Foundation of Classical Electrodynamics
Prof. Samudra Roy
Department of Physics
Indian Institute of Technology - Kharagpur

Lecture — 43
Dielectric ( Contd., )
Hello student to the course of foundation of classical electrodynamics. So, today we have module
2 and under module 2, today, we are going to study the dielectric that we started in the last class,
we are going to continue more topic on dielectric.
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So, we have class number 43 today and we will continue our discussion on dielectric. So, let us

find so, if I have a chunk like this, which is a dielectric material and if 1 apply some external electric

field E like this. So, under this external electric field | placed the dielectric and as a result what
happened that tiny dipoles will go to form if | try to present this pictorially. So, there will be charge

separation like this and we will have a dielectric system here.

Now, we know that this quantity should have a property called polarization, which is the dipole
moment per unit volume.
(Refer Slide Time: 02:38)
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So, that polarization P is proportional to E. So, | can write this proportionality constant as o and
the expression the relationship with the electric field and polarization 1 can write in this way. Now,
here what | mentioned is, so, P is proportional to the strength of the applied electric field that is

and not only that, it is the same | mean if the 2 vectors are if | write in like P as Px £ + Py 9 + P; 2.

So, that is in vector form and then | can have o then Ex X + Ey y + E; Z.

So, that eventually means that Px = aEx and Py = aEy and Pz = oEz component wise they are same
that means the x component of the polarization vector depends on the x component of the applied
electric field, y component of the polarization vector will depend on the y component of the electric
field and z component will depend on the z component of the polarization will be going to depend

on the z component of the electric field and all the cases that this is a.

So, here a is the polarizability of the system. Now, for this case what happened if |1 have a
coordinate system like this and if | apply the electric field say having 45 angle and then the 2
components of the electric field say I can write like this is my Ex, this is along unit vector, this is
along ¥ and this is my Ey and whatever the P | plot here is in the same direction and | should also
have Px here and Py here this is my P and this is my E. So, this is the most simplest case.

But here |1 mean if oo depends on the direction of the applied electric field. So, now o depends on
the direction of the applied electric field that means.

(Refer Slide Time: 07:38)
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So, let me draw another case like this is my coordinate system x and y let us consider only 2
dimension and this is the direction along which my electric field is applied, but my polarization
now is no longer in the same direction of the electric field here but the x component of the
polarization is still depends on the x component of you know the electric field. So, this is my
electric field. So, electric field should have Ex along the x direction this is Ex and this is Ey and the

polarization Px is still depends on Ex and Py still depends on Ey.

But like before the ratio is not same. That means, now, Px depends on still depends on Ex say but
I should write here this axx Ex and for Py it is ayy Ey when axx is not equal to ayy this is one condition
we can think of. So, that means the o previously it was a scalar quantity, but now we find that it
should have different components. And that is why it no longer becomes a scalar quantity rather 1

should have a tensor form of .

Because if now here what happened the x component of P depends on the x component of E still
we have these things, but more general situation can be considered and that is the x component of
the more general case is so, | can pictorially | can show that.

(Refer Slide Time: 10:39)
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And the most general case is when E suppose, | have this coordinate system and my E is along this
direction some direction P is not parallel to E so, it should have some other direction not only that,
so, this is my Ex suppose, | divide this is my say Ex and this is my Ey | can separate coordinate the
component in X and y direction, but whatever the P 1 am having its X component does not depend

on only Ex it can also depends on Ey. So, maybe | can draw in this way so, P1 | can say its another
component here is P1.

Maybe in different colors | can divide it into 2 components like Py and say P2 say this is my full P
component and | can have these as a combination of P1 and P2 and here you can see that it is not
parallel, but also | mean if I divide this stuff, then the x over x component of P overall x component
of P now, not only depends on the x component of E but the y component as well. And now, | can
have these here the constant Exx and Exy because here the x component of P does not depend on
the x component of E it also depends on the y component of E.

(Refer Slide Time: 13:29)
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In the similar way, the y component of the P can also depend on the x component of the E plus the
y component in 2 dimension y component of the E. And in that case, | should write here like yx
and ayy to distinguish these things. So, in general for 3 dimensional this is for 2D in general for 3
dimensional case. So, Px component can depend on Ex, Ey and E; and now | can write it like axx +

axy * axz and my E component will be like Ex Ey and E; in a similar way | can write Py and P-.

