M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Core Elective Paper - II MATHEMATICAL STATISTICS

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write the moment generating function of chi-square distribution
- 2. Define the t-distribution.
- 3. Define point estimation.
- 4. Define consistent estimate.
- 5. Define test-function.
- 6. Define uniformly most powerful test.
- 7. Define liklihood ratio test.
- 8. Write the two tailed t-test, when σ^2 is known.
- 9. Define confidence coeffiecient.
- 10. Define a pivot of an random variable $T(x,\theta)$.
- 11. Define non-central F-distribution with (m, n) degrees of freedom.
- 12. Write the necessary and sufficient condition for an estimate T to be most efficient.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Let $X \sim F(m, n)$. Prove that for k > 0, integral $EX \mathcal{K} = (n/m) \mathcal{K} (\Gamma[k + (m/2)]\Gamma[(n/2) - k])/\Gamma[(m/2)\Gamma(n/2)]$ for n > 2k.
- 14. Let $\{T_n\}$ be a sequence of UMVUE's and T be a statistic with $E_{\theta}T^2 < \infty$ and such that $E_{\theta}\{T_n T\}^2 \to 0$ as $n \to \infty$ for all $\theta \in \Theta$. Prove that T is also the UMVUE.
- 15. Let T(x) be a maximal invariant with respect to \mathcal{G} . Prove that φ is invariant under \mathcal{G} if and only if φ is a function of T.
- 16. A die is rolled 120 times with the following results

Face	1	2	3	4	5	6
Frequency	20	30	20	25	15	16

Test at 5% level of significance if the die is honest.

PAM/CE/2002

- 17. Let X_1, X_2, \ldots, X_n be independent, identically distributed $N(\mu, \sigma^2)$ random variables. Prove that \overline{X} and $(X_1 \overline{X}, X_2 \overline{X}, \ldots, X_n \overline{X})$ are independent.
- 18. Let X_1, X_2, \ldots, X_n be a sample from U(0, θ). Find the shortest length confidence interval for θ at level 1- α based on a sufficient statistic for θ .
- 19. State and prove Chapman and Robbins inequality.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. If $X \sim X^2(n)$, then prove that $\lim_{n \to \infty} p\left\{\sqrt{2X} \sqrt{2n-1} \le z\right\} = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$.
- 21. State and prove Rao-Blackwell theorem.
- 22. State and prove the Neyman-Pearson fundamental lemma.
- 23. In a 72 hour period on a long holiday weekend there was a total of 306 fatal automobile accidents. The data are as follows.

No.Of fatal accidents	0 or 1	2	3	4	5	6	7	8 or
per hour								more
No. of hours	4	10	15	12	12	6	5	7

Test the hypothesis that the number of accidents per hour is a poisson random variable.

24. The following tables gives the yield(pounds per plot) of three varieties of wheat, obtained with four different kinds of fertilizers

	VARIETY		OF
	WHEAT		
FERTILIZER	А	В	С
W	8	3	7
X	10	4	8
Y	6	5	6
Ζ	8	4	7

Test the hypothesis of equality in the average yields of the three varieties of wheat and the null hypothesis that the four fertilizers are equally effective.

M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Core Elective Paper - II MATHEMATICAL STATISTICS

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write the moment generating function of chi-square distribution
- 2. Define the t-distribution.
- 3. Define point estimation.
- 4. Define consistent estimate.
- 5. Define test-function.
- 6. Define uniformly most powerful test.
- 7. Define liklihood ratio test.
- 8. Write the two tailed t-test, when σ^2 is known.
- 9. Define confidence coeffiecient.
- 10. Define a pivot of an random variable $T(x,\theta)$.
- 11. Define non-central F-distribution with (m, n) degrees of freedom.
- 12. Write the necessary and sufficient condition for an estimate T to be most efficient.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Let $X \sim F(m, n)$. Prove that for k > 0, integral $EX \mathcal{K} = (n/m) \mathcal{K} (\Gamma[k + (m/2)]\Gamma[(n/2) - k])/\Gamma[(m/2)\Gamma(n/2)]$ for n > 2k.
- 14. Let $\{T_n\}$ be a sequence of UMVUE's and T be a statistic with $E_{\theta}T^2 < \infty$ and such that $E_{\theta}\{T_n T\}^2 \to 0$ as $n \to \infty$ for all $\theta \in \Theta$. Prove that T is also the UMVUE.
- 15. Let T(x) be a maximal invariant with respect to \mathcal{G} . Prove that φ is invariant under \mathcal{G} if and only if φ is a function of T.
- 16. A die is rolled 120 times with the following results

Face	1	2	3	4	5	6
Frequency	20	30	20	25	15	16

Test at 5% level of significance if the die is honest.

PAM/CE/2002

- 17. Let X_1, X_2, \ldots, X_n be independent, identically distributed $N(\mu, \sigma^2)$ random variables. Prove that \overline{X} and $(X_1 \overline{X}, X_2 \overline{X}, \ldots, X_n \overline{X})$ are independent.
- 18. Let X_1, X_2, \ldots, X_n be a sample from U(0, θ). Find the shortest length confidence interval for θ at level 1- α based on a sufficient statistic for θ .
- 19. State and prove Chapman and Robbins inequality.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. If $X \sim X^2(n)$, then prove that $\lim_{n \to \infty} p\left\{\sqrt{2X} \sqrt{2n-1} \le z\right\} = \int_{-\infty}^t \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}} dy$.
- 21. State and prove Rao-Blackwell theorem.
- 22. State and prove the Neyman-Pearson fundamental lemma.
- 23. In a 72 hour period on a long holiday weekend there was a total of 306 fatal automobile accidents. The data are as follows.

No.Of fatal accidents	0 or 1	2	3	4	5	6	7	8 or
per hour								more
No. of hours	4	10	15	12	12	6	5	7

Test the hypothesis that the number of accidents per hour is a poisson random variable.

24. The following tables gives the yield(pounds per plot) of three varieties of wheat, obtained with four different kinds of fertilizers

	VARIETY		OF
	WHEAT		
FERTILIZER	А	В	С
W	8	3	7
X	10	4	8
Y	6	5	6
Ζ	8	4	7

Test the hypothesis of equality in the average yields of the three varieties of wheat and the null hypothesis that the four fertilizers are equally effective.