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Hello students to the foundation of classical electrodynamics course. So, under module 2 today, 

we have lecture 45 and today we will go to learn the electrostatic boundary value problem 

mainly today we will go to solve the Laplace equation in different condition in different 

dimension and try to understand that how the potential can be calculated with this given 

boundary conditions.  
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So, we have class number today 45 and our today's topic is electrostatic boundary value 

problem or in short boundary value problem. So, in boundary value problem before going to 

do the problem directly let us recap and try to understand how we calculated the portions and 

Laplace equation. So, first let us start with this equation this is ∇⃗⃗  • E⃗⃗  = 
𝜌

𝜖0
 and that is for free 

space we have this expression when electric field is in matters and D⃗⃗  is ϵE⃗⃗ .  
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But if I only concentrate on the E⃗⃗  part, so ∇⃗⃗  • E⃗⃗  is 

𝜌

𝜖
 and E⃗⃗  is −∇⃗⃗ ɸ. So I can write it as ∇⃗⃗  • (∇⃗⃗ ɸ) 

that is 
𝜌

𝜖
 and this quantity is simply Laplacian or ∇2. So, ∇2ɸ = −

𝜌

𝜖
 this equation is our Poisson’s 

equation.  
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Now, if ρ = 0 then we have right-hand side 0 and we have it term without any source in the 

right-hand side and that is called the Laplacian equation so, these 2 equations we already 

derived earlier so, this is not new. So, now, what we do that to try to you know solve this 

Laplace equation because this is nothing but a second order differential equation. So, I can 

solve this for a given system where two boundary conditions are there so, that we will go to 

do. So, before that let us write down the form of the Laplace equation let us remind the form 

of the Laplace equation in 3 coordinate systems.  
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So, 1 in Cartesian coordinate system in 3D it is simply 
𝜕2ɸ

𝜕𝑥2 + 
𝜕2ɸ

𝜕𝑦2 + 
𝜕2ɸ

𝜕𝑧2  = 0 where ɸ is the 

potential, this is in Cartesian coordinate system.  
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In cylindrical system, it is 
1

𝜌
 and then 

𝜕

𝜕𝜌
 and then ρ 

𝜕ɸ

𝜕𝜌
 we did it long ago now, we will be going 

to use it this φ now, I have it so, this ɸ let us put it is a ɸ and I should have 
𝜕2ɸ

𝜕𝑧2  so, I should 

have a second order derivative here z2 = 0.  
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And in you know spherical coordinate system this is 
1

𝑟2  
𝜕

𝜕𝑟
 then r2 

𝜕ɸ

𝜕𝑟
 + 

1

𝑟2 sin 𝜃
 

𝜕

𝜕𝜃
 and then sin θ 

𝜕ɸ

𝜕𝜃
 and then + 

1

𝑠𝑖𝑛2  𝜃
 I think 

𝜕2ɸ

𝜕𝜑2  = 0. So, I think these are the three coordinates these are the 

expressions. Now, let us start a problem then only we can understand that how we can exploit 

this and how can how we can solve this? 
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So, let us do problem 1 say so in problem 1 it is saying that the statement of the problem is like 

that. So, consider a parallel plate capacitor filled with air. So, let us consider a parallel plate 

capacitor where, you know this is one plate this is another plate so, these 2 plates are parallel 

and suppose we have this is x direction and it is placed over this axis defined by say x, y and z 

so, 2 parallel capacitor is there and now this is filled with air.  

 



So, inside there is air and bounded by the conducting plates at x = 0 and x = d. So, this point is 

at x = 0 and this point is at x = d. So, this is just in the left hand side I am showing that coordinate 

system, but the origin is sitting here. So, this is my origin so, this, this, this is my actual origin 

x = 0, point 1 parallel at 1 capacitor is placed and another is at a distance x = d now, given that 

the potential has the values 0 and ɸ0 on the left and right boundaries.  