Explicitly if | write, then | should write here ayx + oyy + ayz, 0zx + 0zy + 0zz and the components are
Ex here | should write Ex here | should write Ey Ey E; E; so, my electric field is E and my
polarization is P, but the x component of these things depends on the x y z component of the E and
SO on.

(Refer Slide Time: 16:08)
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So, | can write this entire thing in matrix form and if 1 do | simply have this Px Py P is equal to oxx
axy and axz Oyy Oyx Oyz Ozx Ozy Ozz bracket close and the electric field, which is the component-wise
Ex Ey and E; this is so, a is simply the polarizability tensor and | can write it in this convenient
form it is called component form Pi is simply ajj Ej in Einstein notation the summation is over

repeated index. So, I simply have this.

So, this is the one important expression for this polarizability where we can show that the
polarizability is in fact a tensor quantity and there are different systems for which if you apply the
electric field the polarization is no longer along the applied electric field there will be a different
direction and not only that, its X component, y component and z component no longer depend on
the x component, y component and z component of the electric field alone, the x component of the

polarizability can be depended on the X, y, z components of the applied electric field.

And in that case, we are having these generalized form. So, from here you can simply find that if
it is only Px only depends on Ex and Py only depends Ey and P: it is only depended on E; and the
dependency is same then we should have a diagonal matrix where axx oyy and oz both are all 3 are
same and we just simply write a then it simply becomes a scalar equation, which we wrote in the
beginning this equation, but in general o is not a scalar quantity, it is a tensor quantity and how it
becomes a tensor we try to explain briefly here.

(Refer Slide Time: 19:54)
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Now, we discuss about an important thing and that is the field associated with a polarized object.
So, next topic is the field of a polarized object so, what does it means? So, suppose the polarized
object is there and there should be a charge separation in between these polarized object and these
polarized object should give us some kind of polarization and that means, some kind of dipoles

are there and that dipoles give rise to some dipole moment.

So, because of that, we should have a field right for a dipole we calculate a field and here is
something like happening something similar kinds of things will happen. So, we can find a
corresponding field or corresponding potential due to the polarized object. So, let us try to find out
what how to get it. So, suppose | have a coordinate system here like this and a polarized object is
sitting here and it is characterized by a dipole moment and this is the dipole moment is the way we

define the dipole.

And polarization is eventually dipole moment per unit volume. So, now, what should be the field
due to this we can calculate and the location wise | need to so, the location here this coordinate is
my r1 see, say r’. So, from here to here this is a field where we point where we try to find out the
field JI our standard notation and from origin to this value this is my r this is the system. So,
polarization P as | mentioned polarization P is dipole moment per unit volume so, p is P dv dipole

moment for a volume element is dv’.



So, if 1 want to find out the dipole moment per unit volume then | need to divide that. So, dipole
moment for a so, this is a p is dipole moment for a volume element dv’ small volume element this
is the dipole moment | have. So, now for the potential for a single dipole that we know so, the
potential for a single dipole is simply ¢() we calculated this is equal to 4:—60 and dipole moment

1

dot 71 divided by JI? because the potential for dipole goes like -z~ S0, this is the form.
(Refer Slide Time: 25:04)
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Now, for total potential for the volume so, the total potential for the entire volume that should be

1
4ATTE

the integration | need to put integration because, So, ¢(#) for total should be equal to and

Py eT
JIZ

integration and then | integrate over the entire volume, so, | have dv’ so, for dv | have for

single dipole 1 have this and for the entire volume | need to integrate it over this.

o H - = 5 - - -y ﬁ - - - - -
So, JI is simply (7 - 7) and JI? simply |7 —#'|? so, = that term, which is there inside the integral

I can write it as =72

|73

(Refer Slide Time: 27:39)
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Now, we can have this so, we know this is a well-known thing that if I want to make a gradient of

(7 =7)

[F—7"|3

1
(7=7)

this vector this quantity in many places we have to use this then the result is + that

guantity so, the positive sign because | am making the derivative with respect to prime and we
have a negative sign already here.
(Refer Slide Time: 28:29)

