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M.Sc.DEGREE EXAMINATION, NOVEMBER 2017.
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 II Year IV Semester
Core Major -X  -  FUNTIONAL ANALYSIS 
Time : 3 Hours







Max. Marks : 75
SECTION A – (10 × 2 = 20 marks)
Answer any TEN questions

1. Define Banach space with an example.
2. Define the conjugate space N* of N.
3. State parallelogram law.
4. Show that the function 
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 form an orthonormal set in 
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5. If y is a fixed vector in a Hilbert space H, then show that the function defined by 
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    is linear
6. Prove that 
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7. Define topological divisor of zero.
8. If r is an element of R, then prove that 1-r is left regular.
9. Define Banach* - algebra
10. If x is a normal element in a Banach*- algebra, then show that 
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11. Define unitary operator
12. State the open mapping theorem.
SECTION B – (5 × 5 = 25 marks)
Answer any FIVE questions

13. Show that 
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 is a Banach space.
14. State and prove Bessel’s inequality.
15. Prove that if  T is an operator on H for which 
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 for all 
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16. Prove that 
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  is non empty
17.  Prove that if 
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  are multiplicative functional on A with the same null space M, then 
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18.  If N is a normal linear space and 
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  is a non zero vector in N, then prove that there exist a functional 
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 in N* such that 
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19.  If T is an operator on H, then prove that T is normal iff its real and imaginary parts commute.
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SECTION C – (3 × 10 = 30 marks)
Answer any THREE questions

20.  Let M be closed linear space of a normal linear space N. If the norm of a coset 
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 in the quotient space 
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 then prove that 
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 is a normed linear space. Also prove that 
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is a Banach space if 
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 is a Banach space.
21.  State and prove uniform boundedness theorem.
22.  Prove that if H is a Hilbert space, and let 
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 be an arbitrary functional in H*  then there exists a unique vector y in H such that for every x in H that 
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 for every x 
in H.
23.  Prove that 
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24. State and prove that Gelfand-Neumark theorem. 
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