B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define the characteristic function of a set.
- 2. Show that the set of all real numbers is uncountable.
- 3. Is the sequence $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots$ convergent? Is so what is the limit?
- 4. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then show that $\lim_{n \to \infty} a_n = 0$.
- 5. State the chain rule.
- 6. When do you say that a function f has a derivative at c.
- 7. Find $L[e^{2t} + 3e^{-5t}]$.
- 8. Find $L[t^{10}]$.

9. Find
$$L^{-1}\left[\frac{s+6}{(s+6)^2+9}\right]$$

10. Find $L^{-1}\left[\frac{1}{(s+1)^2}\right]$.

- 11. Define an infinite set.
- 12. When do you say that a series converges conditionally.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Let $f : A \to B$ and if $X \subset B$, $Y \subset B$. Show that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- 14. Show that every convergent sequence is bounded.
- 15. Let f be a continuous function on the closed bounded interval [a, b]. If the maximum value of f is attained at c where a < c < b, and if f'(c) exists, then show that f'(c) = 0.
- 16. Find $L[t\sin 3t \cos 2t]$.

UST/AT/2AM2

17. Find
$$L^{-1}\left[\frac{s-3}{s^2+4s+13}\right]$$

18. Show that $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)$ is divergent.
19. Find $L^{-1}\left[\frac{1}{s\left(s^2+a^2\right)}\right]$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Show that countable union of a countable set is countable.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that (a) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and (b) $\lim_{n\to\infty} a_n = 0$, then show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- 22. State and prove the Taylor's formula with the Lagrange's form of the remainder.

23. (a) Find
$$L \left[t^2 e^{3t} \sin t \right]$$
.
(b) Find $L \left[\frac{1 - \cos t}{t} \right]$.
24. Find $L^{-1} \left[\frac{1 - s}{(1 + s)(s^2 + 4s + 13)} \right]$.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Define the characteristic function of a set.
- 2. Show that the set of all real numbers is uncountable.
- 3. Is the sequence $1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots$ convergent? Is so what is the limit?
- 4. If $\sum_{n=1}^{\infty} a_n$ is a convergent series, then show that $\lim_{n \to \infty} a_n = 0$.
- 5. State the chain rule.
- 6. When do you say that a function f has a derivative at c.
- 7. Find $L[e^{2t} + 3e^{-5t}]$.
- 8. Find $L[t^{10}]$.

9. Find
$$L^{-1}\left[\frac{s+6}{(s+6)^2+9}\right]$$

10. Find $L^{-1}\left[\frac{1}{(s+1)^2}\right]$.

- 11. Define an infinite set.
- 12. When do you say that a series converges conditionally.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Let $f : A \to B$ and if $X \subset B$, $Y \subset B$. Show that $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.
- 14. Show that every convergent sequence is bounded.
- 15. Let f be a continuous function on the closed bounded interval [a, b]. If the maximum value of f is attained at c where a < c < b, and if f'(c) exists, then show that f'(c) = 0.
- 16. Find $L[t\sin 3t \cos 2t]$.

UST/AT/2AM2

17. Find
$$L^{-1}\left[\frac{s-3}{s^2+4s+13}\right]$$

18. Show that $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)$ is divergent.
19. Find $L^{-1}\left[\frac{1}{s\left(s^2+a^2\right)}\right]$.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Show that countable union of a countable set is countable.
- 21. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive numbers such that (a) $a_1 \ge a_2 \ge \cdots \ge a_n \ge a_{n+1} \ge \cdots$ and (b) $\lim_{n\to\infty} a_n = 0$, then show that the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.
- 22. State and prove the Taylor's formula with the Lagrange's form of the remainder.

23. (a) Find
$$L \left[t^2 e^{3t} \sin t \right]$$
.
(b) Find $L \left[\frac{1 - \cos t}{t} \right]$.
24. Find $L^{-1} \left[\frac{1 - s}{(1 + s)(s^2 + 4s + 13)} \right]$.