B.C.A. DEGREE EXAMINATION, NOVEMBER 2018 III YEAR V SEMESTER Core Elective - I **RESOURCES MANAGEMENT TECHNIQUE**

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State any two characteristics of O.R.
- 2. Define the term decision variables.
- 3. What do you mean unbounded problem?
- 4. Differentiate slack and surplus variable.
- 5. Write the role of pivot element in simplex method.
- 6. Write a dual theorem.
- 7. What is travelling salesman problem?
- 8. Give any two applications of assignment problem.
- 9. What is saddle point in Game theory?
- 10. What is game theory?
- 11. What is PERT and CPM?
- 12. Construct dual for
 - Max $z = 6x_1 + 2x_2$

Subject to $3x_1 + 4x_2 \leq 40$,

 $5x_1 + 2x_2 < 30$,

 $6x_1 - 3x_2 \le 15, x_2 \le 20, x_1, x_2 \ge 0.$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Explain the general methods for solving OR models.
- 14. Describe Simplex algorithm to solve an L.P.P.
- 15. Solve the transportation problem which has cost structure as

	То			Availa	bilities
	16	19	12	14	
From	22	13	19	16	
	14	28	8	12	
Requirements	10	15	17		

1

16. Obtain the optimal assignment from the following table

	1	2	3	4
А	160	130	175	190
В	135	120	130	160
С	140	110	125	170
D	50	50	80	80

- 17. Describe the optimal sequence algorithm for n jobs through 3 machines.
- 18. Explain maximum minimax principle.
- 19. There are 5 jobs, each of which must go through the two machines A and B in the order A-B. Processing times are given below.

Job	1	2	3	4	5
Machine A	10	2	18	6	20
Machine B	4	12	14	16	8

Determine the sequence for the 5 jobs.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Discuss about the methodology of operations research.
- 21. Use duality to solve the following L.P.P

Maximize : $z = 2x_1 + x_2$ subject to the constraints: $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 - x_2 \le 2$, $x_1 - 2x_2 \le 1$ $x_1, x_2 - \ge 0$.

22. Solve the following assignment problems.

 $\begin{array}{c|cccc} A & B & C & D \\ I & \begin{bmatrix} 10 & 25 & 15 & 20 \\ 15 & 30 & 5 & 15 \\ 35 & 20 & 12 & 24 \\ IV & \begin{bmatrix} 17 & 25 & 24 & 20 \end{bmatrix} \end{array}$

23. Solve the following game by linear programming Tech.

Player B

Player A $\begin{bmatrix} 1 & -1 & 3 \\ 3 & 5 & -3 \\ 6 & 2 & -2 \end{bmatrix}$

24. The following table gives the activities in a constructive project and the other relevant information.

Activity	1-2	1-3	2-3	2-4	3-4	4-5
Duration(days)	20	25	10	12	6	10

i) Draw the network for the project.

ii) Find the critical path and project duration.

B.C.A. DEGREE EXAMINATION, NOVEMBER 2018 III YEAR V SEMESTER Core Elective - I **RESOURCES MANAGEMENT TECHNIQUE**

Time : 3 Hours

Max.marks:75

Section A $(10 \times 2 = 20)$ Marks

Answer any **TEN** questions

- 1. State any two characteristics of O.R.
- 2. Define the term decision variables.
- 3. What do you mean unbounded problem?
- 4. Differentiate slack and surplus variable.
- 5. Write the role of pivot element in simplex method.
- 6. Write a dual theorem.
- 7. What is travelling salesman problem?
- 8. Give any two applications of assignment problem.
- 9. What is saddle point in Game theory?
- 10. What is game theory?
- 11. What is PERT and CPM?
- 12. Construct dual for
 - Max $z = 6x_1 + 2x_2$

Subject to $3x_1 + 4x_2 \leq 40$,

 $5x_1 + 2x_2 < 30$,

 $6x_1 - 3x_2 \le 15, x_2 \le 20, x_1, x_2 \ge 0.$

Section B $(5 \times 5 = 25)$ Marks

Answer any **FIVE** questions

- 13. Explain the general methods for solving OR models.
- 14. Describe Simplex algorithm to solve an L.P.P.
- 15. Solve the transportation problem which has cost structure as

	То			Availa	bilities
	16	19	12	14	
From	22	13	19	16	
	14	28	8	12	
Requirements	10	15	17		

1

16. Obtain the optimal assignment from the following table

	1	2	3	4
А	160	130	175	190
В	135	120	130	160
С	140	110	125	170
D	50	50	80	80

- 17. Describe the optimal sequence algorithm for n jobs through 3 machines.
- 18. Explain maximum minimax principle.
- 19. There are 5 jobs, each of which must go through the two machines A and B in the order A-B. Processing times are given below.

Job	1	2	3	4	5
Machine A	10	2	18	6	20
Machine B	4	12	14	16	8

Determine the sequence for the 5 jobs.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Discuss about the methodology of operations research.
- 21. Use duality to solve the following L.P.P

Maximize : $z = 2x_1 + x_2$ subject to the constraints: $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 - x_2 \le 2$, $x_1 - 2x_2 \le 1$ $x_1, x_2 - \ge 0$.

22. Solve the following assignment problems.

 $\begin{array}{c|cccc} A & B & C & D \\ I & \begin{bmatrix} 10 & 25 & 15 & 20 \\ 15 & 30 & 5 & 15 \\ 35 & 20 & 12 & 24 \\ IV & \begin{bmatrix} 17 & 25 & 24 & 20 \end{bmatrix} \end{array}$

23. Solve the following game by linear programming Tech.

Player B

Player A $\begin{bmatrix} 1 & -1 & 3 \\ 3 & 5 & -3 \\ 6 & 2 & -2 \end{bmatrix}$

24. The following table gives the activities in a constructive project and the other relevant information.

Activity	1-2	1-3	2-3	2-4	3-4	4-5
Duration(days)	20	25	10	12	6	10

i) Draw the network for the project.

ii) Find the critical path and project duration.