 

So, here the value of the potential is also given and simply the value of the potential ɸ at x = 0 

is 0 and potential here is ɸ at (x = d) is ɸ0 this is given and the question is the left-hand and 

right-hand boundary solve the Laplace equation to obtain the potential distribution in the 

electric field between the plates how the potential is distributed here because here we have 

potential 0 here we have potential ɸ. So, how the potential are going to be distributed in 

between this space that we need to figure out.  

 

So, basically we need to solve the 1 dimensional Laplace equation in Cartesian coordinate 

system and that is d2ɸ, which is a function of x because it is changing over this and dx2 equal 

to 0. So, if I solve this boundary this differential equation and then we can find out how the 

potential is changing not only that the second part is so, let me write down the problem one by 

one so, first we need to find out 1 potential distribution this is my first problem is what that is 

I want to know what is ɸ(x). 

 

And second the electric field between the plates these 2 I want to find. So, if I solve this 

equation then I can find out the explicit form of ɸ and then from that I can calculate the electric 

field so, that should be the recipe.  
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So, if this is 0 then we can readily write that ɸ(x) = Ax + B where A and B are constants. Now, 

let us find out the I mean just put the boundary condition and boundary condition is saying that 

ɸ0 is 0, which gives us readily that the B has to be 0 and ɸ d because this distance is d, ɸ d = 

ɸ0, which simply gives that the value of A = 
ɸ0

𝑑
 very simple. So, the overall my ɸ(x) is simply 

ɸ0

𝑑
 multiplied by x. So, it is linearly changing and this should be the form. So, the answer of the 

part 1 is done.  

 

What about part 2? About the electric field 𝐸⃗  we know that it is simply minus of this quantity 

∇⃗⃗ ɸ so, we have −
ɸ0

𝑑
 𝑥̂. So, that is the solution very simple and very straightforward problem. 

So, this is just one more problem we do by just solving this Laplace equation under certain 

condition, now go to problem 2.  
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The problem 2 is saying that before going to problem 2, so, maybe we can you know for 

spherical symmetry, so, let us make a note here in 1 D so, we have the Laplace equation of the 

form 
1

𝑟2  
𝑑

𝑑𝑟
 (r2 

𝑑ɸ

𝑑𝑟
) = 0 this is the form of this Laplace equation in 1 D when the operator is given 

in r θ φ in 1D θ and φ we can because there is a symmetry so, ɸ should not depend on θ and φ 

so, we should have only it depends on r then I can write this is my equation.  

 

So, the general solution I can write for r not equal to 0, because if r is 0 then so for r not equal 

to 0 the general solution so, this becomes r2 
𝑑ɸ

𝑑𝑟
 to be some constant say this constant in C1 so, 

I can simply find that ɸ as a function of r is you know −
𝐶1

𝑟
 plus another constant C2 so, that 

should be the general you know general solution you just put 
𝑑ɸ

𝑑𝑟
 is 

𝐶1

𝑟2  and then integrate it and 

you will be going to get simply this. After having the information after just deriving the general 

solution we are going to use this for this given problem.  
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Now, the problem 2, suppose a concentric spherical conductor of the radius a and b are there. 

So, I have a spherical conductor so, this is the spherical shell suppose it has and 2 concentric 

spherical conductors are there, so, this is one and another conductor is inside that, where the 

radius is a and b? So, from here to here it is a and from here to here it is b so, b obviously 

greater than a, what else the inner one is kept at a potential ɸ0. So, this the potential here is ɸ0 

and the outer one is grounded.  

