M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year IV Semester Core Major- Paper XI DIFFERENTIAL GEOMETRY AND TENSOR CALCULUS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write down the Serret-Frenet formula for a space curve.
- 2. State the fundamental existence theorem for space curves.
- 3. Define an anchor ring.
- 4. Define an ordinary point for a space curve.
- 5. State the normal property of geodesics.
- 6. State Whitehead existence theorem.
- 7. Define covariant tensor of order two.
- 8. Show that the Kronecker delta δ^j_i is a mixed tensor of order two.

9. Prove that
$$[ij, k] + [kj, i] = \frac{\partial g_{ik}}{\partial x^j}$$
.

- 10. Define Christoffel symbols of first kind.
- 11. Define cylindrical helix.
- 12. Define symmetric tensor.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Show that $[\dot{r}, \ddot{r}, \ddot{r}] = 0$ is a necessary and sufficient condition that the curve be planar.
- 14. Find the orthogonal trajectories of the sections by the planes $z={\rm \ constant}$, on the paraboloid $x^2-y^2=z.$
- 15. Prove that the curve of the family $\frac{v^3}{u^2} = \text{constant}$ are geodesics on a surface with metric $v^2 du^2 2uv du dv + 2u^2 dv^2$ (u > 0, v > 0).
- 16. State and prove Liouville's formula for $\kappa_{\rm g}.$
- 17. Show that a skew symmetric tensor of the second order has only $\frac{n(n-1)}{2}$ different non-zero component.

PAM/CT/4A11

- 18. If g denotes the determinant $|g_{ij}|$ prove that $\frac{\partial}{\partial x^i} \log \sqrt{g} = \begin{cases} \alpha \\ i\alpha \end{cases}$.
- 19. Show that the Kronecker delta is constant with respect to covariant differentiation.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Obtain the curvature and torsion of the curve of intersection of the two quadric surfaces $ax^2+by^2+cz^2=1$, $a'x^2+b'y^2+c'z^2=1$.
- 21. Define the metric on a given surface $\overrightarrow{r}(u, v)$. Show that the metric is positive definite and remains invariant under the transformation $u' = \emptyset(u, v)$ and $v' = \psi(u, v)$.
- 22. State and prove Gauss-Bonnet theorem.
- 23 Prove that the sum(or difference) of two tensors which have the same rank of covariant and the same number of contravariant indices is again a tensor of the same type and rank as the given tensor.
- 24. State and prove Ricci's theorem.

M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year IV Semester Core Major- Paper XI DIFFERENTIAL GEOMETRY AND TENSOR CALCULUS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write down the Serret-Frenet formula for a space curve.
- 2. State the fundamental existence theorem for space curves.
- 3. Define an anchor ring.
- 4. Define an ordinary point for a space curve.
- 5. State the normal property of geodesics.
- 6. State Whitehead existence theorem.
- 7. Define covariant tensor of order two.
- 8. Show that the Kronecker delta δ^j_i is a mixed tensor of order two.

9. Prove that
$$[ij, k] + [kj, i] = \frac{\partial g_{ik}}{\partial x^j}$$
.

- 10. Define Christoffel symbols of first kind.
- 11. Define cylindrical helix.
- 12. Define symmetric tensor.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Show that $[\dot{r}, \ddot{r}, \ddot{r}] = 0$ is a necessary and sufficient condition that the curve be planar.
- 14. Find the orthogonal trajectories of the sections by the planes $z={\rm \ constant}$, on the paraboloid $x^2-y^2=z.$
- 15. Prove that the curve of the family $\frac{v^3}{u^2} = \text{constant}$ are geodesics on a surface with metric $v^2 du^2 2uv du dv + 2u^2 dv^2$ (u > 0, v > 0).
- 16. State and prove Liouville's formula for $\kappa_{\rm g}.$
- 17. Show that a skew symmetric tensor of the second order has only $\frac{n(n-1)}{2}$ different non-zero component.

PAM/CT/4A11

- 18. If g denotes the determinant $|g_{ij}|$ prove that $\frac{\partial}{\partial x^i} \log \sqrt{g} = \begin{cases} \alpha \\ i\alpha \end{cases}$.
- 19. Show that the Kronecker delta is constant with respect to covariant differentiation.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Obtain the curvature and torsion of the curve of intersection of the two quadric surfaces $ax^2+by^2+cz^2=1$, $a'x^2+b'y^2+c'z^2=1$.
- 21. Define the metric on a given surface $\overrightarrow{r}(u, v)$. Show that the metric is positive definite and remains invariant under the transformation $u' = \emptyset(u, v)$ and $v' = \psi(u, v)$.
- 22. State and prove Gauss-Bonnet theorem.
- 23 Prove that the sum(or difference) of two tensors which have the same rank of covariant and the same number of contravariant indices is again a tensor of the same type and rank as the given tensor.
- 24. State and prove Ricci's theorem.