B.Sc. DEGREE EXAMINATION, NOVEMBER 2018 III Year V Semester Core Major - Paper X REAL ANALYSIS

Time: 3 Hours Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Least upper bound.
- 2. When do you say that a sequence is bounded?.
- 3. State Ratio test.
- 4. Define Limit superior.
- 5. Define Limit of a function
- 6. When do you say that a function is strictly increasing?.
- 7. Define open set.
- 8. Prove that set of all irrationals is of second category.
- 9. Define measure zero.
- 10. State Rolle's theorem.
- 11. Define divergent sequence.
- 12. Prove that $\sum 1/n$ is divergent

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that countable union of countable set is countable.
- 14. Prove that every cauchy sequence of real numbers is bounded .
- 15. Prove that $\lim \sqrt{x+3} = 2$ as $x \to 1$
- 16. If G_1 and G_2 are open then Prove that $G_1 \cap G_2$ is also open.
- 17. State and Prove first fundamental theorem of calculus.
- 18. If $\sum a_n$ is a convergent series then Prove that $\lim a_n = 0$ as $n \to \infty$.
- 19. Prove that if f is continuous at $a \in R$ then |f| is also continuous at a.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. a) Show that [0,1] is uncountable.
 - b) Prove every convergent sequence is bounded.
- 21. State and Prove Root test.
- 22. a) If $\lim f(x) = L$ as $x \to a$ and $\lim g(x) = M$ as $x \to a$ then Prove that $\lim [f(x) + g(x)] = L + M$ as $x \to a$.
 - b) Define Metric space with an example.
- 23. Prove that the set R^1 is of second category.
- 24. State and Prove Rolle's Theorem.

B.Sc. DEGREE EXAMINATION, NOVEMBER 2018 III Year V Semester Core Major - Paper X REAL ANALYSIS

Time: 3 Hours Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define Least upper bound.
- 2. When do you say that a sequence is bounded?.
- 3. State Ratio test.
- 4. Define Limit superior.
- 5. Define Limit of a function
- 6. When do you say that a function is strictly increasing?.
- 7. Define open set.
- 8. Prove that set of all irrationals is of second category.
- 9. Define measure zero.
- 10. State Rolle's theorem.
- 11. Define divergent sequence.
- 12. Prove that $\sum 1/n$ is divergent

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Prove that countable union of countable set is countable.
- 14. Prove that every cauchy sequence of real numbers is bounded .
- 15. Prove that $\lim \sqrt{x+3} = 2$ as $x \to 1$
- 16. If G_1 and G_2 are open then Prove that $G_1 \cap G_2$ is also open.
- 17. State and Prove first fundamental theorem of calculus.
- 18. If $\sum a_n$ is a convergent series then Prove that $\lim a_n = 0$ as $n \to \infty$.
- 19. Prove that if f is continuous at $a \in R$ then |f| is also continuous at a.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. a) Show that [0,1] is uncountable.
 - b) Prove every convergent sequence is bounded.
- 21. State and Prove Root test.
- 22. a) If $\lim f(x) = L$ as $x \to a$ and $\lim g(x) = M$ as $x \to a$ then Prove that $\lim [f(x) + g(x)] = L + M$ as $x \to a$.
 - b) Define Metric space with an example.
- 23. Prove that the set R^1 is of second category.
- 24. State and Prove Rolle's Theorem.