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Max. Marks : 75
SECTION A – (10 × 2 = 20 marks)
Answer any TEN questions
1. Examine whether outer measure is translation invariant. 
2. If f is a measurable function and f=g a.e , then show that g  is measurable.
3. If f is integrable, then prove that f is finite valued a.e..
4. Define integral of a measurable simple function
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5. If m=1,2,3,…;  n=1,2,3… define 
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6. What do you understand by equicontinuous family of functions ?.
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7.  Define a continuously differentiable mapping 
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 of an open set E.
8. Define a contraction map.
9. Show that the functions C and S are periodic with period 2
[image: image6.wmf]p

.
10. Define orthogonal system for a sequence of complex functions
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11. Define a 
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algebra.
12. State inverse function theorem.
SECTION B – (5 × 5 = 25 marks)
Answer any FIVE questions
13. Prove that for any sequence of sets { Ei }, m*( 
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14. If f and g are are integrable functions, show that f + g is integrable and 
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15. If {fn} is a sequence of functions defined on E, and 
[image: image12.wmf]()(,1,2,3,...)
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 conveges uniformly on E if 
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16. Suppose  
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 maps an open set E
[image: image16.wmf]Ì

Rn into Rm and 
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 is differentiable at a point 
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E. Then show that the partial derivatives ( Dj fi ) (
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) exist and 
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17. If for some x,there are constants 
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 > 0 and M <
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 such that 
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18. Show that f 
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 ess sup f, a.e.
19. Prove by an example that there exists an everywhere discontinuous limit function which is not Riemann-integrable.
SECTION C – (3 × 10 = 30 marks)
Answer any THREE questions
20. Prove that the outer measure of an interval is equal to its length.
21. State and prove Fatou’s lemma. 
22. If K is compact , if fn 
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 C(K) for n= 1,2,3,…,and if {fn} is pointwise bounded and equicontinuous on K, show that       (i)     { fn } is uniformly bounded on K                         (ii)     { fn } contains a uniformly convergent subsequence.
23. State and prove implicit function theorem.
24. State and prove Parseval’s theorem on Riemann - integrable functions.
____________
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