Einw
L e e on owe

BraARA s elows WARARARD
ForToamsscilr o ANREBEOBECL M sewr o]
7
V.2 = (5 B
e = N ()n)

/[i

| R

So, eventually 1 can write Jf—z is equivalent to grad the quantity ]1—1 so, now | am going to make use

— P

() o7
JIZ

here in this equation and | can write it as my ¢(7) the potential is ﬁ and then integration
0

| just replace this quantity prime and then % which we get here and then dv’. Now we are going to



use another vector identity that prime dot ; the vector identities saying that it is P « V’(}l—l) + % and
then V' « P.

And that we will use here that my ¢(7) will be 47:1_50 and if | integrate and make it 2 part then this
quantity whatever I have | will go to replace here. So, this quantity I am having here this I replaced

by this minus this.
(Refer Slide Time: 30:53)
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And if | do | should have say divergence my pen is not working properly V' e (;) dv’ and —ﬁ

0
and then integration Jl—l again | have prime and then P that should be #’ and dv’. So, now | can use
this as my this integral | can replace to a closed surface integral because this is divergence of this

quantity over volume. So, | can make it a surface integral like simply % and that is over 7’ dv’ and

the next integral you know here the operator is over this.

So, next integral | simply write ﬁ and then integral}l—] and | absorbed the negative sign to write
0

minus of this dot P(#’) dv’. So, 2 term | find and these 2 terms | can now write these 2 terms in
this way because one is surface integral and another is volume integral.
(Refer Slide Time: 33:00)
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So, | can write it ” then the close surface integral and then | write the bound ob like a bound

TE,

charge density then% and then dv’ that is my sorry d here | make a mistake here because | make a

surface integral so, these this should not be v this should be ds’ and here also it should be ds’ +

1

— and next term | can write is this write p» bound volume charge density the term called and
0

then dv’.

So, how you define that, so, | can define in this way so, ob is equal to P « 71 this is called the bound

surface charge density and ps, which is —V' « P that quantity is called bound volume charge density
from the expression of the potential you can see that this is my ¢ and if | just look carefully that
this is a function of #. So, it is contributing with 2 terms first here the term where we have a surface

charge density and we say bound because it is the polarization polarized object.

And, because it is a polarized object it should have some bound charge and another here we have
another contribution where we have a bound volume charge density. So, as if the potential is the
contribution of a charge, which is bound and this charge is entirely over the surface and
contribution of the another set of charges, which is again a bound charge, but this is the bound
volume charge density that is why it is over the integral over volume and integrate here the integral

over surface.



Now, let us try to understand the physical interpretation quickly the physical interpretation of this
bound charge densities whether it is surface.
(Refer Slide Time: 36:44)
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So, the next thing is the physical interpretation of bound charge so, what is the physical
interpretation for the bound charge for example, you have a long string of dipoles. So, long string
of dipoles means, | have here like this so, then this is if | join this, this is a chain of dipole where
we have plus charge here minus charge here plus charger minus charge plus charge here minus
charge here. So, these are minus charge minus charge minus charge that is simply equivalent to
because these plus charge and minus charge in between they can cancel it out.
(Refer Slide Time: 38:20)
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As if they are cancelling each other and eventually we can have an equivalent system where we
have the only the leftover charges in the boundaries and that is plus here and say minus here. So,
| have only one dipole. So, even though there is a charge the entire charge is nullified, but in the
surface | can have a charge that is not being nullified. So, | should have effective charge and this
charge are bound charges that is why | called the surface bound charge. So, we can understand in

terms of this tube of dielectric, let us consider a tube of dielectric.

And as if | have a cylindrical shape tube made of dielectric where this is the area A and this is the
length d. And it can be equivalent because the way we mentioned that only the leftover charge is
here. So, this is the leftover charge sitting at the boundaries so, | have a left over charge that is
sitting over this boundary.
(Refer Slide Time: 40:01)
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And eventually I can consider these as a dipole having the charge here say -q and +q sitting here

and here. So, the dipole moment if | want to calculate this the dipole moment because | make it as
equivalent dipole, because of this leftover charge whatever we get. So, dipole moment of the chunk
is simply p = PV, V is the volume and it is a dipole moment per unit volume. So, that is equivalent
to p and the volume is A multiplied by d because A is area and d.

