B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define characteristic function.
- 2. Justify : Set of all integers (Z) is countable.
- 3. Justify : A divergent sequence may have convergent subsequence.
- 4. Justify : Every bounded sequence is convergent.
- 5. If $f:A\to R$, has a derivative at a point $c\in R$, then prove that f is continuous at 'c'
- 6. State law of the mean.
- 7. Find $L(\sin^2 t)$
- 8. State first shifting theorem of Laplace transformation.

9. Find
$$L^{-1}\left(\frac{s-3}{(s-3)^2+4}\right)$$

10. Find $L^{-1}\left(\frac{s}{(s+2)^2}\right)$

- 11. Give an example of a countable bounded subset A of R whose GLB and LUB are both in R-A.
- 12. Define limit of a sequence.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $f: A \to B$ and if $X, Y \subset B$ then prove that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$

14. If $\sum_{n=1}^{\infty} a_n$ is convergent series, then prove that $\lim_{n \to \infty} a_n = 0$, Hence, deduce that $\sum_{n=1}^{\infty} \frac{(1-n)}{1+2n}$ is divergent.

16USTAT2MA2

- 15. State and prove Rolle's theorem.
- 16. Find. $L\left[\int_{0}^{t} \frac{e^{-t} \sin t}{t} dt\right]$ 17. Find $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$ 18. Prove that the set $[0,1] = \{x/0 \le x \le 1\}$ is uncountable. 19. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. Prove that countable union of countable set is countable. Hence, deduce that set of all rational number is countable.
- 21. Prove that a monotonically increasing sequence which is bounded above is convergent.
- 22. State and prove Taylor's formula with integral form of the remainder.
- 23. Find

a).
$$L(t.e^{-t}\sin t)$$

b). $L(\frac{e^{-3t} - e^{-4t}}{t})$

24. Find

a).
$$L^{-1} \left[\log \left(\frac{1+s}{s^2} \right) \right]$$

b). $L^{-1} \left[\tan^{-1}(s+1) \right]$

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define characteristic function.
- 2. Justify : Set of all integers (Z) is countable.
- 3. Justify : A divergent sequence may have convergent subsequence.
- 4. Justify : Every bounded sequence is convergent.
- 5. If $f:A\to R$, has a derivative at a point $c\in R$, then prove that f is continuous at 'c'
- 6. State law of the mean.
- 7. Find $L(\sin^2 t)$
- 8. State first shifting theorem of Laplace transformation.

9. Find
$$L^{-1}\left(\frac{s-3}{(s-3)^2+4}\right)$$

10. Find $L^{-1}\left(\frac{s}{(s+2)^2}\right)$

- 11. Give an example of a countable bounded subset A of R whose GLB and LUB are both in R-A.
- 12. Define limit of a sequence.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. If $f: A \to B$ and if $X, Y \subset B$ then prove that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$

14. If $\sum_{n=1}^{\infty} a_n$ is convergent series, then prove that $\lim_{n \to \infty} a_n = 0$, Hence, deduce that $\sum_{n=1}^{\infty} \frac{(1-n)}{1+2n}$ is divergent.

16USTAT2MA2

- 15. State and prove Rolle's theorem.
- 16. Find. $L\left[\int_{0}^{t} \frac{e^{-t} \sin t}{t} dt\right]$ 17. Find $L^{-1}\left(\frac{1}{s(s+1)(s+2)}\right)$ 18. Prove that the set $[0,1] = \{x/0 \le x \le 1\}$ is uncountable. 19. Prove that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n}\right)$ is divergent.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. Prove that countable union of countable set is countable. Hence, deduce that set of all rational number is countable.
- 21. Prove that a monotonically increasing sequence which is bounded above is convergent.
- 22. State and prove Taylor's formula with integral form of the remainder.
- 23. Find

a).
$$L(t.e^{-t}\sin t)$$

b). $L(\frac{e^{-3t} - e^{-4t}}{t})$

24. Find

a).
$$L^{-1} \left[\log \left(\frac{1+s}{s^2} \right) \right]$$

b). $L^{-1} \left[\tan^{-1}(s+1) \right]$