, remember that I put that stiffener part in the right-

hand side under the f x, t. 

(Refer Slide Time: 14:28) 

 

So, if I do that, so, I left with this following thing which is 
2 2 2

2 2 2

W W
m EI

t x x

   
  

   
. This 

equals to f(x). So, I can call this is equals to f x. So, now, what I can do is I can make in 

the left-hand side. So, I write it is minus of f(x)=0. So, now, I can approach that a 

approximate solution of w and then I have to use some test function which actually is the 

solution of this space and then it should be orthogonal to each other right. 

So, now, how I can set it? So, I can find out my error function you can say here E(x), let 

us say. It should be 

2 2 2

2 2 2
( )

W W
m EI f x

t x x

   
  

   
. So, now, I have to define some test 
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function v right this test function v with this error function E(x), it should hold some 

orthogonality property that should be equal to 0. 

So, this is my idea. Now, how I define this? I define this way. If I integrate 0 to L then 

this V, E(x) this error and that should be equal to 0. So, this is my orthogonality 

condition. Now it is bit mathematical. So, but the application is pretty easy. So, it means 

that what I try to say I just multiply 0 to L this integration. 

So, integration the whole error function. So, which is 
2 2 2

2 2 2
( )

W W
m EI f x

t x x

   
  

   
. So, 

this is the whole thing. I multiply with this function V x or function of x and t, so, V and 

then the whole thing if I integrate along the length x that should be equal to 0. So, this is 

the basic idea of the whole thing ok. So, now in the next step, what I am going to do is I 

am going to simplify the thing ok. So, in next I am going to simplify the thing. 

(Refer Slide Time: 17:37) 

 

So, let me do that. So, 0 to L and then I just now if you see this the last term, so, the first 

V should multiply with this term. So, it is a function of t ok. So, then just write it out m 

into V and then it is 
2

2

W
dx

t




, see. So, this is the term actually I am separate out and then 

I am doing this next part. So, I just split again it is 0 to L.  
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Now, this V should be multiplied with 
2

2

W
EI

x




 right. I think this is it yes and then 

multiplied by the dx and then minus 0 to L f into v into dx that should be equal to 0 right. 

So, I am not doing anything with this. So, I am just using try to solve this by integration 

by parts. So, I am writing it is as it is 0 to L into 
2

2

W
mV dx

t




. 

Now, if I do integration by parts, so, I will get v into E I just second sorry I missed this 

one that is what I am thinking. So, I just missed this part here 
2

2
V

x




, yes. So, then it 

should be now it is v multiply the integration of this. So, it should be 
2

2

W
EI

x x

  
 

  
 you 

put 0 to L and then integration by parts. So, therefore, it is 0 to L.  

Now differentiation of V is 
V

x




 and then integration of this part. So, it is 

2

2

W
EI dx

x x

  
 

  
. Now, why it is because you see it is integration it is 

2

2x




. So, that is 

why it becomes 
x




 right because of the integration. And then minus it is 0 to L f into v 

into dx. Now, if you apply the boundary condition the shear force. So, del square by del 

x is 0 at both the end l as well as the 0. So, this goes to 0.  

So, I left with 0 to L 
2

2

W
mV dx

t




. So, this is the first term and then I have this one. Now 

again if you do integration by parts then you will get minus it is
V

x




, and integration of 

the second part which is 
2

2

W
EI

x




, it is 0 to L and then again plus. Now it is the 

differentiation. So, it is 0 to L 
2

2

V

x




 and then it is integration.  

So, it is 
2

2

W
EI dx

x




. And then it is finally, minus 0 to L f into V into dx that should be 

equal to 0. Now, again if I apply the boundary conditions, so, this goes to 0 right. 
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Now, if this goes to 0 then finally, you have 0 to L. It is and then this goes to 0. So, this 

term. So, plus 0 to L and 
2

2

V

x




 then 

2

2

W
EI dx

x




 yeah and minus 0 to l f into v into dx that 

is equal to 0. 

Now, this is the final formulation. So, now, we have to find out the value for this. And 

now this finite element concept we can use. Now what I do is, now, if we assume this is 

a beam element, so, I can similar to the panel. Now you know the panel method. So, you 

do not have difficulty understanding this. So, assume these are the elements. This could 

be element number 1, this could be element number 2 assume that there is a element 

number E.  

Now if you take this element E ok, then actually I can allow is two degrees of freedom. 

One is you can say here I can say it is a w 1. So, it is a displacement and also, I can call 

the slope 
1

w

x

 
 
 

 and then I have another element here you can call w 2 the node and 

also, I can call this 
2

w

x

 
 
 

 ok. So, I have four degrees of freedom right. Now if I have 

four degrees of freedom; that means, I have four unknowns, is it not? 