(Refer Slide Time: 41:08)



it
1 e s e oy

BUELANA s ¢wvedQAARRAD
ForTommss oo RANRREORBO0 M waww o]

‘)9: PV = PAA
9\«’&9’6“"5 ﬂ Mé -’—3}/
}3 = ‘?,c\

T s
Now, the interim charges so, in terms of you know charge q what should | write the dipole moment
p is simply g multiplied by d.
(Refer Slide Time: 41:36)
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So, here this dipole moment p, which | have an expression like PAd is equal to you know q
multiplied by d that is the dipole moment and now, from here we can see that P multiplied by A
seems to be g and P is % and that is polarization % is nothing but the charge divided by surface. So,
charge divided by area. So, this is the bound surface | can have the expression of bound surface

charge density.
(Refer Slide Time: 42:36)
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If in general if the surface is there is a surfaces like this and 7 is along this direction that is the

direction of the surface and my polarization P is along this. So, this o is simply Aq whatever the
end

area we are having and in order to take this if this angle is 6, so, | need to take the component cos
component so it should be P cos 0, which is equivalent to P « 7. So, eventually what | find that my

surface volume charge density is nothing but the polarization along the surface of P « A.

This is the relationship between the polarization and the bound surface bound charge density. So,
that is the relation we qualitatively understand. Then another quantity we need to understand
qualitatively and that is the bound volume charge density.

(Refer Slide Time: 43:58)
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So, the bound volume charge density suppose | have a so, if say the polarization is non uniform
suppose you have a polarization of the system but this is non uniform if the polarization is non
uniform one can get you know the accumulation of bound charge within the material as well as
surface so, what is the meaning of that suppose | have a system here dielectric, but the polarization

is not uniform througho ut.

So, suppose we have a bulk of negative charge sitting here and some positive charge is here over
the surface. So, this is the way the charge is distributed, but this is not uniform it is not distributed
uniformly now, the V « P results in a you know pileup of negative charges and net bound charge
whatever the net bounds charge we are having is simply I can write it as the bound charge density
over dv this is because whatever the net charge and this is equal to the you know in a given volume

this volume.

And it is equal and opposite to the amount of the charge that is pushed out through the surface
whatever it is, so, it is equal and opposite to that thing that one can push out like this. So, | have a

filling of divergence here and that filling | can write it as this is equal to minus of because it is

push outward. So, | can have a P « d3 because this is over the surface and that is why it is closed.
So, | can have this quantity and that is minus of according to the integral law we have a close

surface integral.



So, that should be equal to the volume integral Gauss’s law and from that we can have that p v is

equivalent to —V « P. So, what | get let me write properly otherwise.
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So, as if so, what we are getting here is this say the diverging that the V « P results in a say pile up
of negative charge as per the figure and the density of this quantity is simply this the net bound
charge, which is this quantity, integral of the volume charge density where it is bound charge that
IS why it is written as pp in a given volume is equal and opposite to the amount that has been pushed

out through the surface.

So, | pictorially show that suppose | have a negative charge, so, this divergence is simply
equivalent to whatever you know the volume charge density we are having. So, eventually we have
if we get this very important equation that if there is a variation of the polarization, so, that variation
of the polarization can be quantified with the divergence and the negative of that divergence value

is eventually the density of the bound charge that is produced.

So, whenever we have a non-uniform polarization then only the concept of bound charge is there
if there is no non uniformity of the polarization P then what happens if you take the divergence of
that quantity, so, that will be simply 0 and you will not go to get any kind of bound charge out of

that bound volume charge density out of that. So, today I do not have much time. So, | like to



conclude my class here. So, in the next class, we will continue few more thing related to you know

the dielectric properties of the material.

And we see some boundary conditions also that how the boundary condition of the electric field
will be going to modify because in that case we should have something called displacement vector.
So, how will displacement vector come and what should the boundary condition we will discuss.

So, with that note | would like to conclude here thank you very much and see you in the next class.