 

So, obviously, so if it is grounded so, the potential of this outer sphere has to be 0 find the 

potential in the region. So, the problem is this is the statement and the problem is find the 



potential as a function of r in the region a less than r less than b so, in this region we need to 

find out the potential and also find E and  σ on the inner and outer conductor.  
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So, let us quickly write the boundary condition, which is given so, ɸ is 0 when r = b, ɸ is ɸ0 

when r = a. So, from that we can because the general solution is here I have already derived it 

so, I can simply write ɸ(b0 = −
𝐶1

𝑏
 + C2, which is equal to 0 that simply gives us C2 = 

𝐶1

𝑏
, ɸ(a) 

= −
𝐶1

𝑎
 + C2 I replace because C2 I know this is +

𝐶1

𝑏
, which is ɸ0 and from simply from here we 

can find that C1 = ɸ0 
𝑎𝑏

𝑎−𝑏
 from here and then we have ɸ0. So, C1 C2 I calculate.  

 

So, ɸ(r) is simply ɸ0 ab divided by because this is a negative sign so, I should write b - a and 

plus because this is divided by r also and then this is ɸ0 
𝑎

𝑎−𝑏
 just simply put the value of C1, C2 

to the general solution that we figured out this is my general solution. So, here I just put the 

value of C1, C2 and get the result that so that is why I calculated this earlier once you know the 

value of ɸ(r), we can simplify this further and I mean just take (b – a) common or (a – b) 

common and then do the rest.  
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But anyway, so now if I want to find out the electric field 𝐸⃗  because that is another part of the 

question. 𝐸⃗  is −∇⃗⃗ ɸ, which is a function of 𝑟  and which just we calculate. So, that thing is seems 

to be ɸ0 
𝑎𝑏

𝑏−𝑎
 whatever is there and then I have a negative sign 

1

𝑟2  𝑟̂ because we are making 

simply the derivative with respect to partial derivative with respect to r that is all. So, this 

should be my E we can simplify it.  

 

So, we can write simply 
ɸ0
1

𝑏
−

1

𝑎

 and already 1 negative sign b minus I make these b - ɸ so, minus 

and minus so, that should be this minus is there I need to put this minus sign and it should be a 

minus so, then if I write this then it should be simply plus anyway 
𝑎

𝑏
 I am just dividing this with 

𝑎

𝑏
 that is all when you divide 

𝑎

𝑏
 the b b will cancel out we have 

1

𝑎
 - 

1

𝑏
 but make this negative sign 

I make 
1

𝑏
 - 

1

𝑎
 this negative sign need it seems to me and then I have then 

1

𝑟2  and this.  
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Now, the question is the charge density. The charge density of the inner conductor σa that we 

know because 𝐸⃗  is 
𝜎𝑎

𝜖0
 along 𝑛̂ if I make both the side if I make a dot productive 𝑛̂ then σa comes 

up to be ϵ0 then 𝐸⃗  dot here it is simply 𝑟̂ because in the direction and 𝑟̂ the same direction and 

that will be evaluated over the surface this quantity and that simply turns out to be ϵ0 and then 

𝐸⃗  • 𝑟̂ means this quantity at a. 

 

So, simply 
ɸ0

𝑎2 into 1 by whatever I get −
1

𝑎
 it seems to be something like this with I should not 

put any kind of vector direction because it is a surface charge I already make 𝐸⃗  dot product 

with 𝑟̂. Similarly this is for outer surface, for inner surface here in the question is mentioned 

that inner and outer σ on the inner and outer conductor. So, for inner surface of the outer 

conductor σb should be similarly if you calculate we should have I think a negative sign.  

 

Because r, now will go to defer it will go to -r and you will get a result like it is evaluate at b2 

(
1

𝑏
−

1

𝑎
). So, this is the way you calculate please check it and do some other problems. Now, we 

do 1 dimensional problem for you know this Cartesian coordinate system then we did for 

spherical coordinate system.  
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And now, we will continue with this 1 dimensional problem for a cylindrical coordinate system 

problem 3. So, for cylindrical coordinate system, let us first calculate for 1D cylindrical 

coordinate system the Laplace equation comes up to be 
𝑑

𝑑𝜌
 and then ρ 

𝜕ɸ

𝜕𝜌
 = 0 that is the Laplace 

equation in 1 dimensional form. Now, the general solution for ρ not equal to 0 the general 

solution is simply by making 
𝜕𝜌

𝜕ɸ
 this is constant like before and say this constant is c1.  

