UMA/AT/3MS3

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year III Semester Allied Paper III MATHEMATICAL STATISTICS - I

Time : 3 Hours

Max.marks:60

Section A $(10 \times 1 = 10)$ Marks

Answer any **TEN** questions

- 1. Define probability.
- 2. State addition theorem of probability.
- 3. Define random variable.
- 4. State the multiplication theorem of expectation.
- 5. What is meant by conditional probability?
- 6. Write down the axioms of probability.
- 7. Define moment generating function.
- 8. State the properties of correlation coefficient.
- 9. Define correlation.
- 10 Define binomial distribution.
- 11. Write any two examples for poisson distribution.
- 12. Comment on the following: The mean of a binomial distribution is 3 and variance is 4.

Section B $(5 \times 4 = 20)$ Marks

Answer any **FIVE** questions

- 13. State and prove multiplication theorem of probability.
- 14. Mention the properties of moment generating function.
- 15. Write down the properties of regression coefficients.
- 16. Find the moment generating function about mean of binomial distribution.
- 17. Find the mean and variance of poisson distribution.
- 18. Prove the additive property of two normal variates.
- 19. Write down the properties of distribution function.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Baye's theorem.
- 21. A random variable X has the following probability function:

Values of	0	1	2	3	4	5	6	7
X, x:								0
P(x):	0	k	2k	2k	3k	k^2	$2k^{2}$	$7k^2 + k$

Find (i) k (ii) $P[x \le 4]$ (iii) P[x > 2]

- 22. State and prove chebyche's inequality.
- 23. Prove that the correlation coefficient is independent of change of origin and scale.
- 24. Write down the chief characteristics of the normal distribution.

UMA/AT/3MS3

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year III Semester Allied Paper III MATHEMATICAL STATISTICS - I

Time : 3 Hours

Max.marks:60

Section A $(10 \times 1 = 10)$ Marks

Answer any **TEN** questions

- 1. Define probability.
- 2. State addition theorem of probability.
- 3. Define random variable.
- 4. State the multiplication theorem of expectation.
- 5. What is meant by conditional probability?
- 6. Write down the axioms of probability.
- 7. Define moment generating function.
- 8. State the properties of correlation coefficient.
- 9. Define correlation.
- 10 Define binomial distribution.
- 11. Write any two examples for poisson distribution.
- 12. Comment on the following: The mean of a binomial distribution is 3 and variance is 4.

Section B $(5 \times 4 = 20)$ Marks

Answer any **FIVE** questions

- 13. State and prove multiplication theorem of probability.
- 14. Mention the properties of moment generating function.
- 15. Write down the properties of regression coefficients.
- 16. Find the moment generating function about mean of binomial distribution.
- 17. Find the mean and variance of poisson distribution.
- 18. Prove the additive property of two normal variates.
- 19. Write down the properties of distribution function.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Baye's theorem.
- 21. A random variable X has the following probability function:

Values	of	0	1	2	3	4	5	6	7
X, x:									
P(x):		0	k	2k	2k	3k	k^2	$2k^{2}$	$7k^2 + k$

Find (i) k (ii) $P[x \le 4]$ (iii) P[x>2]

- 22. State and prove chebyche's inequality.
- 23. Prove that the correlation coefficient is independent of change of origin and scale.
- 24. Write down the chief characteristics of the normal distribution and normal probability curve.