B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the Euler constant $\mathbf{a_0}$ for the function $\mathbf{f}(\mathbf{x}) = \mathbf{x} + \mathbf{x^2}$ of period 2π in $(-\pi, \pi)$.
- 2. What are the values of the Fourier constants when an odd function f(x) is expanded in a Fourier series in the interval $(-\pi, \pi)$.
- 3. Form the partial differential equation by eliminating the arbitrary constants \mathbf{a} and \mathbf{b} from $\mathbf{z} = (\mathbf{x}^2 + \mathbf{a}) (\mathbf{y}^2 + \mathbf{b})$.
- 4. Find the complete integral of $z=px+qy+p^2-q^2$.
- 5. Find the Laplace transform of e^{-7t} .
- 6. Find L[sin 7t].
- 7. Find $\mathbf{L}^{-1}\left[\frac{1}{(\mathbf{s}-1)^2}\right]$.
- 8. Find inverse Laplace transform of $\frac{1}{(s+1)^2+1}$.
- 9. If $\overrightarrow{\mathbf{v}} = (\mathbf{x} + 3\mathbf{y}) \overrightarrow{\mathbf{i}} + (\mathbf{y} 2\mathbf{z}) \overrightarrow{\mathbf{j}} + (\mathbf{x} + \lambda \mathbf{z}) \overrightarrow{\mathbf{k}}$ is solenoidal, find the value of λ .
- 10. If $\phi = \log (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)$, then find $\nabla \phi$.
- 11. Eliminate the arbitrary function f from $z=f(x^2-y^2)$ and form a partial differential equation.
- 12. If $\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j}$, evaluate $\int \overrightarrow{F} \cdot d\overrightarrow{r}$ along the line y = x from (0,0) to (1,1).

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$.
- 14. Solve $z=px+qy+\sqrt{1+q^2+p^2}$. 15. Find $L\left[\frac{1-e^t}{t}\right]$. 16. Find $L^{-1}\left[\frac{1}{s(s^2-2s+5)}\right]$.

16UCHAT2MA2

- 17. Find the directional derivative of $\phi = \mathbf{x}y + \mathbf{y}z + \mathbf{z}x$ in the direction of the vector $\overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}}$ at $(\mathbf{1}, \mathbf{2}, \mathbf{0})$.
- 18. Find the complete solution of p+q=sin x+cos y.
- 19. Evaluate $\iint_{\mathbf{S}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{n}} \, \mathbf{ds}$, where $\overrightarrow{\mathbf{F}} = \mathbf{y}z \ \overrightarrow{\mathbf{i}} + \mathbf{z}x \ \overrightarrow{\mathbf{j}} + \mathbf{x}y \ \overrightarrow{\mathbf{k}}$ and \mathbf{S} is that part of the surface of the sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{1}$ which lies in the first octant.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

20. If $f(x) = \frac{1}{2}(\pi - x)$, then find the Fourier series of period 2π in the interval $(0, 2\pi)$. Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$. 21. Solve x(y-z) p+y(z-x) q=z(x-y). 22. Find $L[t \sin 3t \cos 2t]$.

23. Find
$$L^{-1}\left[\frac{1-s}{(s+1)(s^2+4s+13)}\right]$$
.

24. Verify Green's theorem in the XY-plane for $\int_{\mathbf{C}} \{(\mathbf{x}y+\mathbf{y}^2) \, \mathbf{d}x+\mathbf{x}^2 \, \mathbf{d}y\}$, where \mathbf{C} is the closed curve of the region bounded by $\mathbf{y}=\mathbf{x}$ and $\mathbf{y}=\mathbf{x}^2$.

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Find the Euler constant $\mathbf{a_0}$ for the function $\mathbf{f}(\mathbf{x}) = \mathbf{x} + \mathbf{x^2}$ of period 2π in $(-\pi, \pi)$.
- 2. What are the values of the Fourier constants when an odd function f(x) is expanded in a Fourier series in the interval $(-\pi, \pi)$.
- 3. Form the partial differential equation by eliminating the arbitrary constants \mathbf{a} and \mathbf{b} from $\mathbf{z} = (\mathbf{x}^2 + \mathbf{a}) (\mathbf{y}^2 + \mathbf{b})$.
- 4. Find the complete integral of $z=px+qy+p^2-q^2$.
- 5. Find the Laplace transform of e^{-7t} .
- 6. Find L[sin 7t].
- 7. Find $\mathbf{L}^{-1}\left[\frac{1}{(\mathbf{s}-1)^2}\right]$.
- 8. Find inverse Laplace transform of $\frac{1}{(s+1)^2+1}$.
- 9. If $\overrightarrow{\mathbf{v}} = (\mathbf{x} + 3\mathbf{y}) \overrightarrow{\mathbf{i}} + (\mathbf{y} 2\mathbf{z}) \overrightarrow{\mathbf{j}} + (\mathbf{x} + \lambda \mathbf{z}) \overrightarrow{\mathbf{k}}$ is solenoidal, find the value of λ .
- 10. If $\phi = \log (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)$, then find $\nabla \phi$.
- 11. Eliminate the arbitrary function f from $z=f(x^2-y^2)$ and form a partial differential equation.
- 12. If $\overrightarrow{F} = x^2 \overrightarrow{i} + y^2 \overrightarrow{j}$, evaluate $\int \overrightarrow{F} \cdot d\overrightarrow{r}$ along the line y = x from (0,0) to (1,1).

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find the Fourier series for $f(x) = x^2$ in $-\pi \le x \le \pi$.
- 14. Solve $z=px+qy+\sqrt{1+q^2+p^2}$. 15. Find $L\left[\frac{1-e^t}{t}\right]$. 16. Find $L^{-1}\left[\frac{1}{s(s^2-2s+5)}\right]$.

16UCHAT2MA2

- 17. Find the directional derivative of $\phi = \mathbf{x}y + \mathbf{y}z + \mathbf{z}x$ in the direction of the vector $\overrightarrow{\mathbf{i}} + 2\overrightarrow{\mathbf{j}} + 2\overrightarrow{\mathbf{k}}$ at $(\mathbf{1}, \mathbf{2}, \mathbf{0})$.
- 18. Find the complete solution of p+q=sin x+cos y.
- 19. Evaluate $\iint_{\mathbf{S}} \overrightarrow{\mathbf{F}} \cdot \widehat{\mathbf{n}} \, \mathbf{ds}$, where $\overrightarrow{\mathbf{F}} = \mathbf{y}z \ \overrightarrow{\mathbf{i}} + \mathbf{z}x \ \overrightarrow{\mathbf{j}} + \mathbf{x}y \ \overrightarrow{\mathbf{k}}$ and \mathbf{S} is that part of the surface of the sphere $\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2 = \mathbf{1}$ which lies in the first octant.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

20. If $f(x) = \frac{1}{2}(\pi - x)$, then find the Fourier series of period 2π in the interval $(0, 2\pi)$. Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$. 21. Solve x(y-z) p+y(z-x) q=z(x-y). 22. Find $L[t \sin 3t \cos 2t]$.

23. Find
$$L^{-1}\left[\frac{1-s}{(s+1)(s^2+4s+13)}\right]$$
.

24. Verify Green's theorem in the XY-plane for $\int_{\mathbf{C}} \{(\mathbf{x}y+\mathbf{y}^2) \, \mathbf{d}x+\mathbf{x}^2 \, \mathbf{d}y\}$, where \mathbf{C} is the closed curve of the region bounded by $\mathbf{y}=\mathbf{x}$ and $\mathbf{y}=\mathbf{x}^2$.