 

If it is c1 then simply we can write my potential ɸ, which is a function of ρ should be c1 ln ρ + 

c2 very simple if I put this ρ here and then integrate it should be simply ln ρ + c2 where c1, c2 

are constant and evaluated from the boundary condition. So, the general solution here for 1 

dimension I already figured out, I do not need to do it once again so, this is the general solution 

for cylindrical. Now, I need the boundary condition for a given problem and then I just resolve 

the value of c1 and c2. So, the problem now it is given like this.  
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So, I have a 2 concentric cylinder like this one is this another concentric now, the inner radius 

is a and the outer radius is b. Now, 2 coaxial cylinders are there of radius a and b potential of 

the inner one now, this is grounded it is saying that the inner one is grounded. So, obviously, 

the potential here ɸ = 0 for inner and the outer is ɸ0 this is ɸ0. So, what should be the potential 

in the region? So, the question is simple like before calculate ɸ(r) in the region when r is less 

than b greater than a again a very straightforward problem.  

 

Because the general solution is already known. So, I just here I should not write r rather I write 

ρ so, this is ρ so let me quickly do that it will not be going to take much time.  
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So, ɸ(a) this is simply c1 ln a + c2 and according to the problem this is 0. So, we simply have 

c2 = -c1 ln a, ɸ(b) I should have c1 here and then ln b and then I write c2 in terms of c1, which I 



already evaluated, it is a c1 ln a and that value is simply ɸ0 according to the problem.  So, from 

here I simply write c1 is 
ɸ0

ln
𝑏

𝑎

. So, this is ln 
𝑏

𝑎
. So, what is my ɸ(r) or ɸ(ρ)?  

 

ɸ(ρ) = ɸ0 general solution, I am just writing just putting the value of c1  ɸ0 ln 
𝑏

𝑎
 and then ln ρ - 

c2 I calculate this is c1 the c1 is ɸ0. So, I again I write ɸ0 ln 
𝑏

𝑎
 and then ln a. So, this eventually 

gives me a solution like ɸ0 ln 
𝑏

𝑎
 and then ɸ0 then ln ρ – ln a so this is ln 

𝜌

𝑎
. So, that is the solution 

in the region when ρ is in between a and b. So, here ρ is in between b and a so, we have done 

all the problems related to you know the first related to the 1 dimension.  

 

So, now, in the next to we will go for a 2 dimensional problem. So, you will see that there is a 

significant amount of change will happen when I go from 1 dimension to 2 dimension, because 

the differential equation will be now 2 dimensional and boundary condition become more 

instead of having two boundary conditions we should have 4 boundary conditions and we need 

to deal with that to find the final answer. So, it will be a lengthy problem. So, let us do that. So, 

this problem I think it is given in the Griffiths book, but I am redoing it here.  
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So, say problem 4, in problem 4 we will do the problem in 2 dimensional problem it will be 

2D problem with Cartesian coordinate 2D Cartesian coordinate. So, the system as defined is 

this is the coordinate and we have 2 plate like this is one plate and another plate is this. So, let 

me put this as z axis, x axis and y axis and the plate is like this so this is 2 plate parallelly 

placed.  Now the potential here it is now boundary condition are given. 

 



So, potentially here for this plate is 0 potential here for this plate is 0 and then this is lengthy 

from here to here is a and this is y axis. So, ɸ0 the potential is ɸ0 the function of y the statement 

of the problem is 2 infinite grounded metal plates both are grounded. So, that is why the 

potential of the 2 plate is 0 lies parallel to xz plane and lifting at x = 0. So, this is at x = 0 if 

closed off with an infinite strip insulated from the plate, so, here we have an insulation here.  

