M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year III Semester Core Major -VII COMPLEX ANALYSIS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define an entire function and give an example.
- 2. Give an example of a region which is simply connected and a region which is not simply connected.
- 3. Define singular part of an analytic function f(z).
- 4. Determine the singularity and type for the function $\frac{\sin z}{z}$.

5. Prove that
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

6. Prove that
$$\lim_{z \to 0} \frac{\log(1+z)}{z} = 1$$

- 7. Define Poisson kernel.
- 8. Define a Dirichlet region and give an example.
- 9. Define finite order and infinite order of an entire function.
- 10. State Schottky's theorem.
- 11. State Hadamard's factorization theorem.
- 12. Define subharmonic and superharmonic functions.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove Liouville's theorem.
- 14. State and prove Rouche's theorem.
- 15. If Re $z_n > -1$, then prove that the series $\sum \log(1 + z_n)$ converges if and only if the series $\sum z_n$ converges absolutely.
- 16. State and prove Harnack's inequality.
- 17. Suppose g is an analytic function on B (0; R), g (0) =0, $|g'(0)| = \mu > 0$ and $|g(z)| \le M$, for all z, then show that $g(B(0; R)) \supset B(0; \frac{R^2 \mu^2}{6M})$.

14PAMCT3A07/PAM/CT/3A07

18. If f: D \rightarrow D is an one - one analytic map of D onto itself and f(a) =0 ,then prove that there is a complex number c with |c| = 1 such that f =c ϕ_{α} .

19. If Re z > 1, show that
$$\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - p_n^{-z}}\right)$$
.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Goursat's theorem on analytic functions.
- 21. State and prove Residue theorem.
- 22. State and prove Riemann mapping theorem.
- 23. Let G be a region and let $a \in \partial_{\infty}G$ such that there is a barrier for G at a. If f: $\partial_{\infty}G \to \mathbb{R}$ is continuous and u is the Perron function associated with f, then show that $\lim_{z\to a} u(z) = f(a)$.
- 24. State and prove Bloch's theorem.

M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 II Year III Semester Core Major -VII COMPLEX ANALYSIS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define an entire function and give an example.
- 2. Give an example of a region which is simply connected and a region which is not simply connected.
- 3. Define singular part of an analytic function f(z).
- 4. Determine the singularity and type for the function $\frac{\sin z}{z}$.

5. Prove that
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$
.

6. Prove that
$$\lim_{z \to 0} \frac{\log(1+z)}{z} = 1$$

- 7. Define Poisson kernel.
- 8. Define a Dirichlet region and give an example.
- 9. Define finite order and infinite order of an entire function.
- 10. State Schottky's theorem.
- 11. State Hadamard's factorization theorem.
- 12. Define subharmonic and superharmonic functions.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. State and prove Liouville's theorem.
- 14. State and prove Rouche's theorem.
- 15. If Re $z_n > -1$, then prove that the series $\sum \log(1 + z_n)$ converges if and only if the series $\sum z_n$ converges absolutely.
- 16. State and prove Harnack's inequality.
- 17. Suppose g is an analytic function on B (0; R), g (0) =0, $|g'(0)| = \mu > 0$ and $|g(z)| \le M$, for all z, then show that $g(B(0; R)) \supset B(0; \frac{R^2 \mu^2}{6M})$.

14PAMCT3A07/PAM/CT/3A07

18. If f: D \rightarrow D is an one - one analytic map of D onto itself and f(a) =0 ,then prove that there is a complex number c with |c| = 1 such that f =c ϕ_{α} .

19. If Re z > 1, show that
$$\zeta(z) = \prod_{n=1}^{\infty} \left(\frac{1}{1 - p_n^{-z}}\right)$$
.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. State and prove Goursat's theorem on analytic functions.
- 21. State and prove Residue theorem.
- 22. State and prove Riemann mapping theorem.
- 23. Let G be a region and let $a \in \partial_{\infty}G$ such that there is a barrier for G at a. If f: $\partial_{\infty}G \to \mathbb{R}$ is continuous and u is the Perron function associated with f, then show that $\lim_{z\to a} u(z) = f(a)$.
- 24. State and prove Bloch's theorem.