# Introduction to Scilab Funded by the National Mission on Education through ICT <br> Indian Institute of Technology Bombay, <br> Organised by FOSSEE Group, IIT Bombay, http://scilab.in 

(The sequence of spoken tutorials to be listened/followed is same as that of exercise sets below.)

## Matrix Operations

Solve the following examples on the Scilab Console as soon as the relevant topic is explained in the tutorial.

1. If $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 1 \\ 4 & 1 & 5\end{array}\right]$

Find $A(:$, : $)$
Extract the second column of $A$
2. Determine the determinant and eigenvalues of the matrix, $A^{2}+2 * A$.
3. Define a $3 x 3$ matrix $A$ with all elements equal to 1 . Multiply 1 st and 2 nd row with scalars, 3 and 4 respectively, and determine the determinant of the resultant matrix.
4. Represent the following linear system as a matrix equation. Solve the system using the inverse method:

$$
\begin{aligned}
x+y+2 z-w & =3 \\
2 x+5 y-z-9 w & =-3 \\
2 x+y-z+3 w & =-11 \\
x-3 y+2 z+7 w & =-5
\end{aligned}
$$

5. Try solving the above system using the backslash method.
6. Verify the solution from the previous question.
7. If $\mathrm{A}=\left[\begin{array}{lll}2 & 3 & 1 \\ 4 & 6 & 5 \\ 1 & 3 & 6\end{array}\right]$

Use a suitable sequence of row operations on $A$ to bring $A$ to upper triangular form. ${ }^{1}$

[^0]
[^0]:    ${ }^{1}$ Upper triangular matrix: all elements below the North-West to South-East diagonal of the matrix are zero.