 

From the 2 plates maintained at the specific potential ɸ0. So, this is maintaining a potential ɸ0 

into find the potential inside the slot so, what should be the potential inside this slot? So that 

we need to figure so, this is a 2 dimensional problem as I mentioned. So, let us now construct 

this problem. So, I need to find out the potential in between and the lefting at x = 0 as it is 

mentioned here in this region.  

 

So, infinite strip insulated from the 2 plates, a 2 plate is insulated by strip maintaining as a 

specific potential ɸ0(y). So, this potential is maintained at ɸ0 and depends on the value of the 

y. So, this is the condition that is given.  So, I have the Laplace equation we know because 

there is no source I can use this and this equation in 2D simply I can write at this, because this 

is z independence, there is nothing at the plate is extended infinitely along z. So, the z 

coordinate should not be here.  
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Now the boundary condition one by one if I write the first boundary condition is ɸ = 0 at y = 

0, second is ɸ = 0 at y = a and then third condition that ɸ is maintaining a potential like this at 

x = 0 that is this region here and finally, I have ɸ tends to 0 as x tends to infinity. So, if I go for 



a very large distance is expected that the potential going to die out. So, that is the trivial 

boundary condition that we need to use here to solve this problem.  

 

Now, we are going to use the separation of variable because now ɸ is a function of x and y. So, 

x and y, ɸ I can write as X and Y this is the way we use the standard separation of variable and 

I can put this in this equation 1 let us write this as equation 1.  
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So, if I put this in equation 1, then what I get is something like this 
1

𝑋
 
𝑑2𝑋

𝑑𝑥2  that is equal to −
1

𝑌
 

𝑑2𝑌

𝑑𝑦2. So, now we can see that left-hand side is it complete function of X, right-hand side is 

complete function of Y. So, they have to be equal to some constant and let us write this constant 

k2 some constant this is a standard way. Now, from that I can have an equation for X like 
𝑑2𝑋

𝑑𝑥2  

– k2 X = 0 that gives me a straightforward solution that X(x) is A ekx + B e-kx we know that 

when we have plus k2, so, very standard solutions are this.  
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On the other hand, I have 
𝑑2𝑌

𝑑𝑦2  + k2 Y = 0 that leads to a sinusoidal solution because if this is 

plus we know that so, I can write is solution like C sin ky + D cos ky so, I have the general 

solution in my hand. So, ɸ, which is a function of x and y now can be written like a combination 

of these 2 solution multiplication of these 2 solutions ekx + B e-kx bracket close and C sin ky + 

D cos ky.  
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So, now, I am going to use the boundary condition and the boundary condition is saying that ɸ 

at (x, 0) = 0 that means ɸ at (y = 0), 0. So, that means, if I put y = 0 here, so, this term is not 

there, and this term we will have only D and that is 0 and this is true for all x values. So, that 

basically gives me simply D = 0. So, now, I can simplify because my D = 0. So, the equation 

like C1 ekx because C is here so, I can multiply C A and C B and write another constant C1 and 

C2 e-kx multiplied by sin ky. 
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So, now, I am going to use the other solutions and other boundary condition is saying that ɸ 

tends to 0 when x tends to infinity. So, if I put that then obviously, at x tends to infinity you 

can see that the term related to C1 is growing exponentially. So, that is not desired. So, that 

means again C1 has to be 0. So, from here I can see that C1 = 0 otherwise this will blow up at 

x tends to infinity. So, my solution is even become simpler. Now, I have C2 and then e-kx with 

a sinusoidal term ky.  
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Now another boundary condition that ɸ = 0 when y = a, this is the boundary condition let me 

highlight with red colour. So, if that is a boundary condition, so, I need to put this boundary 

condition here and we will see that ka has to be equal to n𝜋 because all the value is 0, C2 is not 

equal to 0. Because, if C2 is 0 the entire solution then we will collapse. So, that means k into a 

when you put y = a then that is 0. So, that means ka has to be n𝜋.  

