B.C.A DEGREE EXAMINATION,NOVEMBER 2018 I Year I Semester Allied Paper -I ALLIED MATHEMATICS -I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Construct the truth table for $\sim p \lor q$.
- 2. Let p: Dogs are bipeds and q: Human being are quadrupeds. Write the contrapositive of $p \Rightarrow q$.
- 3. Write the series expansion of $\tan n\theta$.
- 4. If $x = \cos \theta + i \sin \theta$, then what is the value of $x^n \frac{1}{x^n}$?
- 5. Find the value of $\cosh^2 x \sinh^2 x$.
- 6. Prove that $\cos ix = \cosh x$.
- 7. Find $L[5-2e^{-t}]$.
- 8. Find $L[t^{10}]$.
- 9. Find $L^{-1} \left[\frac{s}{s^2 + 49} \right]$.
- 10. Find $L^{-1}\left[\frac{1}{s-3} + \frac{1}{s}\right]$.
- 11. Define the biconditional proposition.
- 12. Find $L [\cos 5t]$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Using truth table, show that $p \lor (q \land r) = (p \lor q) \land (p \lor r)$.

14. Prove that
$$\frac{\cos 5\theta}{\cos \theta} = 1 - 12\sin^2\theta + 16\sin^4\theta$$
.

15. Show that $\cosh^{-1}x = \log \left[x + \sqrt{x^2 - 1}\right]$.

16. Find
$$L \left[\frac{\sin 3t \cos t}{t} \right]$$
.
17. Find $L^{-1} \left[\frac{1}{s \left(s^2 - 2s + 5 \right)} \right]$.

15UCAAT1AM1/UCA/AT/1AM1

18. Without using truth table, show that $p \Leftrightarrow q = (p \land q) \lor (\sim p \land \sim q)$.

19. Find
$$L^{-1}\left[\frac{s}{(s+2)^2+4}\right]$$
.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

20. Is the following argument valid?

If the labour market is prefect, then the wages of all persons in a particular employment will be equal. But it is always the case that wages for such persons are not equal. Therefore, the labour market is not perfect.

21. Prove that

$$\cos^5\theta\,\sin^4\theta\ = \frac{1}{2^8}\left[\cos9\theta\ +\cos7\theta\ -4\cos5\theta\ -4\cos3\theta\ +6\cos\theta\ \right]$$

- 22. Separate into real and imaginary parts of $tan^{-1}(\alpha + i\beta)$.
- 23. (a) Find $L [t e^{-t} \sin t]$. (b) Find $L [t^2 e^{-3t}]$.

24. Find
$$L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$$
.

B.C.A DEGREE EXAMINATION,NOVEMBER 2018 I Year I Semester Allied Paper -I ALLIED MATHEMATICS -I

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Construct the truth table for $\sim p \lor q$.
- 2. Let p: Dogs are bipeds and q: Human being are quadrupeds. Write the contrapositive of $p \Rightarrow q$.
- 3. Write the series expansion of $\tan n\theta$.
- 4. If $x = \cos \theta + i \sin \theta$, then what is the value of $x^n \frac{1}{x^n}$?
- 5. Find the value of $\cosh^2 x \sinh^2 x$.
- 6. Prove that $\cos ix = \cosh x$.
- 7. Find $L[5-2e^{-t}]$.
- 8. Find $L[t^{10}]$.
- 9. Find $L^{-1} \left[\frac{s}{s^2 + 49} \right]$.
- 10. Find $L^{-1}\left[\frac{1}{s-3} + \frac{1}{s}\right]$.
- 11. Define the biconditional proposition.
- 12. Find $L [\cos 5t]$.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

13. Using truth table, show that $p \lor (q \land r) = (p \lor q) \land (p \lor r)$.

14. Prove that
$$\frac{\cos 5\theta}{\cos \theta} = 1 - 12\sin^2\theta + 16\sin^4\theta$$
.

15. Show that $\cosh^{-1}x = \log \left[x + \sqrt{x^2 - 1}\right]$.

16. Find
$$L \left[\frac{\sin 3t \cos t}{t} \right]$$
.
17. Find $L^{-1} \left[\frac{1}{s \left(s^2 - 2s + 5 \right)} \right]$.

15UCAAT1AM1/UCA/AT/1AM1

18. Without using truth table, show that $p \Leftrightarrow q = (p \land q) \lor (\sim p \land \sim q)$.

19. Find
$$L^{-1}\left[\frac{s}{(s+2)^2+4}\right]$$
.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

20. Is the following argument valid?

If the labour market is prefect, then the wages of all persons in a particular employment will be equal. But it is always the case that wages for such persons are not equal. Therefore, the labour market is not perfect.

21. Prove that

$$\cos^5\theta\,\sin^4\theta\ = \frac{1}{2^8}\left[\cos9\theta\ +\cos7\theta\ -4\cos5\theta\ -4\cos3\theta\ +6\cos\theta\ \right]$$

- 22. Separate into real and imaginary parts of $tan^{-1}(\alpha + i\beta)$.
- 23. (a) Find $L [t e^{-t} \sin t]$. (b) Find $L [t^2 e^{-3t}]$.

24. Find
$$L^{-1}\left[\frac{1}{s(s+1)(s+2)}\right]$$
.