B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 III Year VI Semester Core Elective - Paper III OPERATIONS RESEARCH

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. What is O.R?
- 2. State the limitations of the graphical method of solving a LPP.
- 3. What is the canonical form of a LPP.
- 4. Explain the use of artificial variables in LPP.
- 5. What do you mean by transportation model?
- 6. Define an unbalanced assignment problem.
- 7. What is a sequencing problem?
- 8. Define total elapsed time and idle time on machines.
- 9. What are the three main phases of a Project?
- 10. What is critical path in PERT/CPM? Explain its importance.
- 11. Write short notes on (a) total float (b) free float.
- 12. Define Feasible solution of LPP.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. What are the characteristics of a good model?
- 14. Apply the simplex method to solve the problem. Maximize $Z = 100x_1 + 200x_2 + 50x_3$ Subject to $5x_1 + 5x_2 + 10x_3 \le 1000$ $10x_1 + 8x_2 + 5x_3 \le 2000$ $10x_1 + 5x_2 \le 500$ $x_1, x_2, x_3 \ge 0$
- 15. Solve the assignment problem

Operators

		Ι			IV
	А	10	5	13	15
Machines	В	3	9	18	3
	С	10	7	3	2
	D	5	11	9	7

UMA/CE/6003

16. Find the sequence that minimises the total elapsed time required to complete the following tasks on machines M_1 and M_2 in the order M_1 , M_2 . Also find the minimum total elapsed time

Task	A	В	C	D	E	F	G	Н	I
M_1	2	5	4	9	6	8	7	5	4
M_2	6	8	7	4	3	9	3	8	11

- 17. Write the difference between PERT and CPM.
- 18. A project schedule has the following characteristics:

Activity	1-2	1-3	2-4	3-4	3-5	4-9	5-6	5-7	6-8	7-8	8-	9-
											10	10
Time	4	1	1	1	6	5	4	8	1	2	5	7
Construct Pl	RT n	Construct PERT network and find the critical nath										

Construct PERT network and find the critical path.

19. Old hens can be bought at Rs.2 each and young ones at Rs.5 each. The old hens lay 3 eggs per week and the young ones lay 5 eggs per week, each egg being worth 30 paise. A hen costs Rs.1 per week to feed. A person has only Rs.80 to spend for hens. How many of each kind should he buy to give a profit of more than Rs. 6 per week, assuming that he cannot house more than 20 hens. Formulate this as a LPP.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

20. Apply graphical method to solve the LPP:

Maximise $z = x_1 - x_2$ Subject to $-x_1 + x_2 \leq 1$ $0 \le x_1 \le 5$ $2 < x_2 < 4$

- 21. Use two-phase simplex method to solve Maximise $z = 5x_1 + 8x_2$ Subject to $3x_1 + 2x_2 \ge 3$ $x_1 + 4x_2 \ge 4$ $x_1 + x_2 \le 5$ $x_1, x_2 \geq 0$
- 22. Solve the following transportation problem to maximize profit

	Destination										
Source		А	В	С	D	Supply					
	1	40	25	22	33	100					
	2	44	35	30	30	30					
	3	38	38	28	30	70					
	demand	40	20	60	30						

Profits (RS)/ Unit

UMA/CE/6003

23. Solve the following sequencing problem:

	Machines									
		M $_1$	M_2	M_3	M_4					
	A	13	8	7	14					
Jobs	В	12	6	8	19					
	С	9	7	8	15					
	D	8	5	6	15					

24. A project consists of the following activities and time estimates:

Activity	1-2	1-3	1-4	2-5	2-6	3-6	4-7	5-7	6-7
Least	3	2	6	2	5	3	3	1	2
time(days)									
Greatest	15	14	30	8	17	15	27	7	8
time(days)									
Most	6	5	12	5	11	6	9	4	5
likely(days)									

- (a). Draw the network
- (b). What is the probability that the project will be completed in 27 days?
- (c). What due date has about 95% chance of being met?