M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year I Semester Core Major -I MATHEMATICAL PHYSICS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What is meant by Orthonormal basis.
- 2. State Schwartz inequality.
- 3. Define Dirac delta function.
- 4. What is order of a differential equation?
- 5. When is a function f(z) is said to be analytic in a domain?

6. Find the poles of
$$\frac{1}{(z^2+1)^2}$$
.

7. Show that
$$L(e^{at}) = \frac{1}{s-a}$$
.

- 8. Find Fourier sine transforms of e^{-ax} .
- 9. Define subgroup.
- 10. Distinguish between homomorphism and isomorphism.
- 11. What is Hermitian matrix?
- 12. State Laurent's theorem.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the eigen values of the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
- 14. Explain the reciprocity theorem of Green's function.
- 15. Evaluate $\int \frac{e^z dz}{z(z-1)^2}$ where c is the circle |z| = 2.

16. Find the Fourier cosine transform of $5e^{-2x} + 2e^{-5x}$.

08PPHCT1001 / PPH/CT/1001

17. Construct the character table for C_{3V} point group.

18. Show that
$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$
 is unitary matrix.

19. Find the first three terms of the Taylor's series expansion of $f(z) = \frac{1}{z^2 + 4}$ about z = -i. Also find the region of convergence.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. From the set of vectors (1,0,1), (0,0,1) and (1,1,0) construct a set of orthonormal vectors.
- 21. What do you mean by orthogonality of functions. Prove that Laguerre polynomials are orthogonal functions.
- 22. State and prove Cauchy's integral formula $f(z_0) = \frac{1}{2\pi i} \int \frac{f(z)dz}{(z-z_0)}$. State also the condition of its applicability.
- 23. Using Laplace transform solve $y^{''} 3y^{'} + 2y = e^{2t}$ Given that y(0) = -3, $y^{'}(0) = 5$.
- 24. State and prove great orthogonality theorem.

M.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year I Semester Core Major -I MATHEMATICAL PHYSICS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What is meant by Orthonormal basis.
- 2. State Schwartz inequality.
- 3. Define Dirac delta function.
- 4. What is order of a differential equation?
- 5. When is a function f(z) is said to be analytic in a domain?

6. Find the poles of
$$\frac{1}{(z^2+1)^2}$$
.

7. Show that
$$L(e^{at}) = \frac{1}{s-a}$$
.

- 8. Find Fourier sine transforms of e^{-ax} .
- 9. Define subgroup.
- 10. Distinguish between homomorphism and isomorphism.
- 11. What is Hermitian matrix?
- 12. State Laurent's theorem.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the eigen values of the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
- 14. Explain the reciprocity theorem of Green's function.
- 15. Evaluate $\int \frac{e^z dz}{z(z-1)^2}$ where c is the circle |z| = 2.

16. Find the Fourier cosine transform of $5e^{-2x} + 2e^{-5x}$.

08PPHCT1001 / PPH/CT/1001

17. Construct the character table for C_{3V} point group.

18. Show that
$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{pmatrix}$$
 is unitary matrix.

19. Find the first three terms of the Taylor's series expansion of $f(z) = \frac{1}{z^2 + 4}$ about z = -i. Also find the region of convergence.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. From the set of vectors (1,0,1), (0,0,1) and (1,1,0) construct a set of orthonormal vectors.
- 21. What do you mean by orthogonality of functions. Prove that Laguerre polynomials are orthogonal functions.
- 22. State and prove Cauchy's integral formula $f(z_0) = \frac{1}{2\pi i} \int \frac{f(z)dz}{(z-z_0)}$. State also the condition of its applicability.
- 23. Using Laplace transform solve $y^{''} 3y^{'} + 2y = e^{2t}$ Given that y(0) = -3, $y^{'}(0) = 5$.
- 24. State and prove great orthogonality theorem.