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M.Sc. DEGREE EXAMINATION, NOVEMBER 2015.

(Applicable Mathematics)

II YEAR — III SEMESTER

Paper VIII — DIFFERENTIAL EQUATIONS
Time : 3 hours
    Max. Marks : 75

SECTION A — (10 × 2 = 20 marks)

Answer any TEN questions
1. Define Analytic functions.
2. If Pn(x) is the Legendre polynomial, show that Pn(-x) =(-1)n Pn(x).
3. Determine the fundamental matrix for the system 
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4. Write the system 
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 in the vector matrix form.
5. If S is defined by the rectangle 
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.  Show that the function           f(x,y) = x2+y2 satisfies the Lipchitz condition.
6. Given 
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7. Eliminate the arbitrary function f from the relation z=xy+f(x2+y2).

8. State the condition of compatibility of first order partial differential equations.

9. Show that L(u) =
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 is self adjoint.

10. If u=f(x+iy) + g(x-iy) where f and g are arbitrary functions, show that 
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11. Find the singular points of the equation 
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12. Write down the Jacobi’s auxiliary equations.
SECTION B — (5 × 5 = 25 marks)

Answer any FIVE questions.

13. Prove that 
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14. Let A(t) be  n x n matrix which is continuous on I.  Suppose a matrix 
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 satisfies the first order equation 
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15. Let f(t,x) be a continuous function defined over a rectangle 
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 where p, q are some positive real numbers.  Let 
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 be defined and continuous on R.  Then prove that f(t,x) satisfies the Lipchitz condition in R.
16. Find the equation of the integral surface of the differential equation 
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which passes through the circle z=0, x2+y2=2x.
17. Reduce the following equation to canonical form and hence solve it              uxx-(2sinx) uxy-(cos2x)uyy-(cosx) uy=0.

18. Use Jacobi’s method to solve p2x+q2y=z.
19. If 
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, prove that 
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SECTION C — (3 × 10 = 30 marks)

Answer any THREE questions.

20. If pn  is a lengendre polynomial then prove that 
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21. Prove that the set of solutions of the system 
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 on I forms                    n-dimensional vector space over field of complex numbers.
22. State and prove theorem PICARD’S theorem.

23. Use charpit’s method to solve the partial differential equation (p2+q2)y=qz. 
24. Prove that the equation 
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 the Green’s function is given by 
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 where J0(x) is a Bessel’s function of first kind and of order zero.
                                                              ——————
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