B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Core Major - Paper IV INTEGRAL CALCULUS AND FOURIER SERIES

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int \mathbf{x}^2 \mathbf{e}^{-\mathbf{x}} dx$ 2. Evaluate $\int \sin^6 \mathbf{x} \cos^3 \mathbf{x} dx$ 3. Evaluate $\int_0^a \int_0^b (\mathbf{x}^2 + \mathbf{y}^2) dx dy$
- 4. Define triple integral
- 5. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- 6. Evaluate $\int_0^1 \mathbf{x}^7 (\mathbf{1}-\mathbf{x})^8 \mathbf{d}x$
- 7. Find the constant ${\bf a_0}$ and ${\bf a_n}$ of the Fourier series for the function ${\bf f}\left({\bf x} \right)\!=\!\!{\bf x}$ in $-\pi\!<\!{\bf x}\!<\!\pi$
- 8. Find $\mathbf{b_n}$ in the expansion of $\mathbf{x^2}$ as a fourier series in $(-\pi,\pi)$
- 9. Find a sine series for the function f(x) = c in (o, π)
- 10. Write the half range of cosine series formula.
- 11. Prove that $\beta(\mathbf{m}, \mathbf{n}) \beta(\mathbf{m}+\mathbf{n}, \mathbf{p}) = \frac{\Gamma(m)\Gamma(n)\Gamma(p)}{\Gamma(\mathbf{m}+\mathbf{n}+\mathbf{p})}$
- 12. Evaluate $\int_0^1 \mathbf{x} (\mathbf{1} \mathbf{x})^{10} \mathbf{d}x$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\int \cos^n x \, dx$ (n being a positive integer)
- 14. Evaluate $\int \int (x^2+y^2) dx dy$ over the region for which x, y are each = 0 and x+y = 1

16UMACT2A04/UMA/CT/2A04

- 15. Evaluate ∫₀^{π/2} sin⁷θcos⁵θ dθ
 16. Express f (x) =x(-π<x<π) as a fourier series with period 2π
 17. Express f (x) =c-x where 0<x<c as a half range cosine series with period 2c.
 18. Evaluate ∫ x³cos2x dx
 19. Evaluate ∬ xy dx dy taken over the positive quadrant of the circle x²+y²=a²
 Section C (3 × 10 = 30) Marks Answer any THREE questions
 20. Find a reduction formula for ∫ x^m(logx)ⁿdx (where m and n are positive integers). And also evaluate ∫ x⁴(log x)³dx
- 21. Evaluate $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes x=0, y=0, z=0, x+y+z=1.
- 22. Express $\int_0^1 \mathbf{x}^m (\mathbf{1} \mathbf{x}^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 \mathbf{x}^5 (\mathbf{1} \mathbf{x}^3)^{10} dx$
- 23. Show that $\mathbf{x}^2 = \frac{\pi^2}{3} + 4 \sum_{i=0}^{8} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi < \mathbf{x} < \pi)$
- 24. Find a fourier series with period 3 to represent $f(x) = 2x x^3$ in the range (0, 3).

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Core Major - Paper IV INTEGRAL CALCULUS AND FOURIER SERIES

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Evaluate $\int \mathbf{x}^2 \mathbf{e}^{-\mathbf{x}} dx$ 2. Evaluate $\int \sin^6 \mathbf{x} \cos^3 \mathbf{x} dx$ 3. Evaluate $\int_0^a \int_0^b (\mathbf{x}^2 + \mathbf{y}^2) dx dy$
- 4. Define triple integral
- 5. Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
- 6. Evaluate $\int_0^1 \mathbf{x}^7 (\mathbf{1}-\mathbf{x})^8 \mathbf{d}x$
- 7. Find the constant ${\bf a_0}$ and ${\bf a_n}$ of the Fourier series for the function ${\bf f}\left({\bf x} \right)\!=\!\!{\bf x}$ in $-\pi\!<\!{\bf x}\!<\!\pi$
- 8. Find $\mathbf{b_n}$ in the expansion of $\mathbf{x^2}$ as a fourier series in $(-\pi,\pi)$
- 9. Find a sine series for the function f(x) = c in (o, π)
- 10. Write the half range of cosine series formula.
- 11. Prove that $\beta(\mathbf{m}, \mathbf{n}) \beta(\mathbf{m}+\mathbf{n}, \mathbf{p}) = \frac{\Gamma(m)\Gamma(n)\Gamma(p)}{\Gamma(\mathbf{m}+\mathbf{n}+\mathbf{p})}$
- 12. Evaluate $\int_0^1 \mathbf{x} (\mathbf{1} \mathbf{x})^{10} \mathbf{d}x$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Evaluate $\int \cos^n x \, dx$ (n being a positive integer)
- 14. Evaluate $\int \int (x^2+y^2) dx dy$ over the region for which x, y are each = 0 and x+y = 1

16UMACT2A04/UMA/CT/2A04

- 15. Evaluate ∫₀^{π/2} sin⁷θcos⁵θ dθ
 16. Express f (x) =x(-π<x<π) as a fourier series with period 2π
 17. Express f (x) =c-x where 0<x<c as a half range cosine series with period 2c.
 18. Evaluate ∫ x³cos2x dx
 19. Evaluate ∬ xy dx dy taken over the positive quadrant of the circle x²+y²=a²
 Section C (3 × 10 = 30) Marks Answer any THREE questions
 20. Find a reduction formula for ∫ x^m(logx)ⁿdx (where m and n are positive integers). And also evaluate ∫ x⁴(log x)³dx
- 21. Evaluate $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes x=0, y=0, z=0, x+y+z=1.
- 22. Express $\int_0^1 \mathbf{x}^m (\mathbf{1} \mathbf{x}^n)^p dx$ in terms of Gamma functions and evaluate the integral $\int_0^1 \mathbf{x}^5 (\mathbf{1} \mathbf{x}^3)^{10} dx$
- 23. Show that $\mathbf{x}^2 = \frac{\pi^2}{3} + 4 \sum_{i=0}^{8} (-1)^n \frac{\cos nx}{n^2}$ in the interval $(-\pi < \mathbf{x} < \pi)$
- 24. Find a fourier series with period 3 to represent $f(x) = 2x x^3$ in the range (0, 3).