B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 III Year V Semester Core Elective - Paper I NUMERICAL METHODS

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define rounding off error.
- 2. Give the geometrical interpretation of the Newton -Raphson method.
- 3. Solve x + y = 2, 2x + 3y = 5 using Gauss elimination method.
- 4. Define factorial function.
- 5. Compare Gauss- Elimination and Gauss- Seidal method.
- 6. State Newton's backward difference interpolation formula.
- 7. Prove that $\nabla = 1 E^{-1}$.
- 8. What is the error in Simpson's 1/3 rd rule for numerical integration?
- 9. State Adam- Bashforth Predictor- Corrector formula.
- 10. Find the first approximation of the root of the equation $x^3-x-11=0$ by using bisection method which lies between 2 and 3.
- 11. Write the Newton-Cote's quadrature formula for numerical integration.
- 12. Explain the terms (i) Round of error. (ii) Truncation error.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the root of the equation $x^3-3x-5=0$ by the method of false position.
- 14. Show that $\nabla^{r} f(x) = \triangle^{r} f(x-r)$.
- 15. Construct Newton's Forward interpolation polynomial for the data below:

x	4	6	8	10
f(x)	1	3	8	16

16. Apply Lagrange formula to find f(x) from the following data:

X	0	1	2	5
f(x)	2	3	12	147

17. Using Euler's method find y(0.1) and y(0.2) given $\frac{dy}{dx} = 1 + xy$, y(0) = 2.

UMA/CE/5A01(Set II)

- 18. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule by taking h = 0.2.
- 19. Find the missing term in the table below:

x	0	1	2	3	4
y	1	3	9		81

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the real root of $xe^x 2 = 0$ correct to three places of decimals using Newton-Raphson method.
- 21. Solve 28x + 4y z = 32, x + y + 10z = 24, 2x + 17y + 4z = 35 using Gauss –Jordan method.
- 22. Using Newton's divided difference formula, find the values of f(2), f(8), f(15) from the following data.

f(x) 48 100 294 900 1210 2028	Х	4	5	7	10	11	13
	f(x)	48	100	294	900	1210	2028

- 23. Evaluate $\int_{0}^{\frac{r}{2}} sinx \, dx$ using Simpson's $(1/3)^{rd}$ rule by dividing the range into six equal parts.
- 24. Using Adam Bashforth method find y(4.4) given $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 III Year V Semester Core Elective - Paper I NUMERICAL METHODS

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define rounding off error.
- 2. Give the geometrical interpretation of the Newton -Raphson method.
- 3. Solve x + y = 2, 2x + 3y = 5 using Gauss elimination method.
- 4. Define factorial function.
- 5. Compare Gauss- Elimination and Gauss- Seidal method.
- 6. State Newton's backward difference interpolation formula.
- 7. Prove that $\nabla = 1 E^{-1}$.
- 8. What is the error in Simpson's 1/3 rd rule for numerical integration?
- 9. State Adam- Bashforth Predictor- Corrector formula.
- 10. Find the first approximation of the root of the equation $x^3-x-11=0$ by using bisection method which lies between 2 and 3.
- 11. Write the Newton-Cote's quadrature formula for numerical integration.
- 12. Explain the terms (i) Round of error. (ii) Truncation error.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the root of the equation $x^3-3x-5=0$ by the method of false position.
- 14. Show that $\nabla^{r} f(x) = \triangle^{r} f(x-r)$.
- 15. Construct Newton's Forward interpolation polynomial for the data below:

x	4	6	8	10
f(x)	1	3	8	16

16. Apply Lagrange formula to find f(x) from the following data:

X	0	1	2	5
f(x)	2	3	12	147

17. Using Euler's method find y(0.1) and y(0.2) given $\frac{dy}{dx} = 1 + xy$, y(0) = 2.

UMA/CE/5A01(Set II)

- 18. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule by taking h = 0.2.
- 19. Find the missing term in the table below:

x	0	1	2	3	4
y	1	3	9		81

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Find the real root of $xe^x 2 = 0$ correct to three places of decimals using Newton-Raphson method.
- 21. Solve 28x + 4y z = 32, x + y + 10z = 24, 2x + 17y + 4z = 35 using Gauss –Jordan method.
- 22. Using Newton's divided difference formula, find the values of f(2), f(8), f(15) from the following data.

f(x) 48 100 294 900 1210 2028	Х	4	5	7	10	11	13
	f(x)	48	100	294	900	1210	2028

- 23. Evaluate $\int_{0}^{\frac{r}{2}} sinx \, dx$ using Simpson's $(1/3)^{rd}$ rule by dividing the range into six equal parts.
- 24. Using Adam Bashforth method find y(4.4) given $5xy' + y^2 = 2$, y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143.