B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester Numerical Methods

Time : 3 Hours

Max.marks :60

Section A $(10 \times 1 = 10)$ Marks

Answer any **TEN** questions

- 1. Write down the relation between Δ and E.
- 2. What is interpolation?
- 3. Write Newton's forward difference interpolation formula.
- 4. When to use divided differences?
- 5. Give the relation between divided and forward differences.
- 6. To get more accurate results near the middle value of the table, we use_____
- 7. Which formula is known as average of two Gauss's formulae?
- 8. Write the iterative formula of Newton Raphson method.
- 9. Give two direct methods to solve a system of linear equations?
- 10. State Lagrange's interpolation formula.
- 11. When does Simpson's rule give exact result?
- 12. State Trapezoidal rule.

Section B $(5 \times 4 = 20)$ Marks

Answer any **FIVE** questions

- 13. Prove the properties of operators.
- 14. Find the missing term in the following.

1	2	3	4	5	6	7
2	4	8	-	32	64	128

- 15. Find the divided differences of $f(x) = x^3 + x + 2$ for the arguments 1, 3, 6, 11.
- 16. Find the equation y = f(x) of least degree and passing through the points (-1,-21), (1, 15), (2, 12), (3, 3). Also find y at x = 0.

17USTAT4NS4 UST/AT/4NS4

17. The population of a certain town is given below: Find the rate of growth of the population in 1981.

X(year):	1931	1941	1951	1961	1971
Y(population):	40.62	60.80	79.95	103.56	132.65

18. From the following data, find θ at x = 84.

X:	40	50	60	70	80	90
θ :	184	204	226	250	276	304

19. Evaluate $\int_{-3}^{3} x^4 dx$ by using Trapezoidal rule.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Derive Newton's Forward difference formula.
- 21. Using Lagrange's interpolation formula, find y(10) from the table given below:

X:	5	6	9	11
Y:	12	13	14	16

22. Apply Gauss's forward formula to find f(x) at x = 3.5 from the table below:

X:	2	3	4	5
Y:	2.626	3.454	4.784	6.986

23. Find the negative root of $x^2 + 4 \sin x = 0$ using Newton – Raphson method.

24. Evaluate $I = \int_0^6 \frac{1}{1+x} dx$ using Trapezoidal rule and Simpson's rule (both).

B.Sc. DEGREE EXAMINATION, APRIL 2019 II Year IV Semester Numerical Methods

Time : 3 Hours

Max.marks :60

Section A $(10 \times 1 = 10)$ Marks

Answer any **TEN** questions

- 1. Write down the relation between Δ and E.
- 2. What is interpolation?
- 3. Write Newton's forward difference interpolation formula.
- 4. When to use divided differences?
- 5. Give the relation between divided and forward differences.
- 6. To get more accurate results near the middle value of the table, we use_____
- 7. Which formula is known as average of two Gauss's formulae?
- 8. Write the iterative formula of Newton Raphson method.
- 9. Give two direct methods to solve a system of linear equations?
- 10. State Lagrange's interpolation formula.
- 11. When does Simpson's rule give exact result?
- 12. State Trapezoidal rule.

Section B $(5 \times 4 = 20)$ Marks

Answer any **FIVE** questions

- 13. Prove the properties of operators.
- 14. Find the missing term in the following.

1	2	3	4	5	6	7
2	4	8	-	32	64	128

- 15. Find the divided differences of $f(x) = x^3 + x + 2$ for the arguments 1, 3, 6, 11.
- 16. Find the equation y = f(x) of least degree and passing through the points (-1,-21), (1, 15), (2, 12), (3, 3). Also find y at x = 0.

17USTAT4NS4 UST/AT/4NS4

17. The population of a certain town is given below: Find the rate of growth of the population in 1981.

X(year):	1931	1941	1951	1961	1971
Y(population):	40.62	60.80	79.95	103.56	132.65

18. From the following data, find θ at x = 84.

X:	40	50	60	70	80	90
θ :	184	204	226	250	276	304

19. Evaluate $\int_{-3}^{3} x^4 dx$ by using Trapezoidal rule.

Section C $(3 \times 10 = 30)$ Marks

Answer any **THREE** questions

- 20. Derive Newton's Forward difference formula.
- 21. Using Lagrange's interpolation formula, find y(10) from the table given below:

X:	5	6	9	11
Y:	12	13	14	16

22. Apply Gauss's forward formula to find f(x) at x = 3.5 from the table below:

X:	2	3	4	5
Y:	2.626	3.454	4.784	6.986

23. Find the negative root of $x^2 + 4 \sin x = 0$ using Newton – Raphson method.

24. Evaluate $I = \int_0^6 \frac{1}{1+x} dx$ using Trapezoidal rule and Simpson's rule (both).