B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 III Year V Semester Core Major - Paper X REAL ANALYSIS

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Prove that $A = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$ is a countable set.
- 2. Justify : Every bounded sequence is a convergent sequence.
- 3. Find $\lim_{n \to \infty} (-1)^n$ and $\lim_{n \to \infty} (-1)^n$
- 4. When a series $\sum_{n=1}^{\infty} a_n$ is said to be converges conditionally?
- 5. If ρ is a metric on M, is ρ^2 metric on M ?
- 6. If G_1 and G_2 are open subsets of a metric space M, then prove that $\mathsf{G}_1\cap\mathsf{G}_2$ is open
- 7. Define connected set.
- 8. Define contraction mapping.
- 9. State chain rule.
- 10. If $f : A \to R$ has a derivative at a point $c \in R$ then prove that f is continuous at c.
- 11. Justify : A divergent sequence may have a convergent sub sequence.
- 12. Find LUB and GLB of $\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \dots, N\}$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove : Countable union of countable sets is countable.
- 14. Prove that the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is converges if and only if it is Cauchy.
- 15. Prove that the continuous function of a continuous function is continuous.
- 16. If the subset A of the metric space (M,ρ) is totally bounded, then prove that A is bounded. .
- 17. State and prove Rolle's theorem.

UMA/CT/5A10

- 18. Prove that f is continuous if and only if the inverse image of every open set is open.
- 19. State LUB axiom. Using it, prove that if A is any non empty subset of R that is bounded below, then A has GLB in R

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that a increasing sequence which is bounded above is convergent. Hence, deduce $\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n=1}^{\infty}$ is convergent.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that
 - i) $a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...$ and
 - ii) $\lim_{n\to\infty} a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ convergent.
- 22. Let (M, γ) be a metric space and **a** be a point in M. Let f and g are real valued functions whose domains are subsets of M. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = N$, then prove that

(a.)
$$\lim_{x \to a} \left[f(x)g(x) \right] = LN$$

(b.)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{N}, ifN \neq 0$$

- 23. State and prove nested interval theorem.
- 24. State and prove second fundamental theorem of calculus.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 III Year V Semester Core Major - Paper X REAL ANALYSIS

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Prove that $A = \left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right\}$ is a countable set.
- 2. Justify : Every bounded sequence is a convergent sequence.

3. Find
$$\lim_{n \to \infty} (-1)^n$$
 and $\lim_{n \to \infty} \sup_{n \to \infty} (-1)^n$

- 4. When a series $\sum_{n=1}^{\infty} a_n$ is said to be converges conditionally?
- 5. If ρ is a metric on M, is ρ^2 metric on M ?
- 6. If G_1 and G_2 are open subsets of a metric space M, then prove that $\mathsf{G}_1\cap\mathsf{G}_2$ is open
- 7. Define connected set.
- 8. Define contraction mapping.
- 9. State chain rule.
- 10. If $f: A \to R$ has a derivative at a point $c \in R$ then prove that f is continuous at c.
- 11. Justify : A divergent sequence may have a convergent sub sequence.
- 12. Find LUB and GLB of $\{\pi + 1, \pi + \frac{1}{2}, \pi + \frac{1}{3}, \dots, \pi\}$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove : Countable union of countable sets is countable.
- 14. Prove that the sequence of real numbers $\{S_n\}_{n=1}^{\infty}$ is converges if and only if it is Cauchy.
- 15. Prove that the continuous function of a continuous function is continuous.
- 16. If the subset A of the metric space (M,ρ) is totally bounded, then prove that A is bounded. .
- 17. State and prove Rolle's theorem.

UMA/CT/5A10

- 18. Prove that f is continuous if and only if the inverse image of every open set is open.
- 19. State LUB axiom. Using it, prove that if A is any non empty subset of R that is bounded below, then A has GLB in R

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Prove that a increasing sequence which is bounded above is convergent. Hence, deduce $\left\{\left(1+\frac{1}{n}\right)^n\right\}_{n=1}^{\infty}$ is convergent.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that
 - i) $a_1 \ge a_2 \ge ... \ge a_n \ge a_{n+1} \ge ...$ and
 - ii) $\lim_{n\to\infty} a_n = 0$, then prove that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ convergent.
- 22. Let (M, γ) be a metric space and **a** be a point in M. Let f and g are real valued functions whose domains are subsets of M. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = N$, then prove that

(a.)
$$\lim_{x \to a} \left[f(x)g(x) \right] = LN$$

(b.)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{N}, ifN \neq 0$$

- 23. State and prove nested interval theorem.
- 24. State and prove second fundamental theorem of calculus.