Now, this is one that then how I can write that now still now I did not write the 

approximate solution. So, how I can approximate the w? Now since I have the four 
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unknowns 
1w , 

2w . so, I need four equations right. So, therefore, the function actually I 

need to write the approximate function it should have it should have the four unknowns. 

So, therefore, it should be cubic polynomial right. 

So, I just write this is in terms of 
_

0 1a a x a 0, now this 
_

x  is the approximate solution 

and then 
2 3

2 3( ) ( )A x A x
 

 . Now, similarly I can write this another function also V x 

remember I am just not writing that t term though it is there. Now V x equal to again it is 

you can call 
0b  plus because I am integrating along the length. So, it is 

2 3

1 2 3( ) ( )bxb x b x b x
   

  . 

Ok. So, now, the thing is that I have this four. So, now, let me just very quickly just say 

that I can express like if I put 0 over here. So, here 0 if I put x


= 0. So, I can use it 
0a  is 

equals to you know 
1w right 

1w . So, and then you can say similarly if I differentiate this 

with respect to x, so, I know that my a 1 should be equal to 1w

x




 or you can say 

1

1

0

w

w

x

 
 

 
. So, 1w  it is this right.  

And then if I take this now if the length I assume this length of this element is le, so, 

similarly I can write that the other condition also I can write it is 2w le  or 1w le = 

2 3

0 1 2 3a a le a le a le    right. And then I can write for the 
w

x

 
 
 

 at. 

Now, at le it is 0.2. So, it is 2 over here and it is le. So, it should be 

2

1 2 32 3a a le a le  right, fine. Now, you see now from here actually what you need to do 

is you need to write the expression w x not in terms of 0a , 1a , 2a  and 3a . You need to 

write the whole expression in terms of w 10 and   x  w 1x  at element 10 then 2w le  

and w and 2x   at le. 

So, this is how actually you need to write the whole expression ok. Now this is actually 

very much possible. You need to do a little bit of exercise and then you can find out that  

normally if you do this exercise, so, I can I can just say that how it should look like.  
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So, this w x


  it should look like some 
1

ew  with multiplying with some function N x plus  

2

1

ew
x w

x

 
 

 
 into some N 3 x plus you know sorry it is 

2

w

x

 
 
 

 this element at for 

element t into N 4 into x. Now, this is actually you should try a little bit and you can 

write this, you can eliminate this 0 1 2, ,a a a  and 3a  in terms of this 1w  and then w 1x  ok.  

I forgot this element for element t of course, w t and x  w  x  for the second note for 

the element t with respect to this. And this 1 2 3, ,N N N  this is called something called the 

shape function, this is something called the shape function ok. And something called it is 

a Hermite polynomial as well ok.  

And similarly, I can write for the V(x) also. V(x) also I can write in this form. We can 

this 
1 1( )e V

V N x
x

 
  

 
 for element 1 I mean for the node 1 element e which is then 

2N (x)+ 2V for element e into 3N (x)+ 
V

x




 for element e the second node into 4N (x). 

So, now this is how actually I write the approximate solution.  
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Now let us see that how actually if I solve this if you solve this the whole exercise so, 

you can get this shape functions this 
1 2 3 4, N , N ,N N . Now this xi is nothing but the 

approximate which I called as x bar. So, here it is written as in xi form, but anyway. So, 

this ok, this bracket is missing over here yeah. So, ok now, if I if you do this then 

actually you get this solution 1 2 3 4, N , N ,N N . Now, this is how actually the shape 

function.  

Now you see the important something is very important over you can see that if you look 

at the you know node 1 ok only you can see that only the shape function 1 actually is 1 

and remaining values are 0. So, therefore, in element 1 you can see that the deflection 

has the maximum impact right. 

Now, similarly you can see that this 3N  it is 0 over here when xi is equal to 0 and then it 

is it is here and xi= le. Now, if I look at this 3N  then you can see that for the for this 

beam and here actually that the this 3N  has the maximum impact and remaining terms 

are 0. All other terms are you can see that it has no effect, the slope has no effect in the 

both the end right. 

The slope is 0 and also here you can see that here also the slopes are 0 which satisfy the 

shear force and bending moment. So, anyway so let us stop here. Now what we stop here 
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that where I can write the approximate solution in terms of the shape function and the 

nodal variable which is 
1w w x 2w  and w x  node 2.  

Now, in the next class we will try to figure out that how this will help me to solve the 

structural problem. From here how we can write the element matrix and then how we can 

write the global matrix and how I can solve. All these things we are going to discuss in 

the next class ok. 

Thank you. 
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