B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks :75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write the formula for Regula -falsi method.
- 2. What are the different methods of solving transcendental equations.
- 3. Prove that the finite difference of a product of two functions is given by $\Delta f(x) . g(x) = f(x+h) \Delta g(x) + g(x) \Delta f(x)$.
- 4. Prove that E[c f(x)] = c E f(x).
- 5. Prove that $(1 + \triangle)(1 \nabla) \equiv 1$.
- 6. Given that f(0) = 8, f(1) = 68 and f(5) = 123, construct a divided difference table. Using the table determine the value of f(2).
- 7. Define Inverse interpolation.
- 8. State Lagrange's inverse interpolation formula.
- 9. State Newton's backward difference formula.
- 10. Use Trapezoidal rule to evaluate the approximate values of the definite integral $I = \int_0^1 \frac{dx}{1+x}$ correct to 3 decimals, taking h =0.25.
- 11. State Simpson One -Third formula.
- 12. Solve the equation $\frac{dy}{dx} = 1 y$ with the initial conditions x=0, y=0, using Euler's method.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find a real root of the equation $x^3 + x^2 1 = 0$ by iteration method.
- 14. Solve $x^3 + 1.2x^2 4x 4.8 = 0$ by bisection method.
- 15. The population of a town in the decennial census was as given below:

Year (x)	1891	1901	1911	1921	1931
Population (y) (in thousands)	46	66	81	93	101

Estimate the population for the year 1895.

16UCSAT2MA2

- 16. Obtain the function whose first difference is $x^3 + 3x^2 + 5x + 12$.
- 17. The values of x and y are given as follows:

X:	5	6	9	11
Y:	12	13	14	16

Using Lagrange's interpolation formula find the values of y when x = 10.

18. A function y = f(x) is given in the table below:

x	2.94	2.96	2.98	3.00	3.02	3.04	3.06
f(x)	0.1826	0.1811	0.1797	0.1783	0.1769	0.1755	0.1742

Find the second derivative at x=3.

19. Use Taylor's method find y(0.1) from y' + 2xy = 1; y(0)=0 correct to 3 decimal places.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. By using Newton- Raphson's method, find the root of $x^4 x 10 = 0$, which is near to x=2 correct to three places of decimals.
- 21. <u>Given</u>

x	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

Find f(7.5).

22. Find the value of x when y = 85, using Lagrange's formula for the following data:

x	2	5	8	14
у	94.8	87.9	81.3	68.7

- 23. Apply using (i)Simpson's one-third rule and (ii) Simpson's Three-Eighth rule to find the value of $\int_0^6 \frac{dx}{1+x}$.
- 24. Use Runge- Kutta method of fourth order to solve y' = xy for x = 1.4. Initially x=1, y=2,h= 0.2

B.Sc. DEGREE EXAMINATION,NOVEMBER 2018 I Year II Semester Allied Paper -II ALLIED MATHEMATICS -II

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. Write the formula for Regula -falsi method.
- 2. What are the different methods of solving transcendental equations.
- 3. Prove that the finite difference of a product of two functions is given by $\Delta f(x) . g(x) = f(x+h) \Delta g(x) + g(x) \Delta f(x)$.
- 4. Prove that E[c f(x)] = c E f(x).
- 5. Prove that $(1 + \triangle)(1 \nabla) \equiv 1$.
- 6. Given that f(0) = 8, f(1) = 68 and f(5) = 123, construct a divided difference table. Using the table determine the value of f(2).
- 7. Define Inverse interpolation.
- 8. State Lagrange's inverse interpolation formula.
- 9. State Newton's backward difference formula.
- 10. Use Trapezoidal rule to evaluate the approximate values of the definite integral $I = \int_0^1 \frac{dx}{1+x}$

correct to 3 decimals, taking h = 0.25.

- 11. State Simpson One -Third formula.
- 12. Solve the equation $\frac{dy}{dx} = 1 y$ with the initial conditions x=0, y=0, using Euler's method.

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Find a real root of the equation $x^3 + x^2 1 = 0$ by iteration method.
- 14. Solve $x^3 + 1.2x^2 4x 4.8 = 0$ by bisection method.
- 15. The population of a town in the decennial census was as given below:

Year (x)	1891	1901	1911	1921	1931
Population (y) (in thousands)	46	66	81	93	101

16UCSAT2MA2

Estimate the population for the year 1895.

- 16. Obtain the function whose first difference is $x^3 + 3x^2 + 5x + 12$.
- 17. The values of x and y are given as follows:

X:	5	6	9	11
Y:	12	13	14	16

Using Lagrange's interpolation formula find the values of y when x = 10.

18. A function y = f(x) is given in the table below:

x	2.94	2.96	2.98	3.00	3.02	3.04	3.06
f(x)	0.1826	0.1811	0.1797	0.1783	0.1769	0.1755	0.1742

Find the second derivative at x=3.

19. Use Taylor's method find y(0.1) from y' + 2xy = 1; y(0)=0 correct to 3 decimal places.

Section C $(3 \times 10 = 30)$ Marks

Answer any THREE questions

- 20. By using Newton- Raphson's method, find the root of $x^4 x 10 = 0$, which is near to x=2 correct to three places of decimals.
- 21. Given

x	1	2	3	4	5	6	7	8
f(X)	1	8	27	64	125	216	343	512

Find f(7.5).

22. Find the value of x when y = 85, using Lagrange's formula for the following data:

x	2	5	8	14
у	94.8	87.9	81.3	68.7

- 23. Apply using (i)Simpson's one-third rule and (ii) Simpson's Three-Eighth rule to find the value of $\int_0^6 \frac{dx}{1+x}$.
- 24. Use Runge- Kutta method of fourth order to solve y' = xy for x = 1.4. Initially x=1, y=2,h= 0.2