 



So k now having a value like 
𝑛𝜋

𝑎
 where the value of the n is say it can be 0, 1, 2, 3 etc. So, my 

solution is finally, if something like C2 ek is a function k is changing with so, I should write kn 

here because at different n we can have different values, so, k x and then sin 
𝑛𝜋

𝑎
 that is k and y 

that is the form of the solution. So, now, the general solution so for different n I can have 

different solutions. So, we know that when for different n we have different solution than the 

general solution is a superposition of all the solutions.  
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So, the general solution has to be the superposition of all the solutions and eventually I should 

I have ɸ as a function of x y is equal to all the combination of the solution with different n so 

it should be sum over n Cn because for different n value we should have different constant I 

just put it as Cn 𝑒𝑘𝑛𝑥 and then sin (kny) where kn is simply 
𝑛𝜋

𝑎
 this is the way we can have.  
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Now, the boundary condition 3 is saying that ɸ0(y) that is at x = 0 the entire the potential is 

something like this. So, if I now put here at x = 0 then I can have an equation like Cn when n 

sin (kn y) is simply ɸ0(y). Now, the challenge is how to calculate Cn from this equation?  
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So, there is a very elegant way and which is called the Fourier trick or Fourier transform, 

Fourier trick where we find this Cn by multiplying you know the by using this the complete set 

this is called the complete set. So, what we do is this Cn and we integrate 0 to a and whatever 

this function here we are having we write sin (kn y) and then multiply with sin (k’n y) integrate 

over dy and do the same thing in the right-hand side.  

 

Integrate 0 to a and whatever the function we already have multiplied with this function sin 

(k’n y) and dy were k’n is for another 
𝑛𝜋

𝑎
. So, this is n I should write it correctly. So, now we 

know from these complete set functions 0 to a, this quantity sin (kn y) sin (k’n y) dy is simply 

𝑎

2
 𝛿𝑛𝑛′, this deals with the delta function. So, if that is the case, so, when we know sum over 

this all n only the meaningful thing is when you know these n and n’ are same.  

(Refer Slide Time: 55:37) 



 
So, that simply makes Cn to be because when n’ = n then only we have the value so, I can 

extract the C out of that and simply I have ɸ0, 0 to a integrate and y and then sin (
𝑛𝜋

𝑎
 y) as usual 

dy. Now, if ɸ0(y) is a constant say ɸ0 I have my Cn to be 
2ɸ0

𝑎
 ∫ sin (

𝑛𝜋

𝑎
 𝑦)

𝑎

0
 dy.  
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So, now this integration we can further evaluate and if you evaluate it simply comes out to be 

2ɸ0

𝑎
 and 

𝑎

𝑛𝜋
 if I do this integration and simply you have (1 - cos n𝜋) and that thing is equal to 0 

when n is even, and 
4ɸ0

𝑛𝜋
 when n is odd, please check it.  

(Refer Slide Time: 57:30) 



 
So, finally, what is my solution? My solution is after doing all these calculation lengthy 

calculation we finally get a solution like this. The point is for 1 dimension the problem was 

very straightforward, but as soon as you move to 2 dimension it becomes very you know, 

lengthy I should not say complicated I should simply say it is lengthy and you need to use few 

tricks to find out the constants that is thing it is a very important problem I believe, you can 

understand once you do that by your hand so that should be the value 135.  

 

Because other case it is 0, the odd value is meaningful. So that should be the form of the 

solution. I already spend 1 hour to share for this class because this is a very lengthy problems 

that are associated with that. But the point is you need to you know, practice by yourself at 

least do 1 or 2 problem with this boundary value. In the next class again, we will continue with 

this boundary value problem with more examples.  

 

And then maybe you will be in a position to solve the problem by your own that is the main 

goal you know in this course that you can do the problem by yourself. I am doing almost all 

the problem in live mode so that you can have the idea of how to solve this. With this note, 

thank you very much for your attention and see you in the next class